Applications of Metal/Metal Oxides Nanoparticles in Organic Transformations


Applications of Metal/Metal Oxides Nanoparticles in Organic Transformations

Aniruddha Mondal, S.K. Tarik Aziz, Ajay K. Potbhare, S. Mondal, Trimurti L. Lambat, Ratiram Gomaji Chaudhary, Ahmed A. Abdala

Catalysis plays a significant role in improving the catalytic processes to enhance efficiency of chemical transformations by reducing wastes. The research on catalysis con-temporarily emerged as one of the pioneered research in modern chemistry. In the last few years, nanocatalysis has become an emerging area of science and technology owing to their exceptional potential effects in catalysis and selectivity. On the nano-level, the nanostructured materials possessed different size, which rendered different surface area, that conveys the exclusive assets to nanocatalysts compared to their bulk counterpart. In this chapter, we emphasise on the fundamental understanding of different nanocatalysts and how they catalyse catalytic reactions.

Metal Oxide Nanoparticles, Mesoporous Materials, Nanocatalysts, Heterogeneous Catalysts, Organic Transformation

Published online 8/25/2020, 23 pages

Citation: Aniruddha Mondal, S.K. Tarik Aziz, Ajay K. Potbhare, S. Mondal, Trimurti L. Lambat, Ratiram Gomaji Chaudhary, Ahmed A. Abdala, Applications of Metal/Metal Oxides Nanoparticles in Organic Transformations, Materials Research Foundations, Vol. 83, pp 134-156, 2020


Part of the book on Magnetic Oxides and Composites II

[1] J. M. Thomas, R. Raja, Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity, Accounts of Chemical Research, 41 (2008) 708–720.
[2] S. Chatterjee, K. Sengupta, B. Mondal, S. Dey, A. Dey, Factors determining the rate and selectivity of 4e-/4H+ electrocatalytic reduction of dioxygen by iron porphyrin complexes, Accounts of Chemical Research, 50 (2017) 1744–1753.
[3] D. Astruc, F. Lu, J.R. Aranzaes, Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis, Angewandte Chemie International Edition, 44 (2005) 7852–7872.
[4] Q. Sun, Z. Dai, X. Meng, L. Wang, F.S. Xiao, Task-specific design of porous polymer heterogeneous catalysts beyond homogeneous counterparts, ACS Catalysis,5 (2015) 4556–4567.
[5] E. Gross, F. Dean Toste, G.A. Somorjai, Polymer-encapsulated metallic nanoparticles as a bridge between homogeneous and heterogeneous catalysis, Catalysis Letters,145 (2015) 126–138.
[6] M.R. Avhad, J.M. Marchetti, Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: A review, Catalysis Reviews-Science and Engineering, 58 (2016) 157–208.
[7] R. Schlögl, Heterogeneous catalysis, Angewandte Chemie International Edition, 54 (2015) 3465–3520.
[8] P. Hu, M. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications, Applied Catalysis B: Environmental, 181 (2016) 103–117.
[9] V. V. Ranade, S. S. Joshi, Industrial Catalytic Processes for Fine and Specialty Chemicals, Elsevier, Science-Direct, 2016, pp. 1-782.
[10] J. Beckman, The publication strategies of Jöns Jacob Berzelius (1779-1848): Negotiating national and linguistic boundaries in chemistry, Annals of Science, 73 (2016) 195–207.
[11] W. Yin, J. Yu, F. Lv, L. Yan, L.R. Zheng, Z. Gu, Y. Zhao, Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications, ACS Nano, 10 (2016)11000–11011.
[12] R.G. Chaudhary, J. Tanna, N. Gandhare, A. R. Rai, H. Juneja, Synthesis of nickel nanoparticles: Microscopic investigation, an efficient catalyst and effective antibacterial activity, Advanced Materials Letter, 6 (2015) 990–998.
[13] G. Zhao, X. Wu, R. Chai, Q. Zhang, X. Gong, J. Huang, Y. Lu, Tailoring nano-catalysts : turning gold nanoparticles on bulk metal oxides to inverse nano-metal oxides on large gold particles, Chemical Communication, 51 (2015) 5975–5978.
[14] D. Singappuli-arachchige, J.S. Manzano, L.M. Sherman, I. I. Slowing, Polarity control at interfaces : quantifying pseudo-solvent effects in nano-confined systems,Chem Phys Chem, 17 (2016) 2982–2986.
[15] Z. Xing, Q. Liu, A.M. Asiri, X. Sun, Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water, Advanced Materials, 26 (2014) 5702–5707.
[16] T. Ghosh, P. Ghosh, G. Maayan, A copper-peptoid as a highly stable, efficient, and reusable homogeneous water oxidation electrocatalyst, ACS Catalysis, 8 (2018) 10631–10640.
[17] R.G. Chaudhary, G. S. Bhusari, A. Tiple, A. R. Rai, S. Somkuvar, A. K. Potbhare, T. Lambat, P. Ingle, A. Abdala, Metal/metal oxide nanoparticles: toxicity, applications, and future prospects, Current Pharmaceutical Design, 25 (2019) 4013-4029.
[18] X. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts,Nature Catalysis, 1 (2018) 385–397.
[19] Ä. Gallard, Catalytic decomposition of hydrogen peroxide by Fe ( III ) in homogeneous aqueous solution : mechanism and kinetic modeling, Environmental Science & Technology, 33 (1999) 2726–2732.
[20] T. Lambat, A. Abdala, S. Mahmood, P. Ledade, R. Chaudhary, S. Banerjee, Sulfamic acid promoted one-pot multicomponent reaction: a facile synthesis of 4-oxo-tetrahydroindoles under ball milling conditions, RSC Advances, 9 (2019) 39735-39742.
[21] J. Tanna, R. G. Chaudhary, V. Sonkusare, H. D. Juneja, CuO nanoparticles: synthesis, characterization and reusable catalyst for polyhydroquinoline derivatives under ultrasonication, Journal of the Chinese Advanced Materials Society, 4 (2016) 110-122.
[22] Y. Yan, B.Y. Xia, X. Ge, Z. Liu, A. Fisher, X. Wang, A flexible electrode based on iron phosphide nanotubes for overall water splitting, Chemistry-A European Journal, 21 (2015) 18062–18067.
[23] Z. Huang, Z. Chen, Z. Chen, C. Lv, H. Meng, C. Zhang, Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis, ACS Nano, 8 (2014) 8121–8129.
[24] N.R. Elezovic, V.R. Radmilovic, N. V Krstajic, Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications, RSC Advances, 6 (2016) 6788–6801.
[25] J. Liu, Q. Ma, Z. Huang, G. Liu, H. Zhang, Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications, Adavanced Materials, 31 (2019) 1–20.
[26] L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles, Chemical Reviews, 118 (2018) 4981–5079.
[27] V.N. Sonkusare, R.G. Chaudhary, G.S. Bhusari, A. Mondal, A.K. Potbhare, R. Kumar Mishra, A.A. Abdala, H.D. Juneja, Mesoporous octahedron-shaped tricobalt tetroxide nanoparticles for photocatalytic degradation of toxic dyes, ACS Omega, 5 (2020) 7823-7835.
[28] Y. Y. Huang, T. S. Zhao, G. Zhao, X. H. Yan, K. Xu, Manganese-tuned chemical etching of a platinum-copper nanocatalyst with platinum-rich surfaces, Journal of Power Sources, 304 (2016) 74–80.
[29] Z. C. Zhang, X. C. Tian, B. W. Zhang, L. Huang, F. C. Zhu, X. M. Qu, L. Liu, S. Liu, Y. X. Jiang, S.G. Sun, Engineering phase and surface composition of Pt3Co nanocatalysts: A strategy for enhancing CO tolerance, Nano Energy, 34 (2017) 224–232.
[30] H. R. Choi, H. Woo, S. Jang, J. Y. Cheon, C. Kim, J. Park, K.H. Park, S. H. Joo, Ordered mesoporous carbon supported colloidal Pd nanoparticle based Model catalysts for suzuki coupling reactions: impact of organic capping agents, Chem Cat Chem, 4 (2012) 1587–1594.
[31] V. Sonkusare, R.G. Chaudhary, G.S. Bhusari, A.R. Rai, H.D. Juneja, Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ-Bi2O3 microspindles, Nano-Structure & Nano-Objects,13 (2018) 121-131.
[32] N. Koukabi, E. Kolvari, M.A. Zolfigol, A. Khazaei, B.S. Shaghasemi, B. Fasahati, A magnetic particle-supported sulfonic acid catalyst: Tuning catalytic activity between homogeneous and heterogeneous catalysis, Advanced Synthesis and Catalysis,354 (2012) 2001–2008.
[33] A. Schatz, O. Reiser, W.J. Stark, Nanoparticles as semi-heterogeneous catalyst supports, Chemistry—A European Journal, 16 (2010) 8950–8967.
[34] C. Ó. Dálaigh, S.A. Corr, Y. Gun’ko, S.J. Connon, A magnetic-nanoparticle-supported 4-N,N-dialkylaminopyridine catalyst: Excellent reactivity combined with facile catalyst recovery and recyclability, Angewandte Chemie International Edition, 46 (2007) 4329–4332.
[35] I. Ali, U. Kulsum, Z.A. AL-Othman, K. Saleem, Analyses of Nonsteroidal Anti-inflammatory drugs in human plasma using dispersive nano solid-phase extraction and high-performance liquid chromatography, Chromatographia, 79 (2016) 145–157.
[36] P. Wang, A. Kong, W. Wang, H. Zhu, Y. Shan, Facile preparation of ionic liquid functionalized magnetic nano-solid acid catalysts for acetalization reaction,Catalysis Letters,135 (2010) 159–164.
[37] A. Miyamoto, H. Himei, Y. Oka, E. Maruya, M. Katagiri, R. Vetrivel, M. Kubo, Computer-aided design of active catalysts for the removal of nitric oxide, Catalysis Today, 22 (1994) 87–96.
[38] G-J Li, T. Fujimoto, A. Fukuoka, M. Ichikawa, Ship-in-Bottle synthesis of Pt9-Pt15 carbonyl clusters inside NaY and NaX zeolites,in-situ FTIR and EXAFS characterization and the catalytic behaviors in13CO exchange reaction and NO reduction by CO,Catalysis Letters,12 (1992) 171–185.
[39] R. Lin, T. Zhao, M. Shang, J. Wang, W. Tang, V.E. Guterman, J. Ma, Effect of heat treatment on the activity and stability of PtCo/C catalyst and application of in-situ X-ray absorption near edge structure for proton exchange membrane fuel cell, Journal of Power Sources, 293 (2015) 274–282.
[40] E. C. Tyo, S. Vajda, Catalysis by clusters with precise numbers of atoms, Natural Publication Group, 10 (2015) 577–588.
[41] H. Abe, J. Liu, K. Ariga, Catalytic nanoarchitectonics for environmentally compatible energy generation, Biochemical Pharmacology, 19 (2016) 12–18.
[42] C. Coutanceau, Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration, Applied Catalysis B: Environmental, 93 (2010) 354–362.
[43] S.W. Sheehan, J.M. Thomsen, U. Hintermair, R.H. Crabtree, G.W. Brudvig, C.A. Schmuttenmaer, A molecular catalyst for water oxidation that binds to metal oxide surfaces, Nature Communications, 11 (2015) 1–9.
[44] M. L. Pegis, B. A. McKeown, N. Kumar, K. Lang, D.J. Wasylenko, X. P. Zhang, S. Raugei, J.M. Mayer, Homogenous electrocatalytic oxygen reduction rates correlate with reaction overpotential in acidic organic solutions, ACS Central Science, 2 (2016) 850–856.
[45] E. Sorek, J. Ankri, G. Arbiv, R. Mol, I. Popov, H.-J. Freund, S. Shaikhutdinov, M. Asscher, Acetylene reactivity on Pd−Cu nanoparticles supported on thin silica films: the role of the underlying substrate, The Journal of Physical Chemistry C, 123 (2019) 17425–17431.
[46] S. Ganguly, P. Das, M. Bose, T.K. Das, S. Mondal, A.K. Das, N.C. Das, Sonochemical green reduction to prepare Ag nanoparticles decorated graphene sheets for catalytic performance and antibacterial application, Ultrasonics Sonochemistry,39 (2017) 577–588.
[47] B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, F.P.G. De Arquer, C.T. Dinh, F. Fan, M. Yuan, A. Janmohamed, H.L. Xin, H. Yang, Homogeneously dispersed multimetal oxygen-evolving catalysts, Science , 352 (2016) 333–338.
[48] C. Zhao, J. Guo, Q. Yang, L. Tong, J. Zhang, J. Zhang, C. Gong, J. Zhou, Z. Zhang, Preparation of magnetic Ni @ graphene nanocomposites and efficient removal organic dye under assistance of ultrasound, Applied Surface Science,357 (2015) 22–30.
[49] A. Wong, Q. Liu, S. Griffin, A. Nicholls, J.R. Regalbuto, Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports, Science, 1430 (2017) 1427–1430.
[50] Q. Zhu, Q. Xu, Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications, Chemistry, 1 (2016) 220–245.
[51] L. Miao, Q. Nie, J. Wang, G. Zhang, P. Zhang, Applied catalysis B : Environmental ultrathin MnO2nanosheets for optimized hydrogen evolution via formaldehyde reforming in water at room temperature, Applied Catalysis B: Environmental, 248 (2019) 466–476.
[52] K. Singha, A. Mondal, S.C. Ghosh, A. Baran, Visible-light-driven efficient photocatalytic reduction of organic azides to amines over cds sheet – rgo nanocomposite, Chemistry: An Asian Journal, 15 (2018) 255–260.
[53] S. M. Galani, A. K. Giri, S.C. Ghosh, A.B. Panda, Development of easily separable ZnO-supported Au nanocatalyst for the oxidative esterification of alcohols and reduction of nitroarenes, Chemistry Select, 4 (2018) 9414–9421.
[54] A. K. Potbhare, R.G. Chaudhary, P. Chouke, S. Yerpude, A. Mondal, V. Sonkusare, A. Rai, H. Juneja. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays, Material Science and Engineering C, 99 (2019) 783-793.
[55] A. K. Giri, A. Saha, A. Mondal, S.C. Ghosh, S. Kundu, A.B. Panda,Rectangular ZnO porous nano-plate assembly with excellent acetone sensing performance and catalytic activity, RSC Advances, 5 (2015) 102134–102142.
[56] P. Chouke, A. Potbhare, G. Bhusari, S. Somkuwar, Dadamia PMD Shaik, R. Mishra, R.G. Chaudhary, Green fabrication of zinc oxide nanospheres by Aspidopterys cordata for effective antioxidant and antibacterial activity, Advanced Materials Letter,10 (2019) 355–360.
[57] R. G. Chaudhary, V.N. Sonkusare, G.S. Bhusari, A. Mondal, D.P.M.D. Shaik, H.D. Juneja, Microwave-mediated synthesis of spinel CuAl2O4 nanocomposites for enhanced electrochemical and catalytic performance, Research on Chemical Intermediates, 44 (2018) 2039–2060.
[58] A. Potbhare, P. Chauke, S. Zahra, V. Sonkusare, R. Bagade, M. Umekar, R. Chaudhary, Microwave-mediated fabrication of mesoporous Bi-doped CuAl2O4 nanocomposites for antioxidant and antibacterial performances, Materials Today: Proceedings, 15 (2019) 454–463.
[59] J. Jiang, J. R. Swierk, K. L. Materna, S. Hedström, S. H. Lee, R. H. Crabtree, C. A. Schmuttenmaer, V. S. Batista, G. W. Brudvig, High-potential porphyrins supported on SnO2 and TiO2 surfaces for photoelectrochemical applications, The Journal of Physical Chemistry C, 2 120 (2016) 28971–28982.
[60] M. J. Kahlich, H.A. Gasteiger, R.J. Behm, Kinetics of the selective low-temperature oxidation of CO in H2 -rich gas over Au / α -Fe2O3, Journal of Catalysis, 440 (1999) 430–440.
[61] B. K. Min, C.M. Friend, Heterogeneous gold-based catalysis for green chemistry : low-temperature CO oxidation and propene oxidation, Chemical Reviews,107 (2007) 2709–2724.
[62] N. Goswami, S. Chaudhuri, A. Giri, P. Lemmens, S. K. Pal, Surface engineering for controlled nanocatalysis : key dynamical events from ultrafast electronic spectroscopy,The Journal of Physical Chemistry C, 118 (2014)23434-23442.
[63] S. Zhang, L. Nguyen, Y. Zhu, S. Zhan, In-situ studies of nanocatalysis, Accounts of Chemical Research, 46 (2013) 1731–1739.
[64] L. L. Chng, N. Erathodiyil, J. Y. Ying, Nanostructured catalysts for organic transformations, Accounts of Chemical Research, 46 (2013) 1825–1837.
[65] A. Zuliani, F. Ivars, R. Luque, Advances in nanocatalyst design for biofuel production, Chem Cat Chem, 10 (2018) 1968–1981.
[66] Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction, Chemical Society Reviews, 45 (2016) 1529–1541.
[67] M. Haruta , Size- and support-dependency in the catalysis of gold, Catalysis Today, 36 (1997) 153–166.
[68] D. Wang, L. Bin Kong, M.C. Liu, Y.C. Luo, L. Kang, An approach to preparing Ni-P with different phases for use as supercapacitor electrode materials, Chemistry-A European Journal, 21 (2015) 17897–17903.
[69] Z. Li, M. Li, Z. Bian, Y. Kathiraser, S. Kawi, Design of highly stable and selective core / yolk – shell nanocatalysts-A review, Applied Catalysis B: Environmental, 188 (2016) 324–341.
[70] Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall Effect, Science, 304 (2004) 711–714.
[71] J. Tanna, R.G. Chaudhary, N. Gandhare, A. Rai, S. Yerpude, H.D. Juneja, Copper nanoparticles catalysed an efficient one-pot multicomponents synthesis of chromenes derivatives and its antibacterial activity, Journal of Experimental Nanoscience, 11(2016) 884–900.
[72] S. Chandra, A. Kumar, Green approach for the synthesis of silver-nanoparticles and efficient use in oxidative cyclization, International Journal of Applied Biology and Pharmaceutical, 2 (2011) 78–85.
[73] B. Ranu, K. Chattopadhyay, L. Adak, A. Saha, S. Bhadra, R.Dey, and D. Saha, Metal nanoparticles as efficient catalysts for organic reactions, Pure and Applied Chemistry, 81 (2009) 2337–2354.
[74] J.A. Tanna, R.G. Chaudhary, V.N. Sonkusare, H.D Juneja, CuO nanoparticles: synthesis, characterization and reusable catalyst for polyhydroquinoline derivatives under ultrasonication, Journal of the Chinese Advanced Materials Society, 4 (2016) 110–122.
[75] J. Tanna, R. G. Chaudhary , N. V. Gandhare, A. R. Rai, H. D. Juneja, Nickel oxide nanoparticles: synthesis, characterization and recyclable catalyst, International Journal of Scientific and Engineering Research, 6 (2015) 93–98.
[76] T.Lambat, R.G. Chaudhary, A. Abdala, R. Mishra, S. Mahmood, S. Banerjee, Mesoporous PbO nanoparticle-catalyzed synthesis of arylbenzodioxy xanthenedione scaffolds under solvent-free conditions in a ball mill, RSC Advances, 9 (2019) 31683–31690.
[77] H. Sachdeva, R. Saroj and, D. Dwivedi, Nano-ZnO catalyzed multicomponent one-pot synthesis of novel spiro(indoline-pyranodioxine) derivatives, The Scientific World Journal, 18 (2014) 427195.
[78] J. A. Tanna, R. G. Chaudhary, N. V Gandhare, H. D. Juneja, Alumina nanoparticles :A new and reusable catalyst for synthesis of dihydropyrimidinones derivatives, Advanced Materials Letter, 7 (2016) 933–938.
[79] M. Ziraka, M. Azinfara and M. Khalili, Three-component reactions of kojic acid: Efficient synthesis of Dihydropyrano[3,2-b]chromenediones and aminopyranopyrans catalyzed with Nano-Bi2O3-ZnO and Nano-ZnO, Current Chemistry Letters, 6 (2017) 105–116.
[80] A. Maleki and R. Firouzi-Haji, L-Proline functionalized magnetic nanoparticles: A novel magnetically reusable nanocatalyst for one-pot synthesis of 2,4,6-triarylpyridines ScientIfIc Reports, 8 (2018) 17303–17909.
[81] A. Bazgir, G. Hosseini, R. Ghahremanzadeh, Copper ferrite nanoparticles: an efficient and reusable nanocatalyst for a green one-pot, three-component synthesis of spirooxindoles in water,ACS Combinatorial Science, 15 (2013) 530−534.
[82] R.G. Chaudhary, J. Tanna, A. Mondal, N. Gandhare, H. D. Juneja, Silica-coated nickel oxide a core-shell nanostructure: synthesis, characterization and its catalytic property in one-pot synthesis of malononitrile derivative, Journal of the Chinese Advanced Materials Society, 5 (2017) 103–117.
[83] S. Banerjee, J. Das, R. P. Alvareza, S. Santra, Silica nanoparticles as a reusable catalyst: a straightforward route for the synthesis of thioethers, thioesters, vinyl thioethers and thio-Michael adducts under neutral reaction conditions, New Journal of Chemistry, 34 (2010) 302–306.
[84] P. Ghosh, S. Das, Ligand free approach for the copper (II)‐mediated C‐NH2 Arylation of 4‐Quinolone derivatives under ambient condition, Chemistry Select, 3 (2018) 8624–8627.
[85] S. K. Banjare, S. Payra, A. Saha, S. Banerjee, Efficient room temperature synthesis of 2-Aryl benzimidazoles using ZnO nanoparticles as reusable catalyst, Organic & Medicinal Chemistry International Journal, 1 (2017) 555–568.
[86] S. Das, D. Hong, Z. Chen, Z. She, W. H. Hersh, G. Subramaniam, Y. Chen, Auto‐tandem palladium catalysis: from Isoxazole to 2‐Azafluorenone, Organic Letters, 47 (2016) 5578–5581.
[87] A. Saha, S. Payra, B. Selvaratnam, S. Bhattacharya, S. Pal, R. T. Koodali, S. Banerjee, Hierarchical mesoporous RuO2/Cu2O nanoparticle-catalyzed oxidative homo/hetero Azo-coupling of anilines, ACS Sustainable Chemistry and Engineering, 6 (2018) 11345−11352.
[88] R. Pagadala, N. V. Gandhare,U. Kusampally, V. Jetti,J. Meshram, H. D. Juneja, Synthesis of 1H-Imidazoles catalyzed by Cu-nanoparticle and its physicochemical properties, Journal of Heterocyclic Chemistry, 45 (2014) 116–122.
[89] S. Payra, A. Saha, S. Benerjee, Magnetically Recoverable Fe3O4 Nanoparticles for the One‐Pot Synthesis of coumarin‐3‐carboxamide derivatives in aqueous ethanol, Chemistry Select, 3 (2018) 7535–7540.
[90] K. K. Hazarika, C. Goswami, H. Saikia, B. J. Borah, P. Bharali, Cubic Mn2O3 nanoparticles on carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, Molecular Catalysis, 451 (2018) 153–160.