Investigation on Structural, Electrical, Magnetic and Magnetocaloric Properties of Pr0.67Ba0.22Sr0.11Mn1-xFexO3 Perovskites

$30.00

Investigation on Structural, Electrical, Magnetic and Magnetocaloric Properties of
Pr0.67Ba0.22Sr0.11Mn1-xFexO3 Perovskites

K. Snini, M. Ellouze, E.K. Hlil, K. Khirouni

The structural, electrical and magnetic properties of Pr0.67Ba0.22Sr0.11Mn1-xFexO3 (x = 0.00 and x = 0.05) perovskites have been investigated. All samples were prepared using solid state method and characterized by XRD, DC-AC conductivity, Magnetic, Magnetocalric measurements. The variation of conductivity with temperature shows a metal-semiconductor transition and Tc ~ 220 K, 90 K for x = 0.00 and 0.05 respectively. A paramagnetic to ferromagnetic transitions was found with decreasing temperature. The magnetocaloric effect study indicates that the investigated compounds have the appropriate properties to be suitable candidates to be used as refrigerants.

Keywords
Manganites, X-Ray Diffraction, Rietveld Refinement, Magnetization, Relative Cooling Power

Published online 8/25/2020, 20 pages

Citation: K. Snini, M. Ellouze, E.K. Hlil, K. Khirouni, Investigation on Structural, Electrical, Magnetic and Magnetocaloric Properties of
Pr0.67Ba0.22Sr0.11Mn1-xFexO3 Perovskites, Materials Research Foundations, Vol. 83, pp 1-20, 2020

DOI: https://doi.org/10.21741/9781644900970-1

Part of the book on Magnetic Oxides and Composites II

References
[1] D. Turki, G. Remeny, S.H. Mahmood, E.K. Hlil, M. Ellouze, F. Halouani, Magnetic contributions to the specific heat of La0.8Ca0.2Mn1–xCoxO3 perovskite, Materials Research Bulletin, 84 (2016) 245 ̶ 253. https://doi.org/10.1016/j.materresbull.2016.08.018
[2] F. Ben Jemaa, S. Mahmood, M. Ellouze, E.K. Hlil, E. Halouani, Critical behaviour and change in universality of La0.67Ba0.22Sr0.11Mn1-xCoxO3 manganites, Journal of Materials Science: Materials in Electronics, 26(7) (2015) 5381 ̶ 5392. https://doi.org/10.1007/s10854-015-3085-1
[3] F. Ben Jemaa, S.H. Mahmood, M. Ellouze, E.K. Hlil, F. Halouani, Structural, magnetic, magnetocaloric, and critical behaviour of selected Ti-doped manganites, Ceramics International, 41 (6) (2015) 8191 ̶ 8202. https://doi.org/10.1016/j.ceramint.2015.03.039
[4] H. Omrani, M. Mansouri, W. Cheikhrouhou Koubaa, M. Koubaa, A. Cheikhrouhou, Structural, magnetic and magnetocaloric investigations in Pr0.6–xErxCa0.1Sr0.3MnO3 (0 ≤ x ≤ 0.06) manganites, Journal of Alloys and Compound, 688 (2016) 752 ̶ 761. https://doi.org/10.1016/j.jallcom.2016.07.082
[5] J.M.D. Coey, M. Viret, S. von Molnar, Mixed-valence manganites, Advances in Physics, 48 (2) (1999) 167 ̶ 293. https://doi.org/10.1080/000187399243455
[6] M. B. Salamon, M. Jaime, The physics of manganites: structure and transport, Review of Modern Physics, 73 (2001) 583-628. https://doi.org/10.1103/RevModPhys.73.583
[7] C. N. R. Rao, A. Arulraj, A. K. Cheetham, B. Raveau, Charge ordering in the rare earth manganates: the experimental situation, Journal of Physics: Condensed Matter, 12(7) (2000) R83-R106. https://doi.org/10.1088/0953-8984/12/7/201
[8] C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure, Physical Review, 82 (3) (1951) 403-405. https://doi.org/10.1103/PhysRev.82.403
[9] A. J. Millis, P. B. little Wood, and B. I. Shraiman, Double exchange alone does not explain the resistivity of La1–xSrxMnO3, Physical Review Letters, 74, (1995) 5144– 5147. https://doi.org/10.1103/PhysRevLett.74.5144
[10] L. M. Rodriguez-Martinez and J. P. Atfield, Cation disorder and size effects in magnetoresistive manganese oxide perovskites, Physical Review B, 54(1996) R15622 –R15625. https://doi.org/10.1103/PhysRevB.54.R15622
[11] M. Mansouri, H. Omrani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Madouri, A. Cheikhrouhou, Effect of vanadium doping on structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3, Journal of Magnetism and Magnetic Materials, 401, (2016) 593–599. https://doi.org/10.1016/j.jmmm.2015.10.066
[12] G. M. Keith, C. A. Kirk, K. Sarma, N. M. Alford, E. J. Cussen, M. J. Rosseinsky, D. C. Sinclair, Synthesis, crystal structure, and characterization of Ba(Ti1/2Mn1/2)O3: a high permittivity 12R-type hexagonal perovskite, Chemistry of Materials, 16(10) (2004) 2007–2015. https://doi.org/10.1021/cm035317n
[13] A. M. Smith, H. Duan, A. M. Mohs, S. Nie, Synthesis, bioconjugated quantum dots for in vivo molecular and cellular imaging, Advanced Drug Delivery Reviews, 60 (11) (2008) 1226-1240. https://doi.org/10.1016/j.addr.2008.03.015
[14] A. Hädicke, W. Krech, Frequency-dependent Cooper pair tunneling in ultra-small superconductor-insulator-superconductor junctions, Physical Review B, 52 (1995) 13526–13531. https://doi.org/10.1103/PhysRevB.52.13526
[15] R. Waser, Electronic properties of grain boundaries in SrTiO3 and BaTiO3 ceramics, Solid State Ionics, 75 (1995) 89–99. https://doi.org/10.1016/0167-2738(94)00152-I
[16] S. K. Roy, M. E. Orazem, Analysis of flooding as a stochastic process in polymer electrolyte membrane (PEM) fuel cells by impedance techniques, Journal of Power Sources, 184 (1) (2008) 212–219. https://doi.org/10.1016/j.jpowsour.2008.06.014
[17] S. Lanfredi, A. C. M. Rodrigues, Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3, Journal of Applied Physics, 86 (4) (1999) 2215–2219. https://doi.org/10.1063/1.371033
[18] H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, 2 (1969) 65–71. https://doi.org/10.1107/S0021889869006558
[19] T. Roisnel, J. Rodriguez-Carvajal, Computer Program FULLPROF, LLB-LCSIM, May, (2003).
[20] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica A, 32(1976) 751–767. https://doi.org/10.1107/S0567739476001551
[21] A. G. Souza Filho, J. L. B. Faria, I. Guedes, J. M. Sasaki, P. T. C. Freire, V. N. Freire, J. Mendes Filho, M. Xavier Jr, F. A. O. Cabral, J. H. de Araujo, J. A. P. da Costa, Evidence of magnetic polaronic states in La0.70Sr0.30Mn1-xFexO3 manganites, Physical Review B, 67 (2003) 052405–9. https://doi.org/10.1103/PhysRevB.67.052405
[22] J. Gutierrez, A. Pena, J. M. Barandiaran, T. Hernandez, J. L. Pizarro, L. Lezama, M. Insausti, Rojo, Structural and magnetic properties of La0.7Pb0.3(Mn1-xFex)O3 (0<~x<~0.3) giant magnetoresistance perovskites, Physical Review B, 61 (2000) 9028–9035. https://doi.org/10.1103/PhysRevB.61.9028 [23] H. Rahmouni, B. Cherif, M. Baazaoui, K. Khirouni, Effects of iron concentrations on the electrical properties of La0.67Ba0.33Mn1–xFexO3, Journal of Alloys and Compound, 575 (2013) 5– 9. https://doi.org/10.1016/j.jallcom.2013.04.077 [24] Jian-Wang Cai, Cong Wang, Bao-Gen Shen, Jian-Gao Zhao, Wen-Shan Zhan, Colossal magnetoresistance of spin-glass perovskite La0.67Ca0.33Mn0.9Fe0.1O3, Applied Physics Letters, 71 (1997) 1727. https://doi.org/10.1063/1.120017 [25] M. Nadeem, M. J Akhtar, A.Y. Khan, R. Shaheen, M. N. Haque, Ac study of 10% Fe-doped La0.65Ca0.35MnO3 material by impedance spectroscopy, Chemical Physics Letters, 366 (2002) 433– 439. https://doi.org/10.1016/S0009-2614(02)01662-7 [26] Xian-yu Wen-xu, Li Bao-he, Qian Zheng-nan, Jin Han-min, Effect of Fe doping in La1–xSrxMnO3, Journal of Applied Physics, 86 (1999) 5164–5168. https://doi.org/10.1063/1.371494 [27] H. Rahmouni, A. Selmi, K. Khirouni, N. Kallel, Chromium effects on the transport properties in La0.7Sr0.3Mn1–xCrxO3, Journal of Alloys and Compound, 533, (2013) 93–96. https://doi.org/10.1016/j.jallcom.2012.02.123 [28] K. P. Padmasree, D. K. Kanchan, A. R. Kulkani, Impedance and modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1 ≤ x/y ≤ 3 Solid State Ionics,177(2006) 475–482. https://doi.org/10.1016/j.ssi.2005.12.019 [29] R. Brahem, H. Rahmouni, N. Farhat, J. Dhahri, K. Khirouni, L. C. Costa, Electrical properties of Sn-doped Ba0.75Sr0.25Ti0.95O3 perovskite, Ceramics International, 40 (2014) 9355–9360. https://doi.org/10.1016/j.ceramint.2014.02.002 [30] N. F. Mott, E. A. Davis, Electronic Process in Non-Crystalline Materials Oxford, 1979. [31] H. Rahmouni, R. Jemai, N.Kallel, A. Selmi, K. Khirouni, Titanium effects on the transport properties in La0.7Sr0.3Mn1–xTixO3, Journal of Alloys and Compound, 497 (2010) 1–5. https://doi.org/10.1016/j.jallcom.2010.02.156 [32] H. Rahmouni, A. Selmi, K. Khirouni, N. Kallel, Chromium effects on the transport properties in La0.7Sr0.3Mn1–xCrxO3, Journal of Alloys and Compound, 533 (2012) 93–96. https://doi.org/10.1016/j.jallcom.2012.02.123 [33] R. Tlili, M. Khelil, M. Bejar, M. Bekri, E. Dhahri, K. Khirouni, Role of gallium ion on the conducting properties of La0.7(Ba, Sr)0.3Mn1–xGaxO3 (x = 0.0, 0.1 and 0.2) perovskite, Ceramics International, 42(9) (2016) 11256–11258. https://doi.org/10.1016/j.ceramint.2016.04.039 [34] S. B. Ogale, R. Shreekala, R. Bathe, S. K. Date, S. I. Patil, B. Hannoyer, F. Petit, G. Marest, Transport properties, magnetic ordering, and hyperfine interactions in Fe-doped La0.75Ca0.25MnO3: localization-delocalization transition, Physical Review B, 57 (1998) 7841–7145. https://doi.org/10.1103/PhysRevB.57.7841 [35] M. S. Sahastrabudhe, S. I. Patil, S. K. Date, D. P. Adhi, S. D. Kulkarni, P.A. Joy, R.N. Bathe, Influence of magnetic (Fe+3) and non-magnetic (Ga+3) ion doping at Mn- site on the transport and magnetic properties of La0.7Ca0.3MnO3, Solid State Communication, 137 (2006) 595–600. https://doi.org/10.1016/j.ssc.2006.01.011 [36] A. Nasri, E. K. Hlil, A. F. Lehlooh, M. Ellouze, F. Elhalouani, Study of magnetic transition and magnetic entropy changes of Pr0.6Sr0.4MnO3 and Pr0.6Sr0.4Mn0.9Fe0.1O3 compounds, The European Physical Journal Plus,131(2016)110. https://doi.org/10.1140/epjp/i2016-16110-y [37] S. Zouari, M. L. Kahn, M. Ellouze, F. Elhalouani, Effect of iron substitution on the physico-chemical properties of Pr0.6La0.1Ba0.3Mn1-xFexO3 manganites (with 0 ≤ x ≤ 0.3), The European Physical Journal Plus, 130 (2015) 177. https://doi.org/10.1140/epjp/i2015-15177-2 [38] A. Arrott, Criterion for Ferromagnetism from Observations of Magnetic Isotherms, Physical Review, 108 (1957) 1394. https://doi.org/10.1103/PhysRev.108.1394 [39] S. K. Banerjee, On a generalized approach to first and second order magnetic transitions Physical Letters, 12 (1964) 16-17. https://doi.org/10.1016/0031-9163(64)91158-8 [40] R. D. Michael, J. J. Ritter, R. D. Shull, Enhanced magnetocaloric effect in Gd3Ga5−xFexO12, Journal of Applied Physics, 73 (1993) 6946. https://doi.org/10.1063/1.352443 [41] K. A. Gschneidner, V. K. Pecharsky, A. O. Tosko, Recent developments in magnetocaloric materials, Reports on Progress in Physics, 68 (2005) 1479–1539. https://doi.org/10.1088/0034-4885/68/6/R04 [42] M-H. Phan, S-C.Yu, Review of the magnetocaloric effect in manganite materials, Journal of Magnetism and Magnetic Materials, 308 (2007) 325–340. https://doi.org/10.1016/j.jmmm.2006.07.025 [43] A. S. Erchidi Elyacoubi, R. Masrour, A. Jabar, Magnetocaloric effect and magnetic properties in SmFe1-xMnxO3 perovskite: Monte Carlo simulations, Solid State Communications, 271 (2018) 39–43. https://doi.org/10.1016/j.ssc.2017.12.015 [44] R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, E.K. Hlil, Monte Carlo simulation study of magnetocaloric effect in NdMnO3 perovskite, Journal of Magnetism and Magnetic Materials, 401 (2016) 91–95. https://doi.org/10.1016/j.jmmm.2015.10.019 [45] R. Masrour, A. Jabar, H. Khlif, F. Ben Jemaa, M. Ellouze, E.K. Hlil, Experiment, mean field theory and Monte Carlo simulations of the magnetocaloric effect in La0.67Ba0.22Sr0.11MnO3 compound, Solid State Communications, 268, (2017) 64–69. https://doi.org/10.1016/j.ssc.2017.10.003