Graphene-Carbon Nitride Based Electrochemical Sensors for Toxic Chemicals

$30.00

Graphene-Carbon Nitride Based Electrochemical Sensors for Toxic Chemicals

S. Stanly John Xavier, T.S.T. Balamurugan, S. Ramalingam, R. Ramachandran, N.S.K. Gowthaman

Developing cost effective, rapid and sensitive detection methods for the sensing of toxic chemicals is significant due to their potential application in chemistry like, clinical, industrial and environmental studies. Recently, Graphitic carbon nitrides (g-C3N4) become a new family of next generation in material chemistry courtesy of its peculiar physiochemical nature. The graphene-based two-dimensional layered structures with efficient intercalation, fine tunable surface, electronic and semiconductor properties of g-C3N4 provide enormous applications in a wide range of recent research. This unique nature of g-C3N4 has been explored in different fields such as sensors, bio-imaging, catalysis and energy storage devices. More specifically, g-C3N4 are extensively used in the detection of toxic chemicals owing to the alluring properties including high surface area, optoelectronic properties, physiochemical features, good water solubility, biocompatibility, non-toxicity etc. This chapter mainly summarizes the latest progress related on various synthetic methods and characterization techniques addressing the nature of g-C3N4 and its hybrids in detail. Furthermore, it deals with current applications of g-C3N4 in the electrochemical sensing of different toxic chemical contaminant in the environment. Finally, future prospects highlight the critical issues that provide innovative future development in this exciting research fields.

Keywords
Graphitic Carbon Nitride, 2D Layered Structures, Electrocatalysts, Electro Chemical Sensors, Toxic Chemicals

Published online 8/30/2020, 33 pages

Citation: S. Stanly John Xavier, T.S.T. Balamurugan, S. Ramalingam, R. Ramachandran, N.S.K. Gowthaman, Graphene-Carbon Nitride Based Electrochemical Sensors for Toxic Chemicals, Materials Research Foundations, Vol. 82, pp 243-275, 2020

DOI: https://doi.org/10.21741/9781644900956-9

Part of the book on Graphene-Based Electrochemical Sensors for Toxic Chemicals

References
[1] P.K. Kannan, D.J. Late, H. Morgan, C.S. Rout, Recent developments in 2D layered inorganic nanomaterials for sensing, Nanoscale 7 (32) (2015) 13293-13312. https://doi.org/10.1039/C5NR03633J
[2] A.H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L.K. Shrestha, S.A. Charya, K. Ariga, Two dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications, B. Chem. Soc Jpn. 90 (6) (2017) 627-648. https://doi.org/10.1246/bcsj.20170043
[3] W. Wen, Y. Song, X. Yan, C. Zhu, D. Du, S. Wang, A.M. Asiri, Y. Lin, Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications, Mater. Today Commun. 21 (2) (2018) 164-177. https://doi.org/10.1016/j.mattod.2017.09.001
[4] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (5696) (2004) 666-669. https://doi.org/10.1126/science.1102896
[5] Y. Huang, J. Liang, Y. Chen, The application of graphene based materials for actuators, J. Mater. Chem. A. 22 (9) (2012) 3671-3679. https://doi.org/10.1039/c2jm15536b
[6] G. Jo, M. Choe, S. Lee, W. Park, Y.H. Kahng, T. Lee, The application of graphene as electrodes in electrical and optical devices, Nanotechnology 23 (11) (2012) 112001. https://doi.org/10.1088/0957-4484/23/11/112001
[7] Y. Chen, C. Tan, H. Zhang, L. Wang, Two-dimensional graphene analogues for biomedical applications, Chem. Soc. Rev. 44 (9) (2015) 2681-2701. https://doi.org/10.1039/C4CS00300D
[8] D. Chimene, D.L. Alge, A.K. Gaharwar, Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects, Adv. Mater. 27 (45) (2015) 7261-7284. https://doi.org/10.1002/adma.201502422
[9] J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A Gaucher, S. De, R.J. Smith, I.V. Shvets, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science 331 (2011) 568-571. https://doi.org/10.1126/science.1194975
[10] A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene, Prog. Mater. Sci. 73 (2015) 44-126. https://doi.org/10.1016/j.pmatsci.2015.02.002
[11] J.V. Liebig, About some nitrogen compounds, Ann. Pharm. 10 (1834) 10. https://doi.org/10.1002/jlac.18340100103
[12] J. Zhu, P. Xiao, H. Li, S.A. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis, ACS Appl. Mater. Interfaces 6 (2014) 16449-16465. https://doi.org/10.1021/am502925j
[13] M. Xiong, Q. Rong, H.M. Meng, X.B. Zhang, Two-dimensional graphitic carbon nitride nanosheets for biosensing applications, Biosens. Bioelectron. 89 (2017) 212-223. https://doi.org/10.1016/j.bios.2016.03.043
[14] N. Cheng, J. Tian, Q. Liu, C. Ge, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, X. Sun, Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants, Appl. Mater. Interfaces 5 (15) (2013) 6815-6819. https://doi.org/10.1021/am401802r
[15] A. Hatamie, P. Jalilian, E. Rezvani, A. Kakavand, A. Simchi, Fast and ultra-sensitive voltammetric detection of lead ions by two-dimensional graphitic carbon nitride (g-C3N4) nanolayers as glassy carbon electrode modifier, Measurement 134 (2019) 679-687. https://doi.org/10.1016/j.measurement.2018.10.082
[16] Y. Liu, G.L. Wen, X. Chen, R. Weerasooriya, Z.Y. Hong, L.C. Wang, Z.J. Huang, Y.C Wu, Construction of electrochemical sensing interface towards Cd (II) based on activated g-C3N4 nanosheets: considering the effects of exfoliation and protonation treatment, Anal. Bioanal. Chem. 412 (2020) 343-353. https://doi.org/10.1007/s00216-019-02240-z
[17] M. Sadhukhan, S. Barman, Bottom-up fabrication of two-dimensional carbon nitride and highly sensitive electrochemical sensors for mercuric ions, J. Mater. Chem. A. 1 (8) (2013) 2752-2756. https://doi.org/10.1039/c3ta01523h
[18] W. Wang, J. Zhao, Y. Sun, H. Zhang, Facile synthesis of g-C3N4 with various morphologies for application in electrochemical detection, RSC Adv. 9 (2019) 7737-7746. https://doi.org/10.1039/C8RA10166C
[19] Y. Zhang, X. Bo, A. Nsabimana, C. Luhana, G. Wang, H. Wang, M. Li, L. Guo, Fabrication of 2D ordered mesoporous carbon nitride and its use as electrochemical sensing platform for H2O2, nitrobenzene, and NADH detection, Biosens. Bioelectron. 53 (2014) 250-256. https://doi.org/10.1016/j.bios.2013.10.001
[20] Q. Zhao, W. Wu, X. Wei, S. Jiang, T. Zhou, Q. Li, Q. Lu, Graphitic carbon nitride as electrode sensing material for tetrabromobisphenol-A determination, Sensor Actuat. B-Chem. 248 (2017) 673-681. https://doi.org/10.1016/j.snb.2017.04.002
[21] M. Amiri, H. Salehniya, A. Habibi-Yangjeh, Graphitic carbon nitride/chitosan composite for adsorption and electrochemical determination of mercury in real samples, Ind. Eng. Chem. Res. 55 (29) (2016) 8114-8122. https://doi.org/10.1021/acs.iecr.6b01699
[22] H. Zhang, Q. Huang, Y. Huang, F. Li, W. Zhang, C. Wei, J. Chen, P. Dai, L. Huang, Z. Huang, L. Kang, Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid, Electrochim. Acta. 142 (2014) 125-131. https://doi.org/10.1016/j.electacta.2014.07.094
[23] K. Ramanujam, T. Thirupathi, Carbon supported g-C3N4 for electrochemical sensing of hydrazine, J. Electrochem. Energy 4 (1) (2018) 21-31. https://doi.org/10.1515/eetech-2018-0003
[24] Y. Xu, W. Lei, J. Su, J. Hu, X. Yu, T. Zhou, Y. Yang, D. Mandler, Q. Hao, A high-performance electrochemical sensor based on g-C3N4-E-PEDOT for the determination of acetaminophen, Electrochim. Acta. 259 (2018) 994-1003. https://doi.org/10.1016/j.electacta.2017.11.034
[25] J. Zou, D. Mao, A.T.S. Wee, J. Jiang, Micro/nano-structured ultrathin g-C3N4/Ag nanoparticle hybrids as efficient electrochemical biosensors for L-tyrosine, Appl. Surf. Sci. 467 (2019) 608-618. https://doi.org/10.1016/j.apsusc.2018.10.187
[26] Z. Xiang Zheng, M. Wang, X. Zhao Shi, C. Ming Wang, Palladium nanoparticles/graphitic carbon nitride nanosheets-carbon nanotubes as a catalytic Amplification Platform for the selective determination of 17α-ethinylestradiol in Feedstuffs, Sci. Rep. 9 (1) (2019) 1-9. https://doi.org/10.1038/s41598-019-50087-2
[27] B.B. Song, Y.F. Zhen, H.Y. Yin, X.C. Song, Electrochemical sensor based on platinum nanoparticles modified graphite-like carbon nitride for detection of phenol, J. Nanosci. Nanotechnol. 19 (7) (2019) 4020-4025. https://doi.org/10.1166/jnn.2019.16297
[28] H. Tian, H. Fan, J. Ma, L. Ma, G. Dong, Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing, Electrochim. Acta. 247 (2017) 787-794. https://doi.org/10.1016/j.electacta.2017.07.083
[29] S. Bonyadi, K. Ghanbari, M. Ghiasi, All-electrochemical synthesis of a three-dimensional mesoporous polymeric g-C3N4/PANI/CdO nanocomposite and its application as a novel sensor for the simultaneous determination of epinephrine, paracetamol, mefenamic acid, and ciprofloxacin, New J. Chem. 44 (8) (2020) 3412-3424. https://doi.org/10.1039/C9NJ05954G
[30] M. Afshari, M. Dinari, M.M. Momeni, The graphitic carbon nitride/polyaniline/silver nanocomposites as a potential electrocatalyst for hydrazine detection, J. Electroanal. Chem. 833 (2019) 9-16. https://doi.org/10.1016/j.jelechem.2018.11.022
[31] A. Karthika, A. Suganthi, M. Rajarajan, An in-situ synthesis of novel V2O5/g-C3N4/PVA nanocomposite for enhanced electrocatalytic activity toward sensitive and selective sensing of folic acid in natural samples, Arab. J. Chem. 13 (2) (2020) 3639-3652. https://doi.org/10.1016/j.arabjc.2019.12.009
[32] X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging, J. Am. Chem. Soc.135 (1) (2013)18-21. https://doi.org/10.1021/ja308249k
[33] C. Rajkumar, P. Veerakumar, S.M. Chen, B. Thirumalraj, K.C. Lin, Ultrathin sulfur-doped graphitic carbon nitride nanosheets as metal-free catalyst for electrochemical sensing and catalytic removal of 4-nitrophenol, ACS Sustain. Chem. Eng. 6 (12) (2018) 16021-16031. https://doi.org/10.1021/acssuschemeng.8b02041
[34] Q. Liu, J. Zhang, Graphene supported Co-g-C3N4 as a novel metal–macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells, Langmuir 29 (11) (2013) 3821-3828. https://doi.org/10.1021/la400003h
[35] Y. Mei, C.Y. Tang, Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination 425 (2018) 156-174. https://doi.org/10.1016/j.desal.2017.10.021
[36] S. Ju, T.Y. Cai, H.S. Lu, C.D. Gong, Pressure-induced crystal structure and spin-state transitions in magnetite (Fe3O4), J. Am. Chem. Soc. 134 (33) (2012) 13780-13786. https://doi.org/10.1021/ja305167h
[37] M. Hassannezhad, M. Hosseini, M.R. Ganjali, M. Arvand, A graphitic carbon nitride (g-C 3N4/Fe3O4) nanocomposite: an efficient electrode material for the electrochemical determination of tramadol in human biological fluids, Anal. Methods. 11 (15) (2019) 2064-2071. https://doi.org/10.1039/C9AY00146H
[38] Y. Yuan, F. Zhang, H. Wang, L. Gao, Z. Wang, A Sensor Based on Au Nanoparticles/Carbon Nitride/Graphene Composites for the Detection of Chloramphenicol and Ciprofloxacin, ECS J. Solid State Sci. Technol. 7 (12) (2018) 201-208. https://doi.org/10.1149/2.0111812jss
[39] J. Zhang, J. Ding, C. Li, B. Li, D. Li, Z. Liu, Q. Cai, J. Zhang, Y. Liu, Fabrication of novel ternary three-dimensional RuO2/graphitic-C3N4@reduced graphene oxide aerogel composites for supercapacitors, ACS Sustain. Chem. Eng. 5 (6) (2017) 4982-4991. https://doi.org/10.1021/acssuschemeng.7b00358
[40] Q. Lu, J. Deng, Y. Hou, H. Wang, H. Li, Y. Zhang, One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid, Chem. Comm. 51 (61) (2015) 12251-12253. https://doi.org/10.1039/C5CC04231C
[41] H. Zhang, Y. Huang, S. Hu, Q. Huang, C. Wei, W. Zhang, W. Yang, P. Dong, A. Hao, Self-assembly of graphitic carbon nitride nanosheets–carbon nanotube composite for electrochemical simultaneous determination of catechol and hydroquinone, Electrochim. Acta. 176 (2015) 28-35. https://doi.org/10.1016/j.electacta.2015.06.119
[42] C. Rajkumar, P. Veerakumar, S.M. Chen, B. Thirumalraj, K.C. Lin, Ultrathin sulfur-doped graphitic carbon nitride nanosheets as metal-free catalyst for electrochemical sensing and catalytic removal of 4-nitrophenol, ACS Sustain. Chem. Eng. 6 (12) (2018) 16021-16031. https://doi.org/10.1021/acssuschemeng.8b02041
[43] A.J. Wang, H. Li, H. Huang, Z.S. Qian, J.J. Feng, Fluorescent graphene-like carbon nitrides: synthesis, properties and applications, J. Mater. Chem C 4(35) (2016) 8146-8160. https://doi.org/10.1039/C6TC02330D
[44] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18 (41), (2008) 4893-4908. https://doi.org/10.1039/b800274f
[45] Y.T. Wang, N Wang, M.L. Chen, T Yang, J.H. Wang, One step preparation of proton functionalized photoluminescent graphitic carbon nitride and its sensing applications, RSC Adv. 6 (101) (2016) 98893-98898.
[46] S.S.J. Xavier, G. Siva, M. Ranjani, S.D. Rani, N. Priyanga, R. Srinivasan, M. Pannipara, A.G. Al-Sehemi, Turn-on fluorescence sensing of hydrazine using MnO2 nanotube- decorated g-C3N4 nanosheets, New. J. Chem. 43 (33) (2019) 13196-13204. https://doi.org/10.1039/C6RA22829A
[47] M. Rong, X. Song, T. Zhao, Q. Yao, Y. Wang, X. Chen, Synthesis of highly fluorescent P, O-g-C3N4 nanodots for the label-free detection of Cu2+ and acetylcholinesterase activity, J. Mater. Chem. C 3 (41) (2015) 10916-10924. https://doi.org/10.1039/C5TC02584B
[48] S. Sun, X. Gou, S. Tao, J. Cui, J. Li, Q. Yang, S Liang, Z. Yang, Mesoporous graphitic carbon nitride (g-C3N4) nanosheets synthesized from carbonated beverage-reformed commercial melamine for enhanced photocatalytic hydrogen evolution, Mater. Chem. Front. 3 (4) (2019) 597-605. https://doi.org/10.1039/C8QM00577J
[49] J. Fang, H. Fan, Z. Zhu, L.B. Kong, L. Ma, Dyed graphitic carbon nitride with greatly extended visible-light-responsive range for hydrogen evolution, J. Catal. 339 (2016) 93-101. https://doi.org/10.1016/j.jcat.2016.03.021
[50] B. Fahimirad, A. Asghari, M. Rajabi, Magnetic graphitic carbon nitride nanoparticles covalently modified with an ethylenediamine for dispersive solid-phase extraction of lead (II) and cadmium (II) prior to their quantitation by FAAS, Microchim. Acta. 184 (8) (2017) 3027-3035. https://doi.org/10.1007/s00604-017-2273-5
[51] F. Dong, Y. Sun, L. Wu, M. Fu, Z. Wu, Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance, Catal. Sci. Technol. 2 (7) (2012) 1332-1335. https://doi.org/10.1039/c2cy20049j
[52] Q. Zhao, W. Wu, X. Wei, S. Jiang, T. Zhou, Q. Li, Q. Lu, Graphitic carbon nitride as electrode sensing material for tetrabromobisphenol-A determination, Sens. Actuators B Chem. 248 (2017) 673-681. https://doi.org/10.1016/j.snb.2017.04.002
[53] S. Thaweesak, S. Wang, M. Lyu, M. Xiao, P. Peerakiatkhajohn, L. Wang, Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting, Dalton Trans. 46 (32) (2017) 10714-10720. https://doi.org/10.1039/C7DT00933J
[54] C. Rajkumar, P. Veerakumar, S.M. Chen, B. Thirumalraj, K.C. Lin, Ultrathin sulfur-doped graphitic carbon nitride nanosheets as metal-free catalyst for electrochemical sensing and catalytic removal of 4-nitrophenol, ACS Sustain. Chem. Eng. 6 (12) (2018) 16021-16031. https://doi.org/10.1021/acssuschemeng.8b02041
[55] M. Aleksandrzak, W. Kukulka, E. Mijowska, Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis, Appl. Surf. Sci. 398 (2017) 56-62. https://doi.org/10.1016/j.apsusc.2016.12.023
[56] W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane, Dalton Trans. 44 (3) (2015) 1249-1257. https://doi.org/10.1039/C4DT02940B
[57] S.S.J. Xavier, G, Siva, M. Ranjani, S.D. Rani, N. Priyanga, R. Srinivasan, M. Pannipara,. A.G. Al-Sehemi, G.G. Kumar, Turn-on fluorescence sensing of hydrazine using MnO2 nanotube-decorated g-C3N4 nanosheets, New. J. Chem. 43 (33) (2019) 13196-13204. https://doi.org/10.1039/C9NJ01370A
[58] G. Yasin, M. Arif, M. Shakeel, Y. Dun, Y. Zuo, W.Q. Khan, Y. Tang, A. Khan, M. Nadeem, Exploring the Nickel–Graphene Nanocomposite Coatings for Superior Corrosion Resistance: Manipulating the Effect of Deposition Current Density on its Morphology, Mechanical Properties, and Erosion‐Corrosion Performance, Adv. Eng. Mater. 20 (7) (2018) 1701166. https://doi.org/10.1002/adem.201701166
[59] Z. Yang, X. Zheng, Z. Li, J. Zheng, A facile one-pot synthesis of carbon nitride dots–reduced graphene oxide nanocomposites for simultaneous enhanced detecting of dopamine and uric acid, Analyst 141 (15) (2016) 4757-4765. https://doi.org/10.1039/C6AN00640J
[60] G. Yasin, M. Arif, M. Shakeel, Y. Dun, Y. Zuo, W.Q. Khan, Y. Tang, A. Khan, M. Nadeem, Exploring the Nickel–Graphene Nanocomposite Coatings for Superior Corrosion Resistance: Manipulating the Effect of Deposition Current Density on its Morphology, Mechanical Properties, and Erosion‐Corrosion Performance, Adv. Eng. Mater. 20 (7) (2018) 1701166. https://doi.org/10.1002/adem.201701166
[61] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B. 61 (20) (2000) 14095. https://doi.org/10.1103/PhysRevB.61.14095
[62] P.V. Zinin, L.C. Ming, Sharma, S.K. Khabashesku, V.N. Liu, X. Hong, S. Endo, S.T. Acosta, Ultraviolet and near-infrared Raman spectroscopy of graphitic C3N4 phase, Che. Phys. Lett. 472 (1-3) (2009) 69-73. https://doi.org/10.1016/j.cplett.2009.02.068
[63] C.Wu, Z. Wang, L.Wang, P.T Williams, J. Huang, Sustainable processing of waste plastics to produce high yield hydrogen-rich synthesis gas and high quality carbon nanotubes, RSC Adv. 2 (10) (2012) 4045-4047. https://doi.org/10.1039/c2ra20261a
[64] R.C Pawar, S. Kang, S.H. Ahn, C.S. Lee, Gold nanoparticle modified graphitic carbon nitride/multi-walled carbon nanotube (g-C3N4/CNTs/Au) hybrid photocatalysts for effective water splitting and degradation, RSC Adv. 5 (31) (2015) 24281-24292. https://doi.org/10.1039/C4RA15560B
[65] B.J. Inkson, Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, Material Characterization using nondestructive evaluation (NDE) methods, Elsevier, (2016) 17-43. https://doi.org/10.1016/B978-0-08-100040-3.00002-X
[66] M. Sadhukhan, S. Barman, Bottom-up fabrication of two-dimensional carbon nitride and highly sensitive electrochemical sensors for mercuric ions, J. Mater. Chem. A 1 (8) (2013) 2752-2756. https://doi.org/10.1039/c3ta01523h
[67] M. Ramalingam, V.K. Ponnusamy, S.N Sangilimuthu, A nanocomposite consisting of porous graphitic carbon nitride nanosheets and oxidized multiwalled carbon nanotubes for simultaneous stripping voltammetric determination of cadmium (II), mercury (II), lead (II) and zinc (II), Microchim. Acta. 186 (2) (2019) 69. https://doi.org/10.1007/s00604-018-3178-7
[68] H.L. Lee, Z. Sofer, V. Mazánek, J. Luxa, C.K. Chua, M. Pumera, Graphitic carbon nitride: effects of various precursors on the structural, morphological and electrochemical sensing properties, Appl. Mater. Today 8 (2017) 150-162. https://doi.org/10.1016/j.apmt.2016.09.019
[69] A. Mitra, P. Howli, D. Sen, B. Das, K.K. Chattopadhyay, Cu2O/g-C3N4 nanocomposites: an insight into the band structure tuning and catalytic efficiencies, Nanoscale 8 (45) (2016) 19099-19109. https://doi.org/10.1039/C6NR06837E
[70] A.S. Sharma, V.S Sharma, H. Kaur, Graphitic carbon nitride decorated with Cu2O nanoparticles for the visible light activated synthesis of ynones, aminoindolizines and pyrrolo [1, 2a] quinoline, ACS Appl. Nano Mater. 3 (2) (2020) 1191-1202. https://doi.org/10.1021/acsanm.9b01928
[71] Q. Liu, Y Guo, Z. Chen, Z. Zhang, X. Fang, Constructing a novel ternary Fe (III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect, Appl catal. 183 (2016) 231-241. https://doi.org/10.1016/j.apcatb.2015.10.054
[72] L. Ge, C. Han, X. Xiao, L. Guo, Y. Li, Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts, Mater. Res. Bull. 48 (10) (2013) 3919-3925. https://doi.org/10.1016/j.materresbull.2013.06.002
[73] J. Gao, Y. Wang, S. Zhou, W. Lin, Y. Kong, A facile one‐step synthesis of Fe‐doped g‐C3N4 nanosheets and their improved visible‐light photocatalytic performance, Chem Cat. Chem. 9 (9) (2017) 1708-1715. https://doi.org/10.1002/cctc.201700492
[74] H. Dou, S. Zheng, Y. Zhang, The effect of metallic Fe (II) and nonmetallic S codoping on the photocatalytic performance of graphitic carbon nitride, RSC Adv. 8 (14) (2018) 7558-7568. https://doi.org/10.1039/C8RA00056E
[75] L.Ge, Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts, Mater. Lett. 65 (17-18) (2011) 2652-2654. https://doi.org/10.1016/j.matlet.2011.05.069
[76] X. Bai, L. Wang, R. Zong, Y. Zhu, Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods, J. Phys. Chem. 117 (19) (2013) 9952-9961. https://doi.org/10.1021/jp402062d
[77] C. Fan, J. Miao, G. Xu, J. Liu, J. Lv, Y. Wu, Graphitic carbon nitride nanosheets obtained by liquid stripping as efficient photocatalysts under visible light, RSC Adv. 7 (59) (2017) 37185-37193. https://doi.org/10.1039/C7RA05732F
[78] Z. Zhao, Y. Sun, Q. Luo, F. Dong, H. Li, W.K. Ho, Mass-controlled direct synthesis of graphene-like carbon nitride nanosheets with exceptional high visible light activity. Less is better, Sci. Rep. 5 (2015) 14643. https://doi.org/10.1038/srep14643
[79] W. Zhang, Q. Zhang, F. Dong, Z. Zhao, The multiple effects of precursors on the properties of polymeric carbon nitride, Int. J. Photoenergy (2013) 1-9. https://doi.org/10.1155/2013/685038
[80] M. Tahir, C. Cao, N. Mahmood, F.K. Butt, A. Mahmood, F. Idrees, S. Hussain, M Tanveer, Z. Ali, I. Aslam, Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties, ACS Appl. Mater. Interfaces 6 (2) (2014) 1258-1265. https://doi.org/10.1021/am405076b
[81] J. Xu, D. Li, Y. Chen, L. Tan, B. Kou, F. Wan, W. Jiang, F. Li, Constructing sheet-on-sheet structured graphitic carbon nitride/reduced graphene oxide/layered MnO2 ternary nanocomposite with outstanding catalytic properties on thermal decomposition of ammonium perchlorate, J. Nanomater. 7 (12) (2017) 450. https://doi.org/10.3390/nano7120450
[82] L. Tan, J. Xu, X. Zhang, Z. Hang, Y. Jia, S. Wang, Synthesis of g-C3N4/CeO2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate, Appl. Surf. Sci. 356 (2015) 447-453. https://doi.org/10.1016/j.apsusc.2015.08.078
[83] B.A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices, J. Phys. Chem. 122 (1) (2018) 194-206. https://doi.org/10.1021/acs.jpcc.7b10582
[84] M. Amiri, H. Salehniya, A. Habibi-Yangjeh, Graphitic carbon nitride/chitosan composite for adsorption and electrochemical determination of mercury in real samples, Ind. Eng. Chem. Res. 55 (29) (2016) 8114-8122. https://doi.org/10.1021/acs.iecr.6b01699
[85] H. Zhang, Y. Huang, S. Hu, Q. Huang, C. Wei, W. Zhang, W. Yang, P. Dong, A. Hao, Self-assembly of graphitic carbon nitride nanosheets–carbon nanotube composite for electrochemical simultaneous determination of catechol and hydroquinone, Electrochim. Acta 176 (2015) 28-35. https://doi.org/10.1016/j.electacta.2015.06.119
[86] S. Tonda, S. Kumar, S. Kandula, V. Shanker, Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight, J. Mater. Chem. A. 2(19) (2014) 6772-6780. https://doi.org/10.1039/c3ta15358d
[87] H. Tian, H. Fan, J. Ma, L. Ma, G. Dong, Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing, Electrochim. Acta, 247 (2017) 787-794. https://doi.org/10.1016/j.electacta.2017.07.083
[88] G. Dai, J. Xie, C. Li, S. Liu, Flower-like Co3O4/graphitic carbon nitride nanocomposite based electrochemical sensor and its highly sensitive electrocatalysis of hydrazine, J. Alloys Compd. 727 (2017) 43-51. https://doi.org/10.1016/j.jallcom.2017.08.100