Graphene-Carbon Nanotubes Nanocomposite Modified Electrochemical Sensors for Toxic Chemicals


Graphene-Carbon Nanotubes Nanocomposite Modified Electrochemical Sensors for Toxic Chemicals

A. Sivakami, S. Bagyalakshmi, K.S Balamurugan, Nurul Izrini Ikshan

The unique mechanical, electrical, physical and chemical properties of carbon nanotubes (CNTs) and graphene is showing excellent detection of toxic chemicals. The graphene (GR)-Carbon nanotube (CNT) nanocomposite showed large active surface area, high porosity and electrical conductivity than graphene based or CNT based ones. The electrochemical performance of GR-CNT nanocomposite can be enhanced due to synergistic effects operating between GR and CNT. The electrochemically modified GR-CNT nanocomposites has been used in different applications such as biomedical, pharmaceutical, environmental, energy harvesting, food sector applications. This chapter summarizes the electrochemical sensing of GR-CNTs nanocomposites for detection of heavy metal ions, phenolic compounds, nitrite, nitrate, hydrogen peroxide and etc. GR-CNTs nanocomposite based electrochemical sensors showed the great selectivity, sensitivity and reproducibility for detection of environmental pollutants.

Graphene-CNT, Modified Electrode, GR-MWCNTs, Composite, Toxic, Metal Ions, Detection

Published online 8/30/2020, 32 pages

Citation: A. Sivakami, S. Bagyalakshmi, K.S Balamurugan, Nurul Izrini Ikshan, Graphene-Carbon Nanotubes Nanocomposite Modified Electrochemical Sensors for Toxic Chemicals, Materials Research Foundations, Vol. 82, pp 211-242, 2020


Part of the book on Graphene-Based Electrochemical Sensors for Toxic Chemicals

[1] A. Touhami, Biosensors and Nanobiosensors Design and Applications. In Nanomedicine; One Central Press (OCP): Cheshire, UK, 2014, 374–403.
[2] A. P.Turner, Biosensors: Sense and sensibility.,Chem. Soc. Rev. 42 (2013) 3184–3196.
[3] S. Vigneshvar, C.C. Sudhakumari, B.Senthilkumaran, H.Prakash,Recent Advances in Biosensor Technology for Potential Applications—An Overview. Front. Bioeng.Biotechnol., 4 (2016) 11.
[4] E.C.Alocilja, S. M. Radke,Market analysis of biosensors for food safety. Biosens.Bioelectron.,18 (2003) 841–846.
[5] F.Liu, Y. Piao, K. S. Choi, T.S.Seo, Fabrication of free-standing graphene composite films as electrochemical biosensors. Carbon, 50 (2012) 123–133.
[6] Q.Sheng, M. Wang, J.Zheng, A novel hydrogen peroxide biosensor based on enzymatically induced deposition of polyaniline on the functionalized graphene-carbon nanotube hybrid materials. Sensor Actuat. B Chem., 160 (2011) 1070–1077.
[7] Y. Yun, Z.Dong, V.N.Shanov, M.J. Schulz, Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel. Nanotechnology, 18 (2007) 465505.
[8] A.Bianco,H-M. Cheng, T.Enoki, Y.Gogotsi, R.H. Hurt, N. Koratkar, T. Kyotani, M. Monthioux, C.R. Park, J. M. D. Tascon, All in the graphene family—A recommended nomenclature for two-dimensional carbon materials. Carbon, 65 (2013) 1–6.
[9] L.Tang, Y. Wang, Y.Li, H. Feng, J.Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater., 19 (2009) 2782–2789.
[10] N.G.Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A.Potenza, S.S. Dhesi, H. Marchetto, Catalyst-free efficient growth, orientation and biosensingproperties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater., 18 (2008) 3506–3514.
[11] R.L.McCreery, Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev., 108 (2008) 2646–2687.
[12] W.Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J Gooding, F. Braet, Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Edit., 49(2010) 2114–2138.
[13] W. D. Zhang, B. Xu, L.-C. Jiang, Functional hybrid materials based on carbon nanotubes and metal oxides, J Mater Chem, 20 (2010) 6383-6391.
[14] W. Wu, M. Jia, Z. Zhang, X. Chen, Q. Zhang, W. Zhang, P. Li, L. Chen, Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost Fe3O4 nanoparticles/fluorinated multi-walled carbon nanotubes sensor, Ecotox Environ Safe, 175 (2019) 243-250.
[15] M.B.Wayu, J.E. King, J.A. Johnson, C.C. Chusuei, A zinc oxide carbon nanotube based sensor for in situ monitoring of hydrogen peroxide in swimming pools, Electroanalysis, 27 (2015) 2552-2558.
[16] C.Gao,Z.Guo,J-H. Liu, X-J. Huang, The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors,
Nanoscale, 4 (2012) 1948-1963.
[17] J.W.G.Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronically structure of atomically resolved carbon nanotubes, Nature. 39 (1998) 159-61.
[18] R.Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60 (1992) 2204–2206.
[19] I. V. Zaporotskova, N.P.Boroznina, Y.N.Parkhomenko, L.V.Kozhitov, Carbon nanotubes: Sensor properties. A review, Modern Electronic Materials, 2 (2016) 95-105.
[20] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, Methods for carbon nanotubes synthesis—review, J.Mater.Che. 21 (2011) 15872-15884.
[21] K. Anazawa, K. Shimotani, C. Manabe, H. Watanabe, M. Shimizu, High purity carbon nano tube synthesis method, Applied Physics Letters, 81(2008) 739-741.
[22] S. Marchesan, K. Kostarelos, A. Bianco, M. Prato, The winding road for carbon nano tubes in nano medicine, Mater.Today.18 (2014) 12–19.
[23] B. Singh, S. Lohan, P.S. Sandhu, A. Jain, S.K. Mehta, Chapter-15Functionalized carbon nanotubes and their promising applications in therapeutics and diagnostics, Nanobiomaterials in Medical Imaging, 8 (2016) 455-478.
[24] S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen,. M.E. Itkis, R.C. Haddon, Chemistry of single walled carbon nanotubes, Acc. Chem. Res. 35(2002) 1105- 1113.
[25] J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanal, 17 (2005),7 -14.
[26] D.W. Kimmel, G. LeBlanc, M.E. Meschievitz, D.E. Cliffel, Electrochemical sensors and biosensors, Anal. Chem. 84 (2012) 685–707.
[27] H. Wang, Y. Liu, S. Yao, G. Hu, Fabrication of super pure single walled carbon nanotube electrochemical sensor and its application for picomole detection of olaquindox, Anal. Chim. Acta 1049 (2019) 82–90.
[28] H. Wang, S. Yao, Y. Liu, S. Wei, J. Su, G. Hu, Molecularly imprinted electrochemical sensor based on Au nanoparticles in carboxylated multi-walled carbon nanotubes for sensitive determination of olaquindox in food and feedstuffs, Biosens. Bioelectron. 87 (2017) 417–421.
[29] N. Karousis, I. Suarez-Martinez, C.P. Ewels, N. Tagmatarchis, Structure, properties, functionalization, and applications of carbon nanohorns, Chem. Rev. 116 (2016) 4850–4883.
[30] S. Zhu, G. Xu, Single-walled carbon nanohorns and their applications, Nanoscale 2 (2010) 2538–2549.
[31] C. Jiang, Y. Yao, Y. Cai, J. Ping, All-solid-state potentiometric sensor using single-walled carbon nanohorns as transducer, Sens. Actuators B 283 (2019) 284–28926.
[32] M. Govindhan, B-R. Adhikari, A. Chen, Nanomaterials-based electrochemical detection of chemical contaminants, RSC Adv. 4 (2014) 63741-63760.
[33] X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, S. Fan, Fabrication of ultralong and electrically uniform Single-Walled Carbon Nanotubes on clean substrates, Nano Letters. 9(2009), 3137–3141.
[34] A. Bianco, H-M. Cheng, T. Enoki, Y. Gogotsi, R.H. Hurt, N. Koratkar, T. Kyotani, M. Monthioux, C.R. Park, J.M.D. Tascon, All in the graphene family—A recommended nomenclature for two-dimensional carbon materials. Carbon, 65(2013) 1–6.
[35] D.S. Meryl, P. Sungjin, Z. Yanwu, A. Jinho, A. Rodney, S.R. Graphene-Based Ultracapacitors. Nano Lett. 8 (2008) 3498–3502.
[36] J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, S. Iijima, Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl. Phys. Lett. 98 (2011) 091502.
[37] H.J. Williams, O. Richarde, Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80 (1958) 1339.
[38] C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 43 (2014) 291–312.
[39] C.I.L. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, T.A.P. Rocha-Santos, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91 (2017) 53–66.
[40] M. Carbone, L. Gorton, R. Antiochia, An Overview of the Latest Graphene-Based Sensors for Glucose Detection: The Effects of Graphene Defects. Electroanalysis 27 (2015) 16–31.
[41] D. Bitounis, H. Ali-Boucetta, B.H. Hong, D.H. Min, K. Kostarelos, Prospects and challenges of graphene in biomedical applications. Adv. Mater., 25 (2013) 2258–2268.
[42] A. N. Banerjee, Graphene and its derivatives as biomedical materials: future prospects
and challenges, Interface focus 8 (2018) 20170056.
[43] D. Li, W. Zhang, X. Yu, Z. Wang, Z. Su, G. Wei, When biomolecules meet graphene: From molecular level interactions to material design and applications. Nanoscale 8 (2016) 19491–19509.
[44] A. Ambrosi, C.K Chua, A. Bonanni, M. Pumera, Electrochemistry of graphene and related materials. Chem. Rev., 114 (2014) 7150–7188.
[45] D. Chen, H. Feng, J. Li, Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev., 112(2012) 6027–6053.
[46] R.S. Andre, R.C. Sanfelice, A. Pavinatto, L.H.C. Mattoso, D.S. Correa, Hybrid nanomaterials designed for volatile organic compounds sensors: A review, Materials & Design, 156 (2018) 154-166.
[47] P. Sharma, V. Bhalla, V. Dravid, G. Shekhawat, J-Wu, E. Senthilprasad, C. Raman Suri, Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes, Scientific reports, 2 (2012) 877-883.
[48] I.A. Kinlcoh, J.Suhr, J. Lou, R. J. Young, P.M. Ajayan, Composites with carbon nanotubes and graphene: An outlook, Science, 362 (2018) 547-553.
[49] Q. Cheng, J. Tang. N. Shinya, L-C. Qin, Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density, J. Of. Power sources, 241(2013) 423-428.
[50] F. Liu, N. Hu, H. Ning, S. Atobe, C. Yan, Y. Liu, L. Wu, X. Liu, S. Fu, C. Xu, Y. Li,
J. Zhang, Y. Wang, W. Li, Investigation of their interfacial mechanical properties of hybrid
graphene-carbon nanotube/polymer nanocomposites, Carbon, 115 (2017) 694–700.
[51] H.A.-S. Mohammed, Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposite,Synth. Met. 209 (2015) 41–46.
[52] B. Li, S. Dong, X. Wu, C. Wang, X. Wang, J. Fang, Anisotropic thermal property of magneticallyoriented carbon nanotube/graphene polymer composites, Compos. Sci. Technol. 147 (2017) 52–61.
[53] S.S. Jyothirmayee Aravind and S. Ramaprabhu, Sens. Actuators, B, 2011, 155, 679–686.
[54] M.D. Stoller, S. Park, Y. Zhu, J. A, R.S. Ruoff, Graphene based ultracapacitors, Nano Lett., 8 (2008) 3498.
[55] I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim and K.L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol., 3 (2008) 654.
[56] V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials, Nanoscale Res. Lett., 6 (2011) 137.
[57] S. Sasikaladevi, J. Aravind, V. Eswaraiah, S. Ramprabhu, Facile synthesis of one dimensional graphene wrapped carbon nanotube composites by chemical vapour deposition, J. Mat. Chem. 21 (2011) 15179.
[58] C. Tang, Q. Zhang, M.Q. Zhao, J.Q. Huang, X.B. Cheng, G.L. Tian, H.J. Peng, F. Wei, Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries, Adv. Mater., 26(2014) 6100–6105.
[59] M.Q. Zhao, X.F. Liu, Q. Zhang, G.L. Tian, J.Q. Huang, W.C. Zhu, F. Wei, Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries, ACS Nano, 6 (2012) 10759–10769.
[60] J. Xie, J. Yang, X.Y. Zhou, Y.L. Zou, J.J. Tang, S.C. Wang, F. Chen, Preparation of three-dimensional hybrid nanostructure-encapsulated sulfur cathode for high-rate lithium sulfur batteries, J. Power Sources, 253(2014) 55–63.
[61] V. Mani, B. Devadas, S.-M. Chen, Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor, Biosens.Bioelectron. 41(2013) 309.
[62] B. Devadas, V. Mani, S.-M. Chen, A Glucose/O2 biofuel Cell Based on Graphene and Multiwalled Carbon Nanotube Composite Modified Electrode, Int. J. Electrochem. Sci.,7 (2012) 8064-8075.
[63] M.-Y. Yen, M-C. Hsiao, S.-H. Liao, P.-I. Liu, H.-M. Tsai, C.-C. M. Ma, N.-W. Pu, M.-D. Ger, Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells, Carbon, 49 (2011) 3597-3606.
[64] X. Dong, B. Li, A. Wei, X. Cao, M.B.C.-Park, H. Zhang, L.-J. Li, W. Huang, P. Chen, One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition, Carbon, 49 (2011) 2944-2949.
[65] P. Han, Y. Yu, Z. Liu, W. Xu, L. Zhang, H. Xu, S. Dong, G. Cui, Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries, Energy Environ. Sci., 4 (2011) 4710-4717.
[66] C. Zhang, L. Ren, X. Wang, T. Liu, Graphene Oxide-Assisted Dispersion of Pristine Multiwalled Carbon Nanotubes in Aqueous Media, J. Phys. Chem. C, 114 (2010) 11435-11440.
[67] Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian F. Wei, A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitor, Adv. Mater., 22 (2010) 3723-8.
[68] J. Young Oh, G.H. Jun, S. Jin, H.J. Ryu, S.H. Hong, Enhanced Electrical Networks of Stretchable Conductors with Small Fraction of Carbon Nanotube/Graphene Hybrid Fillers, ACS Appl. Mater. Interfaces, 8 (2016) 3319-3325.
[69] S. Woo, Y-R. Kim, T.D. Chung, Y. Piao, H. Kim, Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide, Electrochimica Acta, 59 (2012) 509-514.
[70] H. Huang, T. Chen, X. Liu and H. Ma, Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials.
Analytica Chimica Acta, 852 (2014) 45-54.
[71] M. Munishelak, A. Gargor, B. Zawisza, E. Talik, R. Sitko, Graphene Oxide/Carbon Nanotube Membranes for Highly Efficient Removal of Metal Ions from Water, ACS Appl. Mater.Interfaces, 11 (2019) 28582-28590.
[72] T. AL. Gahouari, G. Bodkhe, P. Sayyad, N. Ingle, S.M. Mahadik, S.M. Shirsat, M. Deshmukh, N. Musahwar and M. Shirsat, Electrochemical Sensor: L-Cysteine Induced Selectivity Enhancement of Electrochemically Reduced Graphene Oxide–Multiwalled Carbon Nanotubes Hybrid for Detection of Lead (Pb2+) Ions, Frontiers in materials, 7 (2020) 48.
[73] C. Wang, M. Cao, P. Wang, Y. Ao, J. Hou, J. Qian, Preparation of graphene–carbon nanotube–TiO2composites with enhanced photocatalytic activity for the removal of dye and Cr (VI), Applied catalyis A: general, 473 (2014) 83-89.
[74] J.G. Yu, T.T. Ma, S.W. Liu, Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel, Phys. Chem. Chem. Phys. 13 (2011) 3491–3501.
[75] Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, J. Am. Chem. Soc. 133(2011) 10878–10884.
[76] W. Zhan, L. Gao, X. Fu, S.H. Siyal, G. Sui and X. Yang, Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal, Appl. Sur. Sci., 467-468 (2019) 1122-1133.
[77] X. Dong., Y. Ma, G. Zhu, Y.Huang, J. Wang, M B Chan-Park, L. Wang, W. Huang and P. Chen, Synthesis of graphene–carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing, J. Mate. Che., 22 (2012) 17044.
[78] Y-S. Wang, S-Y. Yang, S-M. Li, H-W. Tien, S-T. Hsiao, W-H Liao, C-H Liu, K-H. Chang, C-C. Ma, C-C. Hu, Three-dimensionally porous graphene–carbon nanotube composite-supported PtRu catalysts with an ultrahigh electrocatalytic activity for methanol oxidation, Electrochimica Acta (2013), 87, 261-269.
[79] Y.J. Yang, W. Lei, CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite, Biosensors and Bioelectronics, 56 (2014) 300-306.
[80] H. Bagheri, A. Hajian, M. Rezaei, A. Shirzadmehir, Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate, Journal of hazardous materials,324 (2017) 762-772.
[81] X. Xuan, J.Y. Park, Miniaturized flexible sensor with reduced graphene oxide/carbon nano tube modified bismuth working electrode for heavy metal detection, Sensors and Actuators B: Chemical, 255 (2018) 1220-1227.
[82] V. Mani, B. Dinesh, S.M. Chen, R. Saraswathi. Direct electrochemistry of myoglobin at reduced graphene oxide-multiwalled carbon nanotubes-platinum nanoparticles nanocompositeand bio-sensing towards hydrogen peroxide and nitrite. Biosensors and Bioelectronics, 53 (2014) 420-27.
[83] V. Mani, T.Y. Wu, and S.M. Chen. Iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite-modified glassy carbon electrode for the sensitivedetermination of nitrite, Journal of Solid State Electrochemistry, 18 (2014) 1015–23.
[84] F. Hu, S. Chen, C. Wang, R. Yuan, D. Yuan, C. Wang, Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite, Analytica Chimica Acta, 724 (2012) 40-46.
[85] K. Deng, J. Zhou, H. Huang, Y. Ling, C. Li, Electrochemical Determination of Nitrite Using a Reduced Graphene Oxide–Multiwalled Carbon Nanotube-Modified Glassy Carbon Electrode, Analytical letters, 49 (2016) 2917-2930.
[86] K-Y Hwa, B. Subramani, Synthesis of zincoxide nanoparticles on graphene–carbon nanotube hybrid for glucose biosensor applications, Biosensors and Bio electronics, 62 (2014) 127-133.
[87] Z-N, Huang, J. Zou, J. Teng, Q. Liu, M.M Yuan, F-P Jiao, X-Y. Jiang, J-G, Yu, A novel electrochemical sensor based on self-assembled platinum nanochains – Multi-walled carbon nanotubes-graphene nanoparticles composite for simultaneous determination of dopamine and ascorbic acid, Ecotoxicology and Environmental Safety, 172 (2019) 167–175.
[88] H. Yu, S-S. Wang, K-L Song, R. Li, A sensitive amperometric sensor for hydrazine based on Pt nanoparticles-reduced graphene oxide–multi-walled carbon nanotubes composite, International Journal of Environmental Analytical Chemistry, 99 (2019) 854-867.