Graphene-Polymer based Nanocomposites for Electrochemical Sensing of Toxic Chemicals


Graphene-Polymer based Nanocomposites for Electrochemical Sensing of Toxic Chemicals

A.R. Marlinda, M.R. Johan

This chapter (with 94 refs.) gives an overview of the progress in the past few years on the development of graphene-polymer based for use in sensors and analytical tools for the determination of toxic chemicals. Sensing of toxic molecules is critical to environmental monitoring, control of chemical processes, agricultural, and medical applications. In particular, the detection of heavy metal ions such as mercury, cadmium, arsenic, chromium, thallium and lead which are extremely harmful pollutants in the biosphere due to their toxicity and even trace amounts of them pose a detrimental risk to human health. Graphene and their polymer composites are synthesized by using various synthesis techniques. Following details is an overview of the significant synthesis techniques of graphene-polymer based nanocomposites that have been reported in the past few years. We also discussed the various analytical electrochemical detection methods for toxic chemicals such as potentiometric, voltammetric and electrochemical impedance spectroscopy methods. Subsections cover electrochemical sensors on graphene-polymer based nanocomposites with different kind of polymers used, and finally their detection sensors on toxic chemical containing heavy metal ions.

Polymerization, Graphene Derivatives, Electroanalysis, Nanohybrid, Biosensor, Potentiometric Technique, Voltammetric Technique

Published online 8/30/2020, 25 pages

Citation: A.R. Marlinda, M.R. Johan, Graphene-Polymer based Nanocomposites for Electrochemical Sensing of Toxic Chemicals, Materials Research Foundations, Vol. 82, pp 186-210, 2020


Part of the book on Graphene-Based Electrochemical Sensors for Toxic Chemicals

[1] M.H. Wong, S.C. Wu, W.J. Deng, X.Z. Yu, Q. Luo, A.O.W. Leung, C.S.C. Wong, W.J. Luksemburg, A.S. Wong, Export of toxic chemicals – A review of the case of uncontrolled electronic-waste recycling, Environ. Pollut. 149 (2007) 131-140.
[2] ATSDR, Toxicological Profile for Chlorinated Dibenzo-p-dioxins (CDDs) (US Department of Health and Human Services, Public Health Service, Atlanta, GA, 1998)
[3] N. Negash, H. Alemu, M. Tessema, Determination of phenol and chlorophenols at single-wall carbon nanotubes/poly (3,4-ethylenedioxythiophene ) modifified glassy carbon electrode using flow injection amperometry, Am. J. Anal. Chem. 5 (2014) 188–198.
[4] J.D. Berset, R. Holzer. Organic micropollutants in Swiss agriculture: distribution of polynuclear aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in soil, liquid manure, sewage sludge, and compost samples: a comparative study, Int. J. Environ. Anal. Chem. 59 (1995)145-165.
[5] Website :
[6] Y. Yang, M. Kang, S. Fang, M. Wang, L. He, J. Zhao, H. Zhang, Z. Zhang, Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions, Sens. Actuator B-Chem. 214 (2015) 63-69.
[7] K. Zangeneh Kamali, A. Pandikumar, S. Jayabal, R. Ramaraj, H.N. Lim, B.H. Ong, C.S.D. Bien, Y.Y. Kee, N.M. Huang, Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver@graphene oxide nanocomposite materials, Microchim. Acta 183 (2016) 369-377.
[8] Tayyaba Kokab, Afzal Shah, Faiza Jan Iftikhar, Jan Nisar, Mohammad Salim Akhter, Sher Bahadur Khan, Amino acid-fabricated glassy carbon electrode for efficient simultaneous sensing of zinc(II), cadmium(II), copper(II), and mercury(II) ions, ACS Omega 4 (2019) 22057-22068.
[9] S. Kumar, G. Bhanjana, N. Dilbaghi, R. Kumar, A. Umar, Fabrication and characterization of highly sensitive and selective arsenic sensor based on ultra-thin graphene oxide nanosheets, Sens. Actuator B-Chem. 227 (2016) 29-34.
[10] A. Prakash, S. Chandra, D. Bahadur, Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium, Carbon 50 (2012) 4209-4219.
[11] M. Nasiri-Majd, M.A. Taher, H. Fazelirad, Synthesis and application of nano-sized ionic imprinted polymer for the selective voltammetric determination of thallium, Talanta, 144 (2015) 204-209.
[12] S.-Y. Kuo, H.-H. Li, P.-J. Wu, C.-P. Chen, Y.-C. Huang, Y.-H. Chan, Dual Colorimetric and Fluorescent Sensor Based On Semiconducting Polymer Dots for Ratiometric Detection of Lead Ions in Living Cells, Anal. Chem., 87 (2015) 4765-4771.
[13] P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment, Exp. Suppl. 101 (2012) 133-164.
[14] World Health Organization. Biological Monitoring of Metals, 1994.
[15] L. Jarup, Hazards of heavy metal contamination, Br. Med. Bull. 68 (2003) 167−182.
[16] G. Aragay, J. Pons, A. Merkoci, Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection, Chem. Rev. 111 (2011) 3433−3458.
[17] J.K. Abraham, B. Philip, A. Witchurch, V.K. Varadan, C. Reddy, A compact wireless gas sensor using a carbon nanotube/PMMA thin fifilm chemiresistor, Smart Mater. Struct. 13 (2004) 1045–1049.
[18] T. Alizadeh, Chemiresistor sensors array optimization by using the method of coupled statistical techniques and its application as an electronic nose for some organic vapors recognition, Sens. Actuators B 143 (2010) 740–749.
[19] L.H. Baekeland, The synthesis constitution and uses of Bakelite, J. Ind. Eng. Chem. 1 (1909) 149–161.
[20] T. Kuila, S. Bose, A. Mishra, P. Khanra, N. Kim, J. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci. 57 (2012) 1061–1105.
[21] M. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene, Nano Today 6 (2011) 42–60.
[22] D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites, Prog. Mater Sci. 90 (2017) 75-127.
[23] M. Yoonessi, Y. Shi, D.A. Scheiman, M. Lebron-Colon, D.M. Tigelaar, R. Weiss, et al., Graphene polyimide nanocomposites; thermal, mechanical, and high temperature shape memory effects. ACS Nano 6 (2012) 644–655.
[24] X. Yang, X. Wang, J. Yang, J. Li, L. Wan, Functionalization of graphene using trimethoxysilanes and its reinforcement on polypropylene nanocomposites, Chem. Phys. Lett. 570 (201) 125–131.
[25] N.H. Kamaruddin, A.R. Marlinda, M. Said, F. Abd Wahab, G.B. Tong, N.A. Hamizi, Z.Z. Chowdhury, S. Sagadevan, M.R. Johan, Synergistic effects of rubber band infused graphene nanocomposite on morphology, spectral, and dynamic mechanical properties, Polym. Compos. 41 (2020) 1475-1480.
[26] H. Fischer, Polymer nanocomposites: from fundamental research to specific applications, Mater. Sci. Eng. C 23 (2003) 763–772.
[27] M.A. Rahman, G.B. Tong, N.H. Kamaruddin, F.A. Wahab, N.A. Hamizi, Z.Z. Chowdhury, S. Sagadevan, N. Chanlek, M.R. Johan, Effect of graphene infusion on morphology and performance of natural rubber latex/graphene composites, J. Mater. Sci.-Mater. Electron. 30 (2019) 12888-12894.
[28] K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications, Prog. Polym. Sci. 39 (2014) 1934-1972.
[29] D. Cai, M. Song, Recent advance in functionalized graphene/polymer nanocomposites, J. Mater. Chem. 20 (2010) 7906-7915.
[30] D. Yu, Y. Yang, M. Durstock, J.-B. Baek, L. Dai, Soluble P3HT-grafted graphene for efficient bilayer−heterojunction photovoltaic devices, ACS Nano 4 (2010) 5633-5640.
[31] B.R. Lee, J.-w. Kim, D. Kang, D.W. Lee, S.-J. Ko, H.J. Lee, C.-L. Lee, J.Y. Kim, H.S. Shin, M.H. Song, Highly efficient polymer light-emitting diodes using graphene oxide as a hole transport layer, ACS Nano 6 (2012) 2984-2991.
[32] J.P. Singh, U. Saha, R. Jaiswal, R.S. Anand, A. Srivastava, T.H. Goswami, Enhanced polymer light-emitting diode property using fluorescent conducting polymer-reduced graphene oxide nanocomposite as active emissive layer, J. Nanopart. Res. 16 (2014) 2693.
[33] A.M. Díez-Pascual, J.A. Luceño Sánchez, R. Peña Capilla, P. García Díaz, Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells, Polymers 10 (2018) 217.
[34] Y. Cui, S.I. Kundalwal, S. Kumar, Gas barrier performance of graphene/polymer nanocomposites, Carbon 98 (2016) 313-333.
[35] B.M. Yoo, H.J. Shin, H.W. Yoon, H.B. Park, Graphene and graphene oxide and their uses in barrier polymers, J. Appl. Polym. Sci. 131 (2014) 39628.
[36] H. Kim, Y. Miura, C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22 (2010) 3441–3450.
[37] D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources 196 (2011) 4873–4885.
[38] X. Huang, X. Qi, F. Boey, H. Zhan, Graphene-based composites, Chem Soc..Rev. 41 (2012) 666–686.
[39] Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films, ACS Nano 4 (2010) 1963-1970.
[40] H.-H. Chang, C.-K. Chang, Y.-C. Tsai, C.-S. Liao, Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor, Carbon 50 (2012) 2331-2336.
[41] T Cassagneau, J.H. Fendler, High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes. Adv Mater. 10 (1998) 877–881.<877::AID-ADMA877>3.0.CO;2-1
[42] A. Kundu, R.K. Layek, A.K. Nandi, Enhanced fluorescent intensity of graphene oxide–methyl cellulose hybrid in acidic medium: Sensing of nitro-aromatics, J. Mater. Chem. 22 (2012) 8139-8144.
[43] R.K. Layek, A.K. Nandi, A review on synthesis and properties of polymer functionalized graphene, Polymer 54 (2013) 5087-5103.
[44] A. Kundu, R.K. Layek, A. Kuila, A.K. Nandi, Highly fluorescent graphene oxide-poly(vinyl alcohol) hybrid: An effective material for specific Au3+ ion sensors, ACS Appl. Mater. Interfaces 4 (2012) 5576-5582.
[45] Z. Liu, J.T. Robinson, X. Sun, H. Dai, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs, J. Am. Chem. Soc. 130 (2008) 10876-10877.
[46] Z. Fang, J. Ru˚ ziˇ cka, ˇ E. Hansen, An efficient flow-injection system with online ion-exchange preconcentration for the determination of trace amounts of heavy metals by atomic absorption spectrometry, Anal. Chim. Acta 164 (1984) 23–29.
[47] D.E. Nixon, K.R. Neubauer, S.J. Eckdahl, J.A. Butz, M.F. Burritt, Comparison of tunable bandpass reaction cell inductively coupled plasma mass spectrometry with conventional inductively coupled plasma mass spectrometry for the determination of heavy metals in whole blood and urine, Spectrochim. Acta B 59 (2004) 1377–1387.
[48] O.V.S. Raju, P.M.N. Prasad, V.Varalakshmi, Y.V.R. Reddy, Determination of heavy metals in ground water by Icp-Oes in selected coastal area of Spsr Nellore district , Andhra Pradesh, India, Int. J. Innov. Res. Sci. Eng. Technol. 3 (2014) 9743–9749.
[49] Y. Li, Y. Jiang, X.P. Yan, Probing mercury species-DNA interactions by capillary electrophoresis with on-line electrothermal atomic absorption spectrometric detection, Anal. Chem. 78 (2006) 6115–6120.
[50] O.W. Lau, S.Y. Ho, Simultaneous determination of traces of iron, cobalt, nickel, copper, mercury and lead in water by energy-dispersive x-ray fluorescence spectrometry after preconcentration as their piperazino-1,4-bis(dithiocarbamate) complexes, Anal. Chim. Acta 280 (1993) 269–277.
[51] V.P. Guinn, C.D. Wagner, Instrumental Neutron Activation Analysis, Anal. Chem. 32 (1960) 317-323.
[52] C. Sarzanini, M.C. Bruzzoniti, Metal species determination by ion chromatography, TrAC, Trends Anal. Chem. 20 (2001) 304-310.
[53] C.O.B. Okoye, A.M. Chukwuneke, N.R. Ekere, J.N. Ihedioha, Simultaneous ultraviolet-visible (UV-VIS) spectrophotometric quantitative determination of Pb, Hg, Cd, As and Ni ions in aqueous solutions using cyanidin as a chromogenic reagent, Int. J. Phys. Sci. 8 (2013) 98-102.
[54] J.M. Liu, L.P. Lin, X.X. Wang, S.Q. Lin,W.L. Cai, L.H. Zhang, Z.Y. Zheng, Highly selective and sensitive detection of Cu (II) with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst 137 (2012) 637–642.
[55] C.C. Huang, J.C. He, Electrosorptive removal of copper ions from waste water by using ordered mesoporous carbon electrodes, Chem. Eng. J. 221 (2013) 469–475.
[56] J. Lu, X. Zhang, N. Liu, H. Li, Z. Yu, X. Yan, Electrochemical sensor for mercuric chloride based on graphene-MnO2 composite as recognition element, Electrochim. Acta 174 (2015) 221–229.
[57] C.V. Gherasim , J. Krivcik , P. Mikulasek, Investigation of batch electrodialysis process for removal of lead ions from aqueous solutions, Chem. Eng. J. 256 (2014) 324–334.
[58] X. Huakun, X. Jingkun, Z. Xiaofei, D. Xuemin, L. Limin, Z. Yinxiu, Z. Youshan, W. Wenmin, A new electrochemical sensor based on carboimidazole grafted reduced graphene oxide for simultaneous detection of Hg2+ and Pb2+. J. Electroanal. Chem. 782 (2016)250–255.
[59] L. Eddaif, A. Shaban, J. Telegdi, Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: a review, Int. J. Environ. Anal. Chem. 99 (2019) 824-853.
[60] O.A. Farghaly, R.S.A. Hameed, Analytical Application using modern electrochemical techniques: a review, Int. J. Electrochem. Sci. 9 (2014) 3287.
[61] C.M.A. Brett, Electrochemical sensors for environmental monitoring . Strategy and examples *, Pure Appl. Chem. 73 (2001) 1969–1977.
[62] J. Kudr, L. Richtera, L. Nejdl, K. Xhaxhiu, P. Vitek, B. Rutkay-nedecky, D. Hynek, P. Kopel, V. Adam, and R. Kizek, Improved electrochemical detection of zinc ions using electrode modified with electrochemically reduced graphene oxide, Materials 9 (2016) 1–12.
[63] K. Keawkim, S. Chuanuwatanakul, O. Chailapakul, S. Motomizu, Determination of lead and cadmium in rice samples by sequential injection/anodic stripping voltammetry using a bismuth film/crown ether/nafion modified screen-printed carbon electrode, Food Control 31 (2013) 14-21.
[64] S. Dal Borgo, V. Jovanovski, B. Pihlar, S.B. Hocevar, Operation of bismuth film electrode in more acidic medium, Electrochim. Acta 155 (2015) 196-200.
[65] F. Li, D. Pan, M. Lin, H. Han, X. Hu, Q. Kang, Electrochemical determination of iron in coastal waters based on ionic liquid-reduced graphene oxide supported gold nanodendrites, Electrochim. Acta 176 (2015) 548-554.
[66] C. Raril, J.G. Manjunatha, Fabrication of novel polymer-modified graphene-based electrochemical sensor for the determination of mercury and lead ions in water and biological samples, J. Anal. Sci. Technol. 11 (2020) 3.
[67] J. Li, S. Guo, Y. Zhai, E. Wang, High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film, Anal. Chim. Acta, 649 (2009) 196-201.
[68] Z.-Q. Zhao, X. Chen, Q. Yang, J.-H. Liu, X.-J. Huang, Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on a polypyrrole/reduced graphene oxide nanocomposite, Chem. Commun. 48 (2012) 2180-2182.
[69] N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul, N. Rodthongkum, An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium, Sens. Actuator B-Chem. 207 (2015) 526-534.
[70] R. Seenivasan, W.-J. Chang, S. Gunasekaran, Highly sensitive detection and removal of lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode, ACS Appl. Mater. Interfaces 7 (2015) 15935-15943.
[71] Z. Guo, D.-D. Li, X.-K. Luo, Y.-H. Li, Q.-N. Zhao, M.-M. Li, Y.-T. Zhao, T.-S. Sun, C. Ma, Simultaneous determination of trace Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/poly-l-lysine nanocomposite modified glassy carbon electrode, J. Colloid Interface Sci. 490 (2017) 11-22.
[72] R. Hu, H. Gou, Z. Mo, X. Wei, Y. Wang, Highly selective detection of trace Cu2+ based on polyethyleneimine-reduced graphene oxide nanocomposite modified glassy carbon electrode, Ionics 21 (2015) 3125-3133.
[73] S. Palanisamy, K. Thangavelu, S.-M. Chen, V. Velusamy, M.-H. Chang, T.-W. Chen, F.M.A. Al-Hemaid, M.A. Ali, S.K. Ramaraj, Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical detection of mercury (II) in water, Sens. Actuator B-Chem. 243 (2017) 888-894.
[74] H. Dai, N. Wang, D. Wang, H. Ma, M. Lin, An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II), Chem. Eng. J. 299 (2016) 150-155.
[75] S. Guruva, R. Avuthu, B.B. Narakathu, A. Eshkeiti, and S. Emamian, Detection of heavy metals using fully printed three electrode electrochemical, Sensors IEEE (2014) 1–4.
[76] A.P. Bhondekar, M. Dhiman, A. Sharma, and A. Bhakta, A novel iTongue for Indian black tea discrimination, Sens. Actuator B-Chem. 148 (2010) 601-609.
[77] B. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms, Biosens. Bioelectron. 94 (2017) 443-455.
[78] Z. Zhang, X. Fu, K. Li, R. Liu, D. Peng, L. He, M. Wang, H. Zhang, L. Zhou, One-step fabrication of electrochemical biosensor based on DNA-modified three-dimensional reduced graphene oxide and chitosan nanocomposite for highly sensitive detection of Hg(II), Sens. Actuator B-Chem. 225 (2016) 453-462.
[79] T. Ramanathan, S. Stankovich, D.A. Dikin, H. Liu, H. Shen, S.T. Nguyen, L.C. Brinson, Graphitic nanofillers in PMMA nanocomposites—An investigation of particle size and dispersion and their influence on nanocomposite properties, J. Polym. Sci., Part B: Polym. Phys. 45 (2007) 2097-2112.
[80] S. Kim, I. Do, L.T. Drzal, Multifunctional xGnP/LLDPE nanocomposites prepared by solution compounding using various screw rotating systems, Macromol. Mater. Eng. 294 (2009) 196-205.
[81] J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites, Adv. Funct. Mater. 19 (2009) 2297-2302.
[82] X. Zhao, Q. Zhang, D. Chen, P. Lu, Enhanced mechanical properties of graphene-based Poly(vinyl alcohol) Composites, Macromolecules, 44 (2011) 2392-2392.
[83] K. Kalaitzidou, H. Fukushima, L.T. Drzal, A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold, Compos. Sci. Technol. 67 (2007) 2045-2051.
[84] Y.F. Zhao, M. Xiao, S.J. Wang, X.C. Ge, Y.Z. Meng, Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites, Compos. Sci. Technol. 67 (2007) 2528-2534.
[85] H. Kim, Y. Miura, C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity, Chem. Mat. 22 (2010) 3441-3450.
[86] H. Li, S. Pang, S. Wu, X. Feng, K. Müllen, C. Bubeck, Layer-by-Layer assembly and UV photoreduction of graphene–polyoxometalate composite films for electronics, J. Am. Chem. Soc. 133 (2011) 9423-9429.
[87] D. Cho, S. Lee, G. Yang, H. Fukushima, L.T. Drzal, Dynamic mechanical and thermal properties of phenylethynyl-terminated polyimide composites reinforced with expanded graphite nanoplatelets, Macromol. Mater. Eng. 290 (2005) 179-187.
[88] H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Zheng, R. Chen, C. Xu, Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization, Chem. Phys. Lett. 484 (2010) 247-253.
[89] S. Muralikrishna, D.H. Nagaraju, R.G. Balakrishna, W. Surareungchai, T. Ramakrishnappa, A.B. Shivanandareddy, Hydrogels of polyaniline with graphene oxide for highly sensitive electrochemical determination of lead ions, Anal. Chim. Acta 990 (2017) 67-77.
[90] Y. Zuo, J. Xu, X. Zhu, X. Duan, L. Lu, Y. Gao, H. Xing, T. Yang, G. Ye, Y. Yu, Poly(3,4-ethylenedioxythiophene) nanorods/graphene oxide nanocomposite as a new electrode material for the selective electrochemical detection of mercury (II), Synth. Met. 220 (2016) 14-19.
[91] N.G. Yasri, A.K. Sundramoorthy, W.-J. Chang, S. Gunasekaran, Highly selective mercury detection at partially oxidized graphene/poly(3,4-Ethylenedioxythiophene):poly(Styrenesulfonate) nanocomposite film-modified electrode, Front. Mater. 1 (2014) 1-10.
[92] Y. Zuo, J. Xu, X. Zhu, X. Duan, L. Lu, Y. Yu, Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review, Microchim. Acta, 186 (2019) 171.
[93] L. Timperman, A. Vigeant, M. Anouti, Eutectic mixture of protic ionic liquids as an electrolyte for activated carbon-based supercapacitors, Electrochim. Acta, 155 (2015) 164-173.
[94] S.J. Yoo, L.-J. Li, C.-C. Zeng, R.D. Little, Polymeric ionic liquid and carbon black composite as a reusable supporting electrolyte: Modification of the electrode surface, Angew. Chem. Int. Edit. 54 (2015) 3744-3747.