Heteroatom-Doped Graphene-Based Electrochemical Sensors for Toxic Chemicals


Heteroatom-Doped Graphene-Based Electrochemical Sensors for Toxic Chemicals

Chinnathambi Suresh, Sankararao Mutyala, Jayaraman Mathiyarasu

Toxic chemicals are the group of compounds which including nitrogenous compounds, phenols, sulfurs, quinolines, and toluene, etc. These compounds were utilized for various applications in daily life, but it is highly hazardous to the human and living organism. The frequent uptake through inhalation leads to acute poisoning of the human body which causes a serious illness like cancer, asthma, etc. Hence, identification and determination of the toxic chemicals are highly essential. There are many methods like chromatography, spectroscopy, electrochemical sensors, fluorescence sensors, and surface-enhanced Raman scattering (SERS) sensors are techniques in vogue to identify the trace concentration of toxic chemicals. Among all, electrochemical sensors are an important analytical technique for the detection of toxic chemicals due to low cost, high portability, and precision. Heteroatom doped graphene materials play an important role in the fabrication of electrochemical sensors. Further, the fabrication sensors using different hetero atom doped graphene materials improve the sensing selectivity, stability, and sensitivity due to its exception physic-chemical properties. Hence, hetero atom doped graphene is served as a finite electrochemical sensors platforms for accurate determination of various toxic chemicals in the environment and food.

Electrochemical Sensors, Heteroatom Doped Graphene, Selectivity, Sensitivity, Toxic Chemicals

Published online 8/30/2020, 30 pages

Citation: Chinnathambi Suresh, Sankararao Mutyala, Jayaraman Mathiyarasu, Heteroatom-Doped Graphene-Based Electrochemical Sensors for Toxic Chemicals, Materials Research Foundations, Vol. 82, pp 61-90, 2020

DOI: https://doi.org/10.21741/9781644900956-3

Part of the book on Graphene-Based Electrochemical Sensors for Toxic Chemicals

[1] P. Levi, The periodic table, New York, Shocken Books, 1984, pp 227
[2] C. Srinivasan, Graphene-: Mother of all graphitic materials, Curr. Sci. 92 (2007) 1338-1339
[3] K. Bobrov, A. J. Mayne, G. Dujardin, Atomic-scale imaging of insulating diamond through resonant electron injection, Nature, 413 (2001) 616-619. https://doi.org/10.1038/35098053
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films Science, 306 (2004) 666-669. https://doi.org/10.1126/science.1102896
[5] D. S. Su, S. Perathoner, G. Centi, Nanocarbons for the Development of Advanced Catalysts Chem. Rev. 113 (2013) 5782-5816. https://doi.org/10.1021/cr300367d
[6] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, M. C. Hersam, Carbon nanomaterials for electronics, optoelectronics, photovoltaics and sensing Chem. Soc. Rev. 42 (2013) 2824-2860. https://doi.org/10.1039/C2CS35335K
[7] T.Wei, F. Hauke, H. Andreas, Covalent Inter-Synthetic-Carbon-Allotrope Hybrids, Acc. Chem. Res. 52 (2019) 2037–2045. https://doi.org/10.1021/acs.accounts.9b00181
[8] Y. B. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene Nature. 438 (2005) 201-204. https://doi.org/10.1038/nature04235
[9] E. Fitzer, K.H. Kochling, H.P. Boehm, H.MarshRecommended terminology for the description of carbon as a solid, Pure Appl. Chem. 67 (1995) 473-506. https://doi.org/10.1351/pac199567030473
[10] S. Stankovich, D. A.Dikin, G.H. B. Dommett, K. M. Kohlhaas, E.J. Zimney, E. A. Stach, R. D. Piner, S.B. T. Nguyen, R.S. Ruoff, Graphene-based composite materials Nature, 442 (2006) 282-286. https://doi.org/10.1038/nature04969
[11] C. Lee, X. Wei, J. W. Kysar J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science. 321 (2008) 385-388. https://doi.org/10.1126/science.1157996
[12] J. Q. Liu, Z. Y. Yin, X. H. Cao, A. Lin, L. Xie, Q. Fan, F. Boey, H. Zhang, W. Huang, Bulk Heterojunction Polymer Memory Devices with Reduced Graphene Oxide as Electrodes ACS Nano, 4 (2010) 3987-3992. https://doi.org/10.1021/nn100877s
[13] J. Q. Liu, Z. Y. Lin, T. J. Liu, Z. Y. Yin, X. Zhou, S. Chen, L. Xie, F. Boey, H. Zhang, W. Huang, Multilayer Stacked Low‐Temperature‐Reduced Graphene Oxide Films: Preparation, Characterization and Application in Polymer Memory Devices, Small. 6 (2010) 1536-1542. https://doi.org/10.1002/smll.201000328
[14] A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett. 8 (2008) 902-907. https://doi.org/10.1021/nl0731872
[15] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Ultrahigh electron mobility in suspended graphene Solid State Commun.146 (2008) 351-355. https://doi.org/10.1016/j.ssc.2008.02.024
[16] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov , H. L. Stormer, U. Zeitler , A.K. Geim, Room- Temperature quantum hall effect in graphene.315 (2007) 1379. https://doi.org/10.1126/science.1137201
[17] A. Lerf, H.He, M. Forster, J. Klinowski,Structure of Graphite Oxide Revisited J Phys Chem. B,102 (1998) 4477-4482. https://doi.org/10.1021/jp9731821
[18] H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide Chem. Phys. Lett, 287 (1998) 53-56. https://doi.org/10.1016/S0009-2614(98)00144-4
[19] P.G. Ren, X. Ji, T.Chen, Z. M Li,Temperature dependence of graphene oxide reduced by hydrazine hydrate, Nanotechn. 22 (2010) 055705. https://doi.org/10.1088/0957-4484/22/5/055705
[20] Y. Deng, Y. Xie, K. Zou and X. Ji, Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors J. Mater. Chem. A, 2016, 4, 1144-1173. https://doi.org/10.1039/C5TA08620E
[21] W. Wang, X. Wang, j. Xing Q. Gong H. Wang j. Wang, Z. Chen, Y. Ai, X.Wang Multi-heteroatom doped graphene-like carbon nanospheres with 3D inverse opal structure: a promising bisphenol-A remediation material. Environ. Sci. Nano, 6 (2019) 809-819. https://doi.org/10.1039/C8EN01196F
[22] A. Ambrosi, C. K. Chua, A. Bonanni, M. PumeraElectrochemistry of Graphene and Related MaterialsChem. Rev. 114 (2014) 7150-7188. https://doi.org/10.1021/cr500023c
[23] X. Wang, G. Sun, P. Routh, D.H. Kim, W. Huang, P. Chen, Heteroatom doped graphene materials: syntheses, properties and applications, Chem. Soc. Rev, 2014, 43, 7067-7098. https://doi.org/10.1039/C4CS00141A
[24] X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, H. J. Dai, Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors, Science, 319 (2008) 1229-1232. https://doi.org/10.1126/science.1150878
[25] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir–Blodgett films, Nat. Nanotechnol. 3 (2008) 538-542. https://doi.org/10.1038/nnano.2008.210
[26] J. H. Lee, D. W. Shin, V. G. Makotchenko, A. S. Nazarov, V. E. Fedorov, Y. H. Kim, J. Y. Choi, J. M. Kim, J. B. Yoo, One‐Step Exfoliation Synthesis of Easily Soluble Graphite and Transparent Conducting Graphene Sheets Adv. Mater. 21 (2009) 4383-4387. https://doi.org/10.1002/adma.200900726
[27] C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi, R. Feng, A.N. Marchenkov, E. H. Conrad, W.A. de Heer, Ultrathin Epitaxial Graphite:  2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics,J. Phys. Chem. B 108 (2004) 19912-19916. https://doi.org/10.1021/jp040650f
[28] K. Novoselov, V.Falko, L. Colombo, P. Gellert, M. Schwab, K. Kim,A roadmap for Graphene Nature, 490 (2012) 192-200. https://doi.org/10.1038/nature11458
[29] T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, J. Shen, Nitrogen and Boron Doped Monolayer Graphene by chemical vapor deposition using polystyrene urea and boric acid. New J. Chem, 36 (2012) 1385-1391. https://doi.org/10.1039/c2nj40068e
[30] S. Agnoli, M. Favaro, Doping graphene with boron: A review of synthesis methods, physicochemical characterization, and emerging applications. J. Mater. Chem. A, 4 (2016) 5002-5025. https://doi.org/10.1039/C5TA10599D
[31] H. Wang, T. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, Z. Liu, Synthesis of boron doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 9 (2013) 1316-1320. https://doi.org/10.1002/smll.201203021
[32] S. Agnoli, M. Favaro, Doping graphene with boron: A review of synthesis methods, physicochemical characterization and emerging applications. J. Mater. Chem. A 4 (2016) 5002-5025. https://doi.org/10.1039/C5TA10599D
[33] L. Wang, Z. Sofer, P. Simek, I. Tomandl, M. Pumera, Boron-doped graphene: scalable and tunable p-type carrier concentration doping J. Phys. Chem. C, 117 (2013) 23251-23257. https://doi.org/10.1021/jp405169j
[34] S.Z. Zhai, H. Shen, J. Chen, X. Li Y. Li. Metal-free synthesis of boron-doped graphene glass by hot-filament CVD for wave energy harvesting ACS Appl. Mater. Interfaces 12 (2020) 2805–2815. https://doi.org/10.1021/acsami.9b17546
[35] D. Cui, H. Li, M. Li, C. Li, L. Qian, B. Zhou, B. Yang, Boron doped graphene directly grown on boron doped diamond for high voltage aqueous supercapacitors ACS Appl. Energy Mater, 2 (2019) 1526-1536. https://doi.org/10.1021/acsaem.8b02120
[36] Q. Wei, X. Tong, G. Zhang, J. Qiao, Q. Gong, S. Sun, Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions, Catalysts, 5 (2015) 1574-1602. https://doi.org/10.3390/catal5031574
[37] K.N. Wood, R. Hayre, S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci, 7 (2014) 1212-1249. https://doi.org/10.1039/C3EE44078H
[38] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett, 9 (2009) 1752-1758. https://doi.org/10.1021/nl803279t
[39] A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen doped graphene films for lithium battery application. ACS Nano, 4 (2010) 6337-6342. https://doi.org/10.1021/nn101926g
[40] Z. Jin, Y. J. Yao, C. Kittrell, J. M. Tour, Large-scale growth and characterizations of Nitrogen doped monolayer graphene sheets, ACS Nano, 5 (2011) 4112-4117. https://doi.org/10.1021/nn200766e
[41] Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, Z. T. Yu, J. Lin, Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 21 (2011) 8038–8044. https://doi.org/10.1039/c1jm10845j
[42] D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.X. Li, Q. Fu, X. Ma, Q. Xue, Toward N- doped graphene via solvothermal synthesis. Chem. Mater. 23 (2011)1188-1193. https://doi.org/10.1021/cm102666r
[43] L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Synthesis, structure, and properties of boron and nitrogen doped graphene. Adv. Mater, 21 (2009) 4726-4730. https://doi.org/10.1002/adma.200901285
[44] D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, High oxygen reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci, 4 (2011) 760-764. https://doi.org/10.1039/c0ee00326c
[45] X. Wang, X.X. Li, L. Zhang, L. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, N-doping of graphene through electrothermal reactions with ammonia. Science 324 (2009)768-771. https://doi.org/10.1126/science.1170335
[46] X. Li, H. Wang, J.T. Robinson, H.S Sanchez, G. Diankov, H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc, 131 (2009) 15939-15944. https://doi.org/10.1021/ja907098f
[47] Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksay, Y. Lin, Nitrogen doped graphene and its electrochemical applications. J. Mater. Chem. 20 (2010) 7491-7496. https://doi.org/10.1039/c0jm00782j
[48] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J. R. Gong, Controllable N-doping of graphene. Nano Lett. 10 (2010)4975-4980. https://doi.org/10.1021/nl103079j
[49] L. F. Lai, J. R. Potts, D. Zhan, L. Wang, C. K. Poh, C. H. Tang, H. Gong, Z. X. Shen, L. Y. Jianyi, R. S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene- based catalysts for oxygen reduction reaction Energy Environ. Sci. 5 (2012) 7936-7942. https://doi.org/10.1039/c2ee21802j
[50] P. A. Denis, Density functional investigation of thioepoxidated and thiolated graphene J. Phys. Chem. C. 113 (2009) 5612-5619. https://doi.org/10.1021/jp808599w
[51] H. Gao, Z. Liu, L. Song, W. Guo, W. Gao, L. Ci, A. Rao, W. Quan, R. Vajtai, P. M. Ajayan, Synthesis of S-doped graphene by liquid precursor, Nanotechnology. 23 (2012) 275605. https://doi.org/10.1088/0957-4484/23/27/275605
[52] J. Yang, D. Voiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla, H. S. Shin, Two- dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as ctalysts for enhanced hydrogen evolution Angew. Chem.Int. Ed. 125 (2013) 13996-13999. https://doi.org/10.1002/ange.201307475
[53] L. Xia, J. Yang, H. Wang, R. Zhang, H. Chen, W. Fang, M. Abdullah F. Xie, G. Cuib, X. Sund, Sulfur doped graphene for efficient electrocatalytic N2-to-NH3 fixation,Chem. Commun. 55 (2019) 3371-3374. https://doi.org/10.1039/C9CC00602H
[54] R. Li, Z. Wei, X. Gou, W. Xu Phosphorus-doped graphene nanosheets as efficient metal- free oxygen reduction electrocatalysts. RSC Adv. 3 (2013) 9978-9984. https://doi.org/10.1039/c3ra41079j
[55] L. Lin, L. Fu, K. Zhang,J. Chen,W. Zhang, S. Tang,Y. Du, N. Tang P-Superdoped Graphene: Synthesis and Magnetic Properties, ACS Appl. Mater. Interfaces 42 (2019), 39062–39067.https://doi.org/10.1021/acsami.9b11505
[56] M. A. Ribas, A. K. Singh, P. B. Sorokin, B. I. Yakobson, Patterning nanoroads and quantum dots on fluorinated graphene Nano Res, 4 (2011) 143-152. https://doi.org/10.1007/s12274-010-0084-7
[57] J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J.W. Baldwin, J. C. Culbertson, P. E. Sheehan E. S. Snow, Properties of fluorinated graphene films Nano Lett, 10 (2010) 3001-3005. https://doi.org/10.1021/nl101437p
[58] J. Zheng, H. T. Liu, B. Wu, C. A. Di, Y. L. Guo, T. Wu, G. Yu, Y. Q. Liu, D. B. Zhu, Production of Graphite Chloride and Bromide Using Microwave Sparks Sci. Rep, 2 (2012) 662. https://doi.org/10.1038/srep00662
[59] D.M.E. Gendy, N.A.A. Ghany, N. K. AllamGreen single-pot synthesis of functionalized Na/N/P co-doped grapheme nanosheets for high-performance supercapacitors, J. Electroanal. Chem. 837 (2019) 30-38. https://doi.org/10.1016/j.jelechem.2019.02.009
[60] J. Zhou, Z. Wang, D. Yang, W. Zhang,Y.Chen, Free-standing S, N co-doped graphene/Ni foam as highly efficient and stable electrocatalyst for oxygen evolution reaction Electrochimica Acta 317 (2019) 408-415. https://doi.org/10.1016/j.electacta.2019.06.015
[61] R. L. McCreery, Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev. 108 (2008) 2646-2687. https://doi.org/10.1021/cr068076m
[62] J. B. Jia, D. Kato, R. Kurita, Y. Sato, K. Maruyama, K. Suzuki, S. Hirono, T. Ando, O. Niwa, Structure and electrochemical properties of carbon films prepared by a electron cyclotron resonance sputtering method. Anal. Chem, 79 (2007) 98-105. https://doi.org/10.1021/ac0610558
[63] O. Niwa, J. Jia, Y. Sato, D. Kato, R. Kurita, K. Maruyama, K. Suzuki, S. Hirono, Electrochemical Performance of Angstrom Level Flat Sputtered Carbon Film Consisting of sp2 and sp3 Mixed Bonds, J. Am. Chem. Soc. 128 (2006) 7144-7145. https://doi.org/10.1021/ja060609l
[64] S. L. Yang, D. Y. Guo, L. Su, P. Yu, D. Li, J. S. Ye, L. Q. Mao, A facile method for preparation of graphene film electrodes with tailor-made dimensions with Vaseline as the insulating binder, Electrochem. Commun.11 (2009) 1912-1915. https://doi.org/10.1016/j.elecom.2009.08.020
[65] R. S. Nicholson, Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics, Anal. Chem. 37 (1965) 1351-1355. https://doi.org/10.1021/ac60230a016
[66] N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, H. Marchetto, Catalyst‐free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes, Adv. Funct. Mater.18 (2008) 3506-3514. https://doi.org/10.1002/adfm.200800951
[67] A. E. Fischer, Y. Show, G. M. Swain, Electrochemical performance of diamond thin-film electrodes from different commercial sources, Anal. Chem. 76 (2004) 2553-2560. https://doi.org/10.1021/ac035214o
[68] B.R. Eggins, Biosensors: an introduction, Wiley-VCH (1996). https://doi.org/10.1007/978-3-663-05664-5
[69] S. V. Dzyadevych, V. N. Arkhypova, A. P. Soldatkin, A. V. Elskaya, C. Martelet, J. Renault. Amperometric enzyme biosensors: Past, present and future, IRBM. 29 (2008)171- 180. https://doi.org/10.1016/j.rbmret.2007.11.007
[70] D. R. Thevenot, K. Toth, R. A. Durst, G. S. Wilson, Electrochemical biosensors: recommended definitions and classification, Anal Lett.34(2001) 635-659. https://doi.org/10.1081/AL-100103209
[71] J. Wang “Analytical Electrochemistry”, 3rd edition, Wiley-VCH, (2006)201. https://doi.org/10.1002/0471790303
[72] N. J. Renault New Trends in Biosensors for Organophosphorus Pesticides, Sensors 2 (2001) 60-74. https://doi.org/10.3390/s10100060
[73] Y. Zhang, X. Bo, A. Nsabimana, C. Luhana, G. Wang, H. Wang, M. Li, L. Guo, Fabrication Of 2D ordered mesoporous carbon nitride and its use as electrochemical sensing platform for H2O2, Nitrobenzene, and NADH Detection. Biosens. Bioelectron. 53 (2014) 250-256. https://doi.org/10.1016/j.bios.2013.10.001
[74] W. Zhu, J. Gao, H. Song, X. Lin, S. Zhang, Nature of the synergistic effect of N and S Co- Doped graphene for the enhanced simultaneous determination of toxic pollutants. ACS Appl. Mater. Interfac. 11 (2019) 44545-44555. https://doi.org/10.1021/acsami.9b13211
[75] M. Trojanowicz, Determination of pesticides using electrochemical enzymatic biosensors. Electroanalysis. 14 (2002) 19-20. https://doi.org/10.1002/1521-4109(200211)14:19/20<1311::AID-ELAN1311>3.0.CO;2-7
[76] D. M. Quinn. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states, Chem. Rev. 87 (1987) 955-979. https://doi.org/10.1021/cr00081a005
[77] R. Su, X. Xu, X. Wang, D. Li, X. Li, H. Zhang, A. Yu, Determination of organophosphorus pesticides in peanut oil by dispersive solid phase extraction gas chromatography-mass spectrometry, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879 (2011) 3423-3428. https://doi.org/10.1016/j.jchromb.2011.09.016
[78] C. Wu, H. Liu, W. Liu, Q. Wu, C. Wang, Z. Wang, Determination of organophosphorus pesticides in environmental water samples by dispersive liquid-liquid microextraction with solidification of floating organic droplet followed by highperformance liquid chromatography, Anal. Bioanal. Chem. 397 (2010) 2543-2549. https://doi.org/10.1007/s00216-010-3790-9
[79] L.Wu, W. Lei, Z. Han, Y. Zhang, M. Xia, Q. Hao, A novel non-enzyme amperometric poly(3-methylthiophene)/nitrogen platform based on electrode doped graphene modified for determination of trace amounts of pesticide phoxim. Sensor Actuat B Chem. 206 (2015) 495–501. https://doi.org/10.1016/j.snb.2014.09.098
[80] X. Xue, Q. Wei, D.Wu, H. Li, Y.Zhang, R. Feng, B. Du. Determination of methyl parathion by a molecularly imprinted sensor based on nitrogen doped graphene sheets. Electrochimica Acta. 116 (2014) 366–371. https://doi.org/10.1016/j.electacta.2013.11.075
[81] Y. Ya, C. Jiang, L. Mo, T. Li, L. Xie, J. He, L Tang, D. Ning, F. Yan, Electrochemical determination of carbendazim in food samples using an electrochemically reduced nitrogen doped graphene oxide modified glassy carbon electrode. Food. anal. meth. 10 (2017) 1479–1487. https://doi.org/10.1007/s12161-016-0708-y
[82] G. Yu, W Zhang, Q. Zhao, W. Wu, X. Wei, Q. Lu. Enhancing the sensitivity of hexachlorobenzene sensor electrochemical based on nitrogen–doped graphene. Sensor Actuat B Chem. 235 (2016) 439-446. https://doi.org/10.1016/j.snb.2016.05.072
[83] Y. Zhang, H. B. Fa, B. He, C. Hou, D. Huo, T. Xia, W. Yin, Electrochemical biomimetic sensor based on oximegroup-functionalized gold nanoparticles and nitrogen- dopedgraphene composites for highly selective and sensitive dimethoatedetermination. J Solid State Electr. 21 (2017) 2117–2128. https://doi.org/10.1007/s10008-017-3560-0
[84] X. Xue,Q.Wei,D. Wu,H. Li,Y. Zhang,R. Feng,B.Du, Determination of methyl parathion by a molecularly imprinted sensor based on nitrogen doped graphene shee, Electrochemical Acta, 116 (2014), 366-371, https://doi.org/10.1016/j.electacta.2013.11.075
[85] T. Vincent, E. Guibal, Chitosan-supported palladium catalyst influence of experimental parameters on nitrophenol degradation, Langmuir 19 (2003) 8475–8483. https://doi.org/10.1021/la034364r
[86] Y. Zhang, L. Wu, W. Lei, X. Xia, M. Xia, Q. Hao. Electrochemical determination of 4- nitrophenolpolycarbazole/N-doped at graphene modified glassy carbon electrode. Electrochimica Acta 146 (2014) 568–576. https://doi.org/10.1016/j.electacta.2014.08.153
[87] X. Jiang, H. Shi, J. Shen, W. Han, X. Sun, J. Ji, L. Wang, Synergistic effect of pyrrolic N and graphitic N for the enhanced nitrophenol reduction of nitrogen doped graphene modified cathode in the bioelectrochemical system, J. Electroanal. Chem.823 (2018) 32-39. https://doi.org/10.1016/j.jelechem.2018.05.036
[88] B.S. Suresh, A. Elavarasan, M. Sathish, High performance supercapacitor using Ndoped graphene prepared via supercritical fluid processing with an oxime nitrogen source, Electrochim. Acta 200 (2016) 37-45. https://doi.org/10.1016/j.electacta.2016.03.150
[89] Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. L. Feng and K. Mullen, Three‐dimensional nitrogen and boron co‐doped graphene for high‐performance all‐solid‐state supercapacitors Adv. Mater., 2012, 24, 5130–5135. https://doi.org/10.1002/adma.201201948