Graphene-Metal Organic Framework Composite Based Electrochemical Sensors for Toxic Chemicals


Graphene-Metal Organic Framework Composite Based Electrochemical Sensors for Toxic Chemicals

P. Arul, N.S.K. Gowthaman, S. Abraham John, Hong Ngee Lim, Sheng-Tung Huang, Govindasamy Mani

Metal organic frameworks (MOFs) are a class of porous materials designed by coordination chemistry between metal ions and secondary organic building units (linkers). They emerged as an extensive class of crystalline materials with higher porosity than other framework materials like zeolites, activated carbon and metal-complex hydrides, respectively. Besides, they have high thermal stability, well-organized structure, low density, large internal surface area, ease in synthesis and broad-spectrum properties which makes them suitable for diverse applications. On the other hand, bulky structure of MOFs having some limitations like poor solubility, lacking electronic conductance and surface to volume ratio is minimal. To fulfill the above shortcoming is to introduce properties of other active materials like carbon nanostructure, metal oxide, metal nanoparticles, graphene carbon nitrite so on. Among the different composite materials especially carbon-based nanocomposite like graphene oxide (GO) and its derivatives have gained much attention because GO exhibiting 2D amphiphilic contains huge hydroxyl, epoxy and carboxylic acid functional groups on its conjugated planes. The co-existence of aromatic sp2 feature and oxygen functionalities allow GO in wide bonding interactions. Due to the solubility, sheet with basal like structure of GO can easily functionalized with other active materials. The obtained composite materials could enhance the optical, electrical, thermal and mechanical properties and can then be utilized for electrocatalytic applications. This chapter deals with the introduction of MOF with different synthetic methods and their characterization. Then these composite materials are utilized for electrochemical determination of toxic components including heavy metals, toxic anions, pesticides, aromatic nitro compounds, phenolic compounds and toxic solvents. The described MOF with graphene-based composites are well-known electrocatalyst for determination of toxic compounds.

Metal-Organic Frameworks, Graphene Oxide, Electrocatalyst, Electrochemical Sensors, Toxic Components, Aromatic Nitro Compounds

Published online 8/30/2020, 33 pages

Citation: P. Arul, N.S.K. Gowthaman, S. Abraham John, Hong Ngee Lim, Sheng-Tung Huang, Govindasamy Mani, Graphene-Metal Organic Framework Composite Based Electrochemical Sensors for Toxic Chemicals, Materials Research Foundations, Vol. 82, pp 276-308, 2020


Part of the book on Graphene-Based Electrochemical Sensors for Toxic Chemicals

[1] S-Y. Ding, W. Wang, Covalent organic frameworks (COFs): from design to applications, Chem. Soc. Rev., 42 (2013) 548-568.
[2] X. Feng, X. Ding, D. Jiang, Covalent organic frameworks, Chem. Soc. Rev., 41 (2012) 6010 – 6022.
[3] Q-L. Zhu, Q. Xu, Metal–organic framework composites, Chem. Soc. Rev., 43 (2014) 5468 – 5512.
[4] P.J. Waller, F. Gasndara, O.M. Yaghi, Chemistry of covalent organic frameworks, Acc. Chem. Res., 48 (2015) 3053 – 3063.
[5] B.R. Pimentel, A.W. Fultz, K.V. Presnell, R.P. Lively, Synthesis of water-sensitive metal–organic frameworks within fiber sorbent modules, Ind. Eng. Chem. Res. 56 (2017) 5070-5077.
[6] S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q.Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H-C. Zhou, Stable metal–organic frameworks: design, synthesis, and applications, Adv. Mater., 30 (2018) 1704303.
[7] M. Alhamami, H. Doan, C-H. Cheng, A review on breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption, Materials, 7 (2014) 3198 – 3250.
[8] Y. Xue, S. Zheng, H. Xue, H. Pang, Metal–organic framework composites and their electrochemical applications, J. Mater. Chem. A, 7 (2019) 7301 – 7327.
[9] R.F. Mendes, F.A. Almeida Paz, Transforming metal–organic frameworks into functional materials, Inorg. Chem. Front., 2 (2015) 495 – 509.
[10] W. Huang, Y. Jiang, X. Li, X. Li, J. Wang, Q. Wu, X. Liu, Solvothermal synthesis of microporous, crystalline covalent organic framework nanofibers and their colorimetric nanohybrid structures, ACS Appl. Mater. Interfaces, 5 (2013) 8845 – 8849.
[11] L.K. Ritchie, A. Trewin, A.R. Galan, T. Hasell, A.I. Cooper, Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes, Microporous and Mesoporous Mat., 132 (2010) 132 – 136.
[12] J. Cravillon, C.A. Schroder, H. Bux, A. Rothkirch, J. Caro, M. Wiebcke, Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy, Cryst Eng Comm, 14 (2012) 492 – 498.
[13] Y. Ban, Y. Li, X. Liu, Y. Peng, W. Yang, Solvothermal synthesis of mixed-ligand metal–organic framework ZIF-78 with controllable size and morphology, Microporous and Mesoporous Mat., , 173 (2013) 29 – 36.
[14] L.K. Ritchie, A. Trewin, A.R. Galan, T. Hasell, A.I. Cooper, Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes, Microporous and Mesoporous Mat., 132 (2010) 132 – 136.
[15] J. Klinowski, F.A. Almeida Paz, P. Silva, J. Rocha, Microwave-assisted synthesis of metal–organic frameworks, Dalton Trans., 40 (2011) 321 – 330.
[16] F. Hillman, J.M. Zimmerman, S-M. Paek, M.R.A. Hamid, W.T. Lim, H-K. Jeong, Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers, J. Mater. Chem. A, 5 (2017) 6090 – 6099.
[17] C. Vaitsis, G. Sourkouni, C. Argirusis, Metal organic frameworks (MOFs) and ultrasound: A review, Ultrason. Sonochem., 52 (2019) 106 – 119.
[18] S-T. Yang, J. Kim, H-Y. Cho, S. Kim, W-S. Ahn, Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method, RSC Adv., 2 (2012) 10179 – 10181.
[19] H-Y. Cho, J. Kim, S-N. Kim, W-S. Ahn, High yield 1-L scale synthesis of ZIF-8 via a sonochemical route, Microporous and Mesoporous Mat., 169 (2013) 180 – 184.
[20] W-J. Li, M. Tu, R. Cao and R.A. Fischer, Metal–organic framework thin films: electrochemical fabrication techniques and corresponding applications & perspectives, J. Mater. Chem. A, 4 (2016) 12356 – 12369.
[21] W-J. Li, J. Lu, S-Y. Gao, Q-H. Li, R. Cao, Electrochemical preparation of metal–organic framework films for fast detection of nitro explosives, J. Mater. Chem. A, 2 (2014) 19473 – 19478.
[22] L. Ji, J. Wang, K. Wu, N. Yang, Tunable electrochemistry of electrosynthesized copper metal–organic frameworks, Adv. Funct. Mater., 28 (2018) 1706961.
[23] S.D. Worrall, H.Mann, A. Rogers, M.A. Bissett, M.P. Attfield, R.A.W. Dryfe, Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes, Electrochim. Acta, 197 (2016) 228 – 240.
[24] C. Lu, T. Ben, S. Xu, S. Qiu, Electrochemical synthesis of a microporous conductive polymer based on a metal–organic framework thin film, Angew. Chem. Int. Ed., 53 (2014) 1.
[25] D. Braga, S.L. Giaffreda, F. Grepioni, A. Pettersen, L. Maini, M. Curzia, M. Polito, Mechanochemical preparation of molecular and supramolecular organometallic materials and coordination networks, Dalton Trans., (2006) 1249 – 1263.
[26] S.L. James, C.J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K.D.M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A.G. Orpen, I.P. Parkin, W.C. Shearouse, J.W. Steed, D.C. Waddell, Mechanochemistry: opportunities for new and cleaner synthesis, Chem. Soc. Rev., 41 (2012) 413 – 447.
[27] M. Klimakow, P. Klobes, A.F. Thünemann, K. Rademann, F. Emmerling, Mechanochemical synthesis of metal−organic frameworks: A fast and facile approach toward quantitative yields and high specific surface areas, Chem. Mater., 22 (2010) 5216 – 5221.
[28] B.V. Harbuzaru, A. Corma, F. Rey, P. Atienzar, J.L. Jord, H. Garc, D. Ananias, L.D. Carlos, J. Rocha, Metal–organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors, Angew. Chem. Int. Ed. 47 (2008) 1080 –1083.
[29] X-W. Liu, T-J. Sun, J-L. Hu, S-D. Wang, Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications, J. Mater. Chem. A, 4 (2016) 3584 – 3616.
[30] S. Li, F. Huo, Metal–organic framework composites: from fundamentals to applications, Nanoscale, 7 (2015) 7482 – 7501.
[31] P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density, J. Mater. Chem. A, 3 (2015) 13874 – 13883.
[32] X. Fang, B. Zong, S. Mao, Metal–organic framework-based sensors for environmental contaminant sensing, Nano-Micro Lett. 10 (2018) 64.
[33] M. Cui, J. Li, D. Lu, Z. Shao, Development of a metal-organic framework for the sensitive determination of 2,4-Dichlorophenol, Int. J. Electrochem. Sci., 13 (2018) 3420 – 3428.
[34] Y. Song, M. Xu, Z. Li, L. He, M. Hu, L. He, Z. Zhang, M. Du, A bimetallic CoNi-based metal−organic framework as efficient platform for label-free impedimetric sensing toward hazardous substances, Sens. Actuators B: Chem., 311 (2020) 127927.
[35] Y. Li, T. Xia, J. Zhang, Y. Cui, B. Li, Y. Yang, G. Qian, A manganese-based metal-organic framework electrochemical sensor for highly sensitive cadmium ions detection, J. Solid State Chem., 275 (2019) 38–42.
[36] M. Sohail, M. Altaf, N. Baig, R. Jamil, M. Sherc and A. Fazald, A new water stable zinc metal organic framework as an electrode material for hydrazine sensing, New. J. Chem., 42 (2018) 12486 – 12491.
[37] X. Wang, Y. Qi, Y. Shen, Y. Yuan, L. Zhang, C. Zhang, Y. Sun, A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework, Sens. Actuators B: Chem., 310 (2020) 127756.
[38] J. Zhang, X. Xu, L. Chen, An ultrasensitive electrochemical bisphenol A sensor based on hierarchical Ce-metal-organic framework modified with cetyltrimethylammonium bromide, Sens. Actuators B: Chem., 261 (2018) 425 – 433.
[39] L. Ji, Q. Cheng, K. Wu, X. Yang, Cu-BTC frameworks-based electrochemical sensing platform for rapid and simple determination of Sunset yellow and Tartrazine, Sens. Actuators B Chem., 231 (2016) 12 -17.
[40] Z. Wang, B. Ma, C. Shen, L-Z. Cheong, Direct, selective and ultra-sensitive electrochemical bio sensing of methyl parathion in vegetables using Burkholderia cepacia lipase @ MOF nanofibers based biosensor, Talanta 197 (2019) 356–362.
[41] M. Roushani, A. Valipour, Z. Saedi, Electroanalytical sensing of Cd2+ based on metal–organic framework modified carbon paste electrode, Sens. Actuators B Chem., 233 (2016) 419–425.
[42] W. Ye, Y. Li, J. Wang, B. Li, Y. Cui, Y. Yang, G. Qian, Electrochemical detection of trace heavy metal ions using a Ln-MOF modified glass carbon electrode, J. Solid State Chem., 281 (2020) 121032.
[43] Z. Zeng, X. Fang, W. Miao, Y. Liu, T. Maiyalagan, S. Mao, Electrochemically sensing of trichloroacetic acid with Iron(II) phthalocyanine and Zn-based metal organic framework nanocomposites, ACS Sens. 4 (2019) 1934 – 1941.
[44] Z. Zhang, H. Ji, Y. Song, S. Zhang, M. Wang, C. Jia, J-Y. Tian, L. He, X. Zhang, C-S. Liu, Fe(III)-based metal–organic framework-derived core–shell nanostructure: sensitive electrochemical platform for high trace determination of heavy metal ions, Biosens. Bioelectron., 94 (2017) 358 – 364.
[45] H. Guo, Z. Zheng, Y. Zhang, H. Lin, Q. Xu, Highly selective detection of Pb2+ by a nanoscale Ni-based metal-organic framework fabricated through one-pot hydrothermal reaction, Sens. Actuators B: Chem., 248 (2017) 430 – 436.
[46] C-W. Kung, T-H. Chang, L-Y. Chou, J. T. Hupp, O.K. Farha, K-C. Ho, Porphyrin-based metal-organic framework thin films for electrochemical nitrite detection, Electrochem Commun., 58 (2015) 51 – 56.
[47] M.U.A. Prathap, S. Gunasekaran, Rapid and scalable synthesis of zeolitic imidazole framework (ZIF-8) and its use for the detection of trace levels of nitroaromatic explosives, Adv. Sustainable Syst., 2 (2018) 1800053.
[48] C-H. Su, C-W. Kung, T-H. Chang, H-C. Lu, K-C. Ho, Y-C. Liao, Inkjet-printed porphyrinic metal-organic framework thin films for electrocatalysis, J. Mater. Chem. A, 4 (2016) 11094 – 11102.
[49] C. Bao, Q. Niu, Z-A. Chen, X. Cao, H. Wang, W. Lu, Ultrathin nickel-metal–organic framework nanobelt based electrochemical sensor for the determination of urea in human body fluids, RSC Adv., 9 (2019) 29474 – 29481.
[50] P. Arul, S.A. John, Size controlled synthesis of Ni-MOF using polyvinylpyrrolidone: New electrode material for the trace level determination of nitrobenzene, J. Electroanal. Chem., 829 (2018) 168 – 176.
[51] C. Li, Y. Zhou, X. Zhu, B. Ye, M. Xu, Construction of a sensitive bisphenol A electrochemical sensor based on metal-organic framework/graphene composites, Int. J. Electrochem. Sci., 13 (2018) 4855 – 4867.
[52] M. Saraf, R. Rajak, S.M. Mobin, A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors, J. Mater. Chem. A, 4 (2016) 16432 – 16445.
[53] N. Karimian, H. Fakhri, S. Amidi, A. Hajian, F. Arduinie, H. Bagheri, A novel sensing layer based on metal–organic framework UiO-66 modified with TiO2–graphene oxide: application to rapid, sensitive and simultaneous determination of paraoxon and chlorpyrifos, New J. Chem., 43 (2019) 2600 – 2609.
[54] S.K. Bhardwaj, G.C. Mohanta, A.L. Sharma, K-H. Kim, A. Deep, A three-phase copper MOF-graphene-polyaniline composite for effective sensing of ammonia, Analytica Chimica Acta., 1043 (2018) 89 – 97.
[55] M. Lu, Y. Deng, Y. Luo, J. Lv, T. Li, J. Xu, S-W. Chen, J. Wang, Graphene aerogel−metal−organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions, Anal. Chem., 91 (2019) 888−895.
[56] X. Li, C. Li, C. Wu, K. Wu, Strategy for highly sensitive electrochemical sensing: In situ coupling of a metal−organic framework with ball-mill-exfoliated graphene, Anal. Chem. 91 (2019) 6043 − 6050.
[57] J. Li, J. Xia, F. Zhang, Z. Wang, Q. Liu, An electrochemical sensor based on copper-based metal-organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water, Talanta, 181 (2018) 80-86.
[58] M. Baghayeri, M.G. Motlagh, R. Tayebee, M. Fayazi, F. Narenji, Application of graphene/zinc-based metal-organic framework nanocomposite for electrochemical sensing of As(III) in water resources, Anal Chim Acta 1099 (2020) 60 – 67.
[59] M. Peng, G. Guan, H. Deng, B. Han, C. Tian, J. Zhuang, Y. Xu, W. Liu, Z. Lin, PCN-224/rGO nanocomposite based photoelectrochemical sensor with intrinsic recognition ability for efficient p-arsanilic acid detection, Environ. Sci.: Nano, 6 (2019) 207.
[60] T. Gan, J. Li, H. Li, Y. Liu, Z. Xu, Synthesis of Au nanorod-embedded and graphene oxide-wrapped microporous ZIF-8 with high electrocatalytic activity for the sensing of pesticides, Nanoscale, 11 (2019) 7839 – 7849.
[61] D. Ding, Q. Xue, W. Lu, Y. Xiong, J. Zhang, X. Pan, B. Tao, Chemically functionalized 3D reticular graphene oxide frameworks decorated with MOF-derived Co3O4: Towards highly sensitive and selective detection to acetone, Sens. Actuators B: Chem., 259 (2018) 289 – 298.
[62] N.A. Travlou, K. Singh, E.R. Castellon, T.J. Bandosz, Cu–BTC MOF–graphene-based hybrid materials as low concentration ammonia sensors, J. Mater. Chem. A, 3 (2015) 11417 – 11429.
[63] Q. Chen, X. Li, X. Min, D. Cheng, J. Zhou, Y. Li, Z. Xie, P. Liu, W. Cai, C. Zhang, Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode, J. Electroanal Chem., 789 (2017) 114 – 122.
[64] H. Wang, Q. Hu, Y. Meng, Z. Jin, Z. Fang, Q. Fu, W. Gao, L. Xu, Y. Song, F. Lu, Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode, J. Hazardous Mater., 353 (2018) 151–157.
[65] Y. Wang, W. Cao, L. Wang, Q. Zhuang, Y. Ni, Electrochemical determination of 2,4,6-trinitrophenol using a hybrid film composed of a copper-based metal organic framework and electroreduced graphene oxide, Microchim Acta 185 (2018) 315.
[66] S. Rani, S. Kapoor, B. Sharma, S. Kumar, R. Malhotra, N. Dilbaghi, Fabrication of Zn-MOF@rGO based sensitive nanosensor for the real time monitoring of hydrazine, J. Alloys and Compounds 816 (2020) 152509.
[67] T.T. Tung, M.T. Tran, J-F. Feller, M. Castro, T.V. Ngo, K. Hassan, M.J. Nine, D. Losic, Graphene and metal organic frameworks (MOFs) hybridization for tunable chemoresistive sensors for detection of volatile organic compounds (VOCs) biomarkers, Carbon, 159 (2020) 333 – 344.
[68] J. Gu, X. Yin, X. Bo, L. Guo, High performance electrocatalyst based on MIL-101 (Cr)/reduced graphene oxide composite: facile synthesis and electrochemical detections, ChemElectroChem., 5 ( 2018) 1 – 10.
[69] Z. Yu, N. Li, X. Hu, Y. Dong, Y. Lin, H. Cai, Z. Xie, D. Qu, X. Li, Highly efficient electrochemical detection of lead ion using metal-organic framework and graphene as platform based on DNAzyme, Synthetic Metals 254 (2019) 164 – 171.
[70] X. Tu, Y. Xie, X. Ma, F. Gao, L. Gong, D. Wang, L. Lu, G. Liu, Y. Yu, X. Huang, Highly stable reduced graphene oxide-encapsulated Ce-MOF composite as sensing material for electrochemically detecting dichlorophen, J. Electroanal. Chem, 848 (2019) 113268.
[71] C-W. Kung, Y-S. Li, M-H. Lee, S-Y. Wang, W-H. Chiang, K-C. Ho, In situ growth of porphyrinic metal–organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite, J. Mater. Chem. A, 4 (2016) 10673 – 10682.
[72] Y. Xie, X. Tu, X. Ma, M. Xiao, G. Liu, F. Qu, R. Dai, L. Lu, W. Wang, In-situ synthesis of hierarchically porous polypyrrole@ZIF-8/graphene aerogels for enhanced electrochemical sensing of 2, 2-methylenebis (4-chlorophenol), Electrochim. Acta 311 (2019) 114 – 122.
[73] Y. Zhang, P. Yan, Q. Wan, N. Yang, Integration of chromium terephthalate metal-organic frameworks with reduced graphene oxide for voltammetry of 4-nonylphenol, Carbon, 134 (2018) 540-547.
[74] Y. Yang, Q. Wang, W. Qiu, H. Guo, F. Gao, Covalent Immobilization of Cu3(btc)2 at chitosan−electroreduced graphene oxide hybrid film and its application for simultaneous detection of dihydroxybenzene isomers, J. Phys. Chem. C 120 (2016) 9794 − 9803.
[75] Y. Yan, X. Bo, L. Guo, MOF-818 metal-organic framework-reduced graphene oxide/multiwalled carbon nanotubes composite for electrochemical sensitive detection of phenolic acids, Talanta, 218 (2020) 121123.
[76] L.J. Ling, J.P. Xu, Y.H. Deng, Q. Peng, J.H. Chen, Y.S. He, Y.J. Nie, One-pot hydrothermal synthesis of amine functionalized metal–organic framework/ reduced graphene oxide composites for the electrochemical detection of bisphenol A, Anal. Methods, 10 (2018) 2722 – 2730.
[77] J. Gao, P. He, T. Yang, X. Wang, L. Zhou, Q. He, L. Jia, H. Heng, H. Zhang, B. Jia, X. He, Short rod-like Ni-MOF anchored on graphene oxide nanosheets: A promising voltammetric platform for highly sensitive determination of p-chloronitrobenzene, J. Electroanal Chem, 861 (2020) 113954.
[78] T. Gan, J. Li, H. Li, Y. Liu, Z. Xu, Synthesis of Au nanorod-embedded and graphene oxide-wrapped microporous ZIF-8 with high electrocatalytic activity for the sensing of pesticides, Nanoscale, 11 (2019) 7839 – 7849.
[79] E. Topcu, Three-dimensional, free-standing, and flexible cobalt-based metal-organic frameworks/graphene composite paper: A novel electrochemical sensor for determination of resorcinol, Mater Research Bulletin 121 (2020) 110629.
[80] P. Arul, N.S.K. Gowthaman, S.A. John, M. Tominaga, Tunable electrochemical synthesis of 3D nucleated microparticles like Cu-BTC MOF-carbon nanotubes composite: Enzyme free ultrasensitive determination of glucose in a complex biological fluid, Electrochim. Acta 254 (2020) 136673.
[81] P. Arul, N.S.K. Gowthaman, S.A. John, H.N. Lim, Ultrasonic assisted synthesis of size-controlled Cu-metal–organic framework decorated graphene oxide composite: sustainable electrocatalyst for the trace-level determination of nitrite in environmental water samples, ACS Omega 5 (2020) 14242–14253.
[82] P. Arul, S.A. John, Organic solvent free in situ growth of flower like Co-ZIF microstructures on nickel foam for glucose sensing and supercapacitor applications, Electrochim. Acta 306 (2019) 254-263.