Magnetic Nanomaterial, Ion Batteries, Lithium, Energy Storage

$30.00

Magnetic Nanomaterials for Lithium-ion Batteries

Mine Kurtay, Haydar Göksu, Husnu Gerengi, Hakan Burhan, Mohd Imran Ahamed, Fatih Şen

Nowadays, the rapid rise in technological developments has caused new devices in many fields, from health to communication. Not only it is limited to these areas, but also the speed of technology in individual uses has made it very easy to access many portable devices. The fact that mobile devices can offer advanced functional services to their users continuously is because they have a safe, long-lasting, high energy density, rechargeability, and environmentally friendly energy source. The main applications of lithium-ion batteries (LIB) are laptops, mobile phones, small household apparatus, and each of us prefers these electronic devices due to their non-toxicity and energy density. Rechargeable batteries are widely used in energy storage systems with the invention of lead-acid batteries. Thanks to high energy/power density, long cycle life, low power loss, and loop stability, LIBs are widely used as portable batteries in electronic devices and electric vehicles. The LIBs are intended to be used not only in the electronic field but also in commercial vehicles, smart grids, and large-scale energy storage. However, the properties of LIBs need to be improved. Different and various materials have been used to improve LIB. Among the materials used, nanomaterials are found in carbon-based structures. The small size of the nanomaterials provides high surface area efficiency and provides electrode and electrolyte contact. In addition, it extends the energy, power, and service life of LIBs. In this chapter, the studies and researches carried out have been organized in order to strengthen the LIBs based on nanomaterials for longer lasting effects.

Keywords
Magnetic Nanomaterial, Ion Batteries, Lithium, Energy Storage

Published online 7/25/2020, 25 pages

Citation: Mine Kurtay, Haydar Göksu, Husnu Gerengi, Hakan Burhan, Mohd Imran Ahamed, Fatih Şen, Magnetic Nanomaterials for Lithium-ion Batteries, Materials Research Foundations, Vol. 80, pp 123-147, 2020

DOI: https://doi.org/10.21741/9781644900918-5

Part of the book on Lithium-ion Batteries

References
[1] M.,Yoshio, R.J. Brodd, A. Kozawa, Lithium-Ion Batteries:Science and Technologies, Springer Science and Business Media, Newyork, USA, (2009) 1-7. https://doi.org/10.1007/978-0-387-34445-4
[2] N. Bahaloo-Horeh, S. Mohammad Mousavi, M. Baniasadi, Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries, Journal of Cleaner Production, 197 (2018) 1546-1557. https://doi.org/10.1016/j.jclepro.2018.06.299
[3] G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives, Renewable and Sustainable Energy Reviews, 89 (2018) 292-308. https://doi.org/10.1016/j.rser.2018.03.002
[4] S.A. Hackney, R.V. Kumar, High Energy Density Lithium Batteries, Wiley-VCH Verlag GmbH, Weinheim, (2010) 70-73.
[5] H.C. Çoban, Metal oxide (SnO2) Modified LiNi0.8Co0.2O2 cathode materıal for lıthıum ıon batterıes, ıstanbul technıcal unıversıty, Department of Nano Science and Nano Engineering Nano Science and Nano Engineering Programme, M.Sc. Thesis, May 2014.
[6] A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, Nanoscale Research Letters, 7(144) (2012) 1-13. https://doi.org/10.1186/1556-276X-7-144
[7] I. Bychko, E.Y. Kalishin, P. Strizhak, Effect of the size of Fe@ Fe3O4 nanoparticles deposited on carbon nanotubes on their oxidation-reduction characteristic, Theoretical and Experimental Chemistry, 47(4) (2011) 219-224. https://doi.org/10.1007/s11237-011-9207-9
[8] T. Baykara, Nanoteknoloji ve Nano-Yapılı Malzemeler, Nanoteknoloji ve Nanomalzeme Süreçleri, Tübitak Mam, Gebze, 2 (2010) 17-46.
[9] K. Khan, S. Rehman, H.U. Rahman, Q. Khan, Synthesis and application of magnetic nanoparticles, Nanomagnetism, (2014) 135-159.
[10] S. Singamaneni, V.N. Bliznyuk, C. Binek, Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. Journal of Materials Chemistry, 21(42) (2011) 16819-16845. https://doi.org/10.1039/c1jm11845e
[11] A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bönnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schüth, Nanoengineering of a Magnetically Separable Hydrogenation Catalyst, Angewandte Chemie International Edition, 43 (33) (2004) 4303-4306. https://doi.org/10.1002/anie.200454222
[12] A. Aseri, S.K. Garg, A. Nayak, S.K. Trivedi, J. Ahsan, Magnetic Nanoparticles: Magnetic Nano-technology Using Biomedical Applications and Future Prospects, Int. J. Pharm. Sci. Rev. Res., 31(2) (2015) 119-131.
[13] A. K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26(18) (2005) 3995-4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
[14] B. Ramaswamy, S.D. Kulkarni, P.S. Villar, R.S. Smith, C. Eberly, R.C. Araneda, D.A. Depireux, B. Shapiro, Movement of magnetic nanoparticles in brain tissue: mechanisms and safety, Nanomedicine: Nanotechnology, Biology and Medicine, 11(7) (2015) 1821-9. https://doi.org/10.1016/j.nano.2015.06.003
[15] T. An, J. Chen, X. Nie, G. Li, H. Zhang, X. Liu, H. Zhao, Synthesis of Carbon Nanotube-Anatase TiO2 Sub-micrometer-sized Sphere Composite Photocatalyst for Synergistic Degradation of Gaseous Styrene. ACS applied materials & interfaces, 4(11) (2012) 5988-5996. https://doi.org/10.1021/am3016476
[16] H. Teymourian, A. Salimi, S. Khezrian, Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform, Biosensors and Bioelectronics, 49 (2013) 1-8. https://doi.org/10.1016/j.bios.2013.04.034
[17] B. Zhang, Y. Du, P. Zhang, H. Zhao, L. Kang, X. Han, P. Xu, Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. Journal of Applied Polymer Science, 130 (3) (2013) 1909-1916. https://doi.org/10.1002/app.39332
[18] V. Philip, V. Mahendran, L.J. Felicia, A Simple, In-Expensive and Ultrasensitive Magnetic Nanofluid Based Sensor for Detection of Cations, Ethanol and Ammonia. J. Nanofluids, 2(2) (2013) 112-119. https://doi.org/10.1166/jon.2013.1050
[19] S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Magnetic nanoparticle design for medical applications, Progress in Solid State Chemistry. 34 (2-4) (2006) 237-247. https://doi.org/10.1016/j.progsolidstchem.2005.11.010
[20] B. Gleich, J. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles, Nature, 435 (7046) (2005) 1214-1217. https://doi.org/10.1038/nature03808
[21] N.A. Frey, S. Peng, K. Chenga, S. Sun, Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage, Chemical Society Reviews, 38(9) (2009) 2532-2542. https://doi.org/10.1039/b815548h
[22] Hyeon, Taeghwan Chemical synthesis of magnetic nanoparticles, Chemical Communications, (8) (2003) 927-934. https://doi.org/10.1039/b207789b
[23] J. Philip, P.D. Shima, B. Raj, Nanofluid with tunable thermal properties, Applied Physics Letters, 92 (4) (2006) 043108. https://doi.org/10.1063/1.2838304
[24] V. Chaudhary, Z. Wang, A. Ray, I. Sridhar, R.V. Ramanujan, Self pumping magnetic cooling, J. Phys D: Appl. Phys. 50(3) (2017) 03LT03. https://doi.org/10.1088/1361-6463/aa4f92
[25] J. Philip, T.J. Kumar, P. Kalyanasundaram, B. Raj, Tunable Optical Filter, Measurement Science and Technology, 14(8) (2003) 1289-1294. https://doi.org/10.1088/0957-0233/14/8/314
[26] V. Mahendran, Nanofluid based opticalsensor for rapid visual inspection of defects in ferromagnetic materials, Appl. Phys. Lett. 100(7) 073104 (2012). https://doi.org/10.1063/1.3684969
[27] V. Chaudhary, R.V. Ramanujan, Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling, Scientific Reports, 6 (2016) 351-356 https://doi.org/10.1038/srep35156
[28] V. Chaudhary, X. Chen, R.V. Ramanujan, Iron and manganese based magnetocaloric materials for near room temperature thermal management, Progress in Materials Science, 100 (2019) 64-98. https://doi.org/10.1016/j.pmatsci.2018.09.005
[29] D.W. Elliott, W. Zhang, Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment”. Environmental Science and Technology, 35(24) (2001): 4922-4926. https://doi.org/10.1021/es0108584
[30] T. Yoon, J. Kim, J. Kim, J.K. Lee, Electrostatic Self-Assembly of Fe3O4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes. Energies, 6(9) (2013) 4830-4840. https://doi.org/10.3390/en6094830
[31] G. Zhou, D.W. Wang, F. Li, L. Zhang, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chemistry of materials, 22(18) (2010) 5306-5313. https://doi.org/10.1021/cm101532x
[32] H.L. Xu, Y. Shen, H. Bi, Reduced Graphene Oxide Decorated with Fe3O4 Nanoparticles as High Performance Anode for Lithium Ion Batteries. Key Engineering Materials, 519 (2012) 108-112. https://doi.org/10.4028/www.scientific.net/KEM.519.108
[33] https://tr.wikipedia-on-ipfs.org/wiki/Li_ion.html
[34] J. Lopez, M. Godlez, JC. Viera, C. Blanco, Fast-Charge İn Lithium-Ion Batteries For Portable Applications, Telecommunications Energy Conference, Sept. 19-23, (2004) 19-24.
[35] https://www.elektrikport.com/universite/samsung-cinde-lityum-iyon-pil-fabrikasi-acti/16817#ad-image-0
[36] D. Linden, T.B. Reddy, Handbook of batteries, 3rd ed. McGraw-Hill, New York, (2001).
[37] Battery University since 2003, Charging Li-ion, http://batteryuniversity.com/learn/article/charging_lithium_ion_batteries, 21.04.2019.
[38] M. Uysal, H. Gül, Characterization and Electrochemical Properties of the Sn-Cu/Rgo (Reduced Graphene Oxide) Anode Materials for Lithium Ion Batteries, APJES, 5-3 (2017) 19-25.
[39] M. Alaf, D. Gültekin, H. Akbulut, Double phase tinoxide/tin/MWCNT nanocomposite negative electrodes for lithium microbatteries, Microelectronic Engineering, 126 (2014) 143-147. https://doi.org/10.1016/j.mee.2014.06.029
[40] S. Goriparti, E. Miele, F.D. Angelis, E.D. Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, Journal of Power Sources, 257 (2014) 421-443. https://doi.org/10.1016/j.jpowsour.2013.11.103
[41] B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, Journal of Power Sources, 195 (2010) 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
[42] O. Mao, R.L. Turnerb, I.A. Courtneya, B.D. Fredericksen, M.I. Buckett, L.J. Krause, J.R. Dahn, Active/ınactive nanocomposites as anodes for Li‐Ion batteries, Journal of Electrochem. Society, 2 (1999) 3-5. https://doi.org/10.1149/1.1390715
[43] L. Xian-Ming, H. Zhen Dong, W.O. Sei, Z. Biao, M. Peng-C, M.F.Y. Matthew, K. Jang-K, Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review, Composites Science and Technology, 72 (2012) 121-144. https://doi.org/10.1016/j.compscitech.2011.11.019
[44] Z. Junsheng, W. Dianlong, L. Tiefeng, G. Chenfeng, Preparation of Sn-Co-graphene composites with superior lithium storage capability, Electrochimica Acta, 125 (2014) 347-353. https://doi.org/10.1016/j.electacta.2014.01.122
[45] R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials, Journal of Materials. Chemistry, 21 (2011) 9938-9954. https://doi.org/10.1039/c0jm04225k
[46] M.O. Güler, The Production and characterization of tin (II) oxide composite anode electrodes for lithium ion batteries, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2) (2017) 150-156. https://doi.org/10.16984/saufenbilder.296995
[47] R. Zhang, J.Y. Lee, Z.L. Liu, Pechini process-derived tin oxide and tin oxideegraphite composites for lithium-ion batteries, J. Power Sources, 112 (2012) 596-605. https://doi.org/10.1016/S0378-7753(02)00483-4
[48] G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries, Advanced Materials 19(17) (2007) 2336-2340. https://doi.org/10.1002/adma.200700748
[49] S. Sharma, L. Fransson, E. Sjostedt, L. Nordstrom, B. Johansson, K. Edstrom, A theoretical and experimental study of the lithiation of N-Cu6Sn5 in a lithium-ion battery, J Electrochem Soc., 150 (2003) 330-334. https://doi.org/10.1149/1.1544634
[50] X.W. Lou, C.M. Li, L.A. Archer, Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage, Advanced Materials, 21 (2009) 2536-2539. https://doi.org/10.1002/adma.200803439
[51] X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M. Banis, Y. Li, R. Li, X. Sun, M. Cai, M. Verbrugge, Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage, Advanced Functional Materials, 22(8) (2012) 1647-1654. https://doi.org/10.1002/adfm.201101068
[52] M. Valvo, U. Lafont, L. Sımonın, E.M. Kelder, Sn-Co compound for Li-ion battery made via advanced electrospraying, Journal of Power Sources, 174 (2007) 428-434. https://doi.org/10.1016/j.jpowsour.2007.06.156
[53] Z. Chen, J. Qıan, X. Aı, Y. Cao, H. Yan, Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries, Journal of Power Sources, 189 (2009) 730-732. https://doi.org/10.1016/j.jpowsour.2008.08.027
[54] X. Li, Y. Zhong, M. Cai, M.P. Balogh, D. Wang, Y. Zhang, R. Li, X. Sun, Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries, Electrochimica Acta, 89 (2013) 387-393. https://doi.org/10.1016/j.electacta.2012.11.097
[55] X.M. Liu, Z. Huang, S. Oh, B. Zhang, P.C. Ma, M. M.F. Yuen, J.K. Kim, Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review, Composites Science and Technology, 72 (2012) 121-144. https://doi.org/10.1016/j.compscitech.2011.11.019
[56] B. Xu, D. Qian, Z. Wang, Y.S. Meng, Recent progress in cathode materials research for advanced lithium ion batteries Materials Science and Engineering: R: Reports, 73(5-6) (2012) 51-65. https://doi.org/10.1016/j.mser.2012.05.003
[57] A.H. Whitehead, J.M. Elliott, J.R. Owen, Nanostructured tin for use as a negative electrode material in Li-ion. J. Power Sources, 81-82 (1999) 33-38. https://doi.org/10.1016/S0378-7753(99)00126-3
[58] Y.H. Jin, K.M. Min, H.W. Shim, S.D. Seo, I.S. Hwang, K.S. Park, D.W. Kim, Facile synthesis of nano-Li4 Ti5O12 for high-rate Li-ion battery anodes, Nanoscale Research Letters, 7(10) (2012) 1-6. https://doi.org/10.1186/1556-276X-7-10
[59] C. Dewan, D. Teeters, Vanadia xerogel nanocathodes used in lithium microbatteries. J. Power Sources, 119-121 (2003) 310-315. https://doi.org/10.1016/S0378-7753(03)00165-4
[60] H. Yan, S. Sokolov, J.C. Lytle, A. Stein, F. Zhang, W.H. Smyrl, Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for Lithium secondary batteries, J. Electrochem. Soc. 150(8) (2003) 1102-1107. https://doi.org/10.1149/1.1590324
[61] P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.-M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nature Materials, 5 (2006) 567-573. https://doi.org/10.1038/nmat1672
[62] A. Manthiram, A.V. Murugan, A. Sarkar, T. Muraliganth, Nanostructured electrode materials for electrochemical energy storage and conversion, Energy Environ. Sci., 1(6) (2008) 621-638. https://doi.org/10.1039/b811802g
[63] R.A. Huggins, W.D. Nix, Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems, Ionics, 6 (2000) 57-63. https://doi.org/10.1007/BF02375547
[64] Y. Zhang, Y. Liu, M. Liu, Nanostructured Columnar Tin Oxide Thin Film Electrode for Lithium Ion Batteries, Chem. Mater., 18 (2006) 4643-4646. https://doi.org/10.1021/cm0519378
[65] Y.H. Chen, C.W. Wang, G. Liu, X.Y. Song, V.S. Battaglia, A.M. Sastry, Selection of Conductive Additives in Li-Ion Battery Cathodes, J. Electrochem. Soc., 154(10) (2007) 978-986. https://doi.org/10.1149/1.2767839
[66] R. Teki, M.K. Datta, R. Krishnan, T.C. Parker, T.M. Lu, P.N. Kumta, N. Koratkar, Nanostructured silicon anodes for lithium ion rechargeable batteries, Small, 5(20) (2009) 2236-2242. https://doi.org/10.1002/smll.200900382
[67] Y. Zhao, G. Liu, L. Liu, Z.J. Jiang, High-performance thin-film Li4Ti5O12 electrodes fabricated by using ink-jet printing technique and their electrochemical properties, Solid State Electrochem., 13 (2009) 705-711. https://doi.org/10.1007/s10008-008-0575-6
[68] G. Venugopal, A. Hunt, F. Alamgir, Nanomaterials for Energy Storage in Lithium-ion Battery Applications, Material Matters, (2015) 42-45.
[69] J.B. Goodenough, Energy storage materials: A perspective, Energy Storage Materials, 1 (2015) 158-161. https://doi.org/10.1016/j.ensm.2015.07.001
[70] J. Lang, L. Qi, Y. Luo, H. Wu, High performance lithium metal anode: Progress and prospects, Energy Storage Materials, 7 (2017) 115-129. https://doi.org/10.1016/j.ensm.2017.01.006
[71] J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective, Journal of the American Chemical Society, 135(4) (2013) 1167-1176. https://doi.org/10.1021/ja3091438
[72] J.B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chemistry of Materials, 22(3) (2010) 587-603. https://doi.org/10.1021/cm901452z
[73] G.G. Wallace, J. Chen, A.J. Mozer, M. Forsyth, D.R. MacFarlane, C. Wang, Nanoelectrodes: energy conversion and storage. Mater Today, 12 (2009) 20-27. https://doi.org/10.1016/S1369-7021(09)70177-4
[74] H. Li, Z. Wang, L. Chen, X. Huang, Research on advanced materials for Li-ion batteries, Adv. Mater. 21 (2009) 4593-4607. https://doi.org/10.1002/adma.200901710
[75] M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104 (2004) 4271-4301. https://doi.org/10.1021/cr020731c
[76] C. Jiang, E. Hosono, H. Zhou, Nanomaterials for lithium ion batteries, Nano Today 1 (2006) 28-33. https://doi.org/10.1016/S1748-0132(06)70114-1
[77] M.S. Whittingham, Materials challenges facing electrical energy storage. MRS Bull, 33 (2008) 411-419. https://doi.org/10.1557/mrs2008.82
[78] E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Beguin, Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon, 37 (1999) 61-69. https://doi.org/10.1016/S0008-6223(98)00187-0
[79] J. Chen, A.I. Minett, Y. Liu, C. Lynam, P. Sherrell, C. Wang, Direct growth of flexible carbon nanotube electrodes. Adv Mater, 20(3) (2008) 566-570. https://doi.org/10.1002/adma.200701146
[80] A. Claye, J. Fischer, C. Huffman, A. Rinzler, R.E. Smalley, Solid-state electrochemistry of the Li single wall carbon nanotube system. J Electrochem Soc 147 (2000) 2845-2852. https://doi.org/10.1149/1.1393615
[81] P. Liu, G.L. Hornyak, A.C. Dillon, T. Gennett, M.J. Heben, J.A. Turner, Electrochemical performance of carbon nanotube materials in lithium ion batteries. J Electrochem Soc: Proc Int Symp (1999) 31-39.
[82] H.M. Hsoeh, N.H. Tai, C.Y. Lee, J.M. Chen, F.T. Wang, Electrochemical properties of the multi-walled carbon nanotube electrode for secondary lithium-ion battery. Rev Adv Mater Sci, 5 (2003) 67-71.
[83] J. Ren, Z. Wang, F. Yang, R.P. Ren, Y.K. Lv, Freestanding 3D Single-wall Carbon Nanotubes/WS2 Nanosheets Foams as Ultra-Long-Life Anodes for Rechargeable Lithium Ion Batteries, Electrochimica Acta, 267 (2018) 133-140. https://doi.org/10.1016/j.electacta.2018.01.167
[84] F. Kayış, Production of Sn-Co / CNT Composite Anodes by Pulse Current Method for Lithium Ion Batteries, Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 3(2) (2016) 25-29.
[85] X. Huang, H. Li, Nanometer Anode Materials for Li-Ion Batteries, Nanomaterials for Lithium-Ion Batteries: Fundamentals and Applications, (2014) 167-197. https://doi.org/10.1201/b15488-6
[86] M.D. Bhatt, J.Y. Lee, High capacity conversion anodes in Li-ion batteries: A review, International Journal of Hydrogen Energy, 44(21) (2019) 10852-10905. https://doi.org/10.1016/j.ijhydene.2019.02.015
[87] P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao, W. Sun, S.X. Dou, Recent progress on silicon-based anode materials for practical lithium-ion battery applications, Energy Storage Materials, 15 (2018) 422-446. https://doi.org/10.1016/j.ensm.2018.07.014
[88] W. Li, X. Li, J. Yu, J. Liao, B. Zhao, L. Huang, A. Abdelhafiz, H. Zhang, J.H. Wang, Z. Guo, M. Liu, A self-healing layered GeP anode for high-performance Li-ion batteries enabled by low formation energy, Nano Energy, (2019) In Press, Accepted Manuscript, DOI: 10.1016/j.nanoen.2019.04.080.
[89] H. Liu, Q. Liu, Z. Yang, Porous micro/nano Li2CeO3 with baseball morphology as anode material for high power lithium ions batteries, Solid State Ionics, 334 (2019) 82-86. https://doi.org/10.1016/j.ssi.2019.02.008
[90] J. Yan, J. Yao, Z. Zhang, Y. Li, S. Xiao, 3D hierarchical porous ZnFe2O4 nano/micro structure as a high-performance anode material for lithium-ion batteries, Materials Letters, 245 (2019) 122-125. https://doi.org/10.1016/j.matlet.2019.02.113
[91] A. Sun, H. Zhong, X. Zhou, J. Tang, M. Jia, F. Cheng, Q. Wang, J. Yang, Scalable synthesis of carbon-encapsulated nano-Si on graphite anode material with high cyclic stability for lithium-ion batteries, Applied Surface Science, 470 (2019) 454-461. https://doi.org/10.1016/j.apsusc.2018.11.117
[92] S. Bao, J. Li, Y. Xiao, P. Li, L. Liu, B. Yue, Y. Li, W. Sun, W. Zhang, L. Zhang, X. Lai, In-situ porous nano-Fe3O4/C composites derived from citrate precursor as anode materials for lithium-ion batteries, Materials Chemistry and Physics, 225 (2019) 379-383. https://doi.org/10.1016/j.matchemphys.2018.12.072
[93] B. Cheng, L. Luo, H. Zhuo, S. Chen, X. Zeng, Preparation of nano-VBO3 on graphene as anode material for lithium-ion batteries, Materials Letters, 241 (2019) 60-63. https://doi.org/10.1016/j.matlet.2019.01.014
[94] S. Jia, Y. Wang, X. Liu, S. Zhao, W. Zhao, Y. Huang, Z. Li, Z. Lin, Hierarchically porous CuO nano-labyrinths as binder-free anodes for long-life and high-rate lithium ion batteries, Nano Energy, 59 (2019) 229-236. https://doi.org/10.1016/j.nanoen.2019.01.081
[95] Y. Wang, Y. Zhang, Y. Peng, H. Li, J. Li, B.J. Hwang, J. Zhao, Physical confinement and chemical adsorption of porous C/CNT micro/nano-spheres for CoS and Co9S8 as advanced lithium batteries anodes, Electrochimica Acta, 299 (2019) 489-499. https://doi.org/10.1016/j.electacta.2018.11.138
[96] G.C. Shivaraju, C. Sudakar, A.S. Prakash, High-rate and long-cycle life performance of nano-porous nano-silicon derived from mesoporous MCM-41 as an anode for lithium-ion battery, Electrochimica Acta, 294 (2019) 357-364. https://doi.org/10.1016/j.electacta.2018.10.122
[97] S. Yang, Y. Huang, D. Zhang, G. Han, Y. Cao, J. Liu, Fabrication and characterization of dinickel orthosilicate nanosheets as high performance anode material for lithium-ion batteries, Journal of Alloys and Compounds, 785 (2019) 80-88. https://doi.org/10.1016/j.jallcom.2019.01.195
[98] M. Krajewski, P.H. Lee, S.H Wu, K. Brzozka, A. Malolepszy, L. Stobinski, M. Tokarczyk, G. Kowalski, D. Wasik, Nanocomposite composed of multiwall carbon nanotubes covered by hematite nanoparticles as anode material for Li-ion batteries, Electrochimica Acta, 228 (2017) 82-90. https://doi.org/10.1016/j.electacta.2017.01.051
[99] J. Xu, Z. Han, J. Wu, K. Song, J. Wu, H. Gao, Y. Mi, Synthesis and electrochemical performance of vertical carbon nanotubes on few-layer graphene as an anode material for Li-ion batteries, Materials Chemistry and Physics, 205 (2018) 359-365. https://doi.org/10.1016/j.matchemphys.2017.11.039
[100] J. Li, Y. Li, Q. Lan, Z. Yang, X.J. Lv, Multiple phase N-doped TiO2 nanotubes/TiN/graphene nanocomposites for high rate lithium ion batteries at low temperature, Journal of Power Sources, 423 (2019) 166-173. https://doi.org/10.1016/j.jpowsour.2019.03.060
[101] Y.K. Sun, Cycling behaviour of LiCoO2 cathode materials prepared by PAA-assisted Sol-Gel method for rechargeable lithium batteries, J. Power Sources, 83(1-2) (1999) 223-226. https://doi.org/10.1016/S0378-7753(99)00280-3
[102] M.Y. Song, R. Lee, Synthesis by Sol-Gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery, J. Power Sources, 111(1) (2002) 93-103. https://doi.org/10.1016/S0378-7753(02)00263-X
[103] T. Tanaka, K. Ohta, N. Arai, Year 2000 R&D status of large-scale lithium ıon secondary batteries in the national project of Japan, J. Power Sources, 97-98 (2001) 2-6. https://doi.org/10.1016/S0378-7753(01)00502-X
[104] S. Tao, Q. Wu, Z. Zhan, G. Meng, Preparation of LiMO2 (M=Co, Ni) cathode materials for ıntermediate temperature fuel cells by sol-gel processes, Solid State Ionics, 124(1-2) (1999) 53-59. https://doi.org/10.1016/S0167-2738(99)00137-X
[105] H.J. Kweon, G.B. Kim, H.S. Lim, S.S. Nam, D.G. Park, Synthesis of LixNi0.85Co0.15O2 by the PVA-Precursor method and charge-discharge characteristics of a lithium ıon battery using this material as cathode, J. Power Sources, 83(1-2) (1999) 84-92. https://doi.org/10.1016/S0378-7753(99)00271-2
[106] S.C. Park, Y.M. Kim, Y.M. Kang, K.T. Kim, P.S. Lee, J.Y. Lee, Improvement of the Rate Capability of LiMn2O4 by Surface Coating with LiCoO2, J. Power Sources, 103(1) (2001) 86-92. https://doi.org/10.1016/S0378-7753(01)00832-1
[107] T. Takamura, Trends in Advanced Batteries and Key Materials in the New Century, Solid State Ionics, 152-153 (2002) 19-34. https://doi.org/10.1016/S0167-2738(02)00325-9
[108] E. Özçelik, G. Özkan, Synthesis and characterızatıon of LiCoO2 used as cathode materıal ın secondary lıthıum batterıes, J. Fac. Eng. Arch. Gazi Univ. 21(3) (2006) 423-425.
[109] D. Ni, W. Sun, L. Xie, Q. Fan, Z. Wang, K. Sun, Bismuth oxyfluoride @ CMK-3 nanocomposite as cathode for lithium ion batteries, Journal of Power Sources, 374 (2018) 166-174. https://doi.org/10.1016/j.jpowsour.2017.11.017
[110] T. Cetinkaya, H. Akbulut, M. Tokur, S. Ozcan, M. Uysal, High capacity Graphene/α-MnO2 nanocomposite cathodes for Li-O2 batteries, International Journal of Hydrogen Energy, 41(23) (2016) 9746-9754. https://doi.org/10.1016/j.ijhydene.2016.02.093
[111] C. Luo, H. Sun, Z. Jiang, H. Guo, M. Gao, M. Wei, Z. Jiang, H. Zhou, S.G. Sun, Electrocatalysts of Mn and Ru oxides loaded on MWCNTS with 3D structure and synergistic effect for rechargeable Li-O2 battery, Electrochimica Acta, 282 (2018) 56-63. https://doi.org/10.1016/j.electacta.2018.06.040
[112] M. Haris, S. Atiq, S.M. Abbas, A. Mahmood, S.M. Ramay, S. Naseem, Acetylene black coated V2O5 nanocomposite with stable cyclability for lithium-ion batteries cathode, Journal of Alloys and Compounds, 732 (2018) 518-523. https://doi.org/10.1016/j.jallcom.2017.10.221
[113] H. Yin, X.X. Yu, Y.W. Yu, M.L. Cao, H. Zhao, C. Li, M.Q. Zhu, Tellurium nanotubes grown on carbon fiber cloth as cathode for flexible all-solid-state lithium-tellurium batteries, Electrochimica Acta, 282 (2018) 870-876. https://doi.org/10.1016/j.electacta.2018.05.190
[114] D. Tang, W. Zhang, Z.A Qiao, Y. Liu, D. Wang, Polyanthraquinone/CNT nanocomposites as cathodes for rechargeable lithium ion batteries, Materials Letters, 214 (2018) 107-110. https://doi.org/10.1016/j.matlet.2017.11.119
[115] N. Kumar, J. R. Rodriguez, V. G. Pol, A. Sen, Facile synthesis of 2D graphene oxide sheet enveloping ultrafine 1D LiMn2O4 as interconnected framework to enhance cathodic property for Li-ion battery, Applied Surface Science, 463 (2019) 132-140. https://doi.org/10.1016/j.apsusc.2018.08.210
[116] S. Liang, M. Qin, J. Liu, Q. Zhang, T. Chen, Y. Tang, W. Wang, Facile synthesis of multiwalled carbon nanotube-LiV3O8 nanocomposites as cathode materials for Li-ion batteries, Materials Letters, 93 (2013) 435-438. https://doi.org/10.1016/j.matlet.2012.09.071
[117] B. Sen, S. Kuzu, E. Demir, S. Akocak F. Sen, Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine−borane, International Journal of Hydrogen Energy, 42 (2017) 23292-23298. https://doi.org/10.1016/j.ijhydene.2017.06.032
[118] R. Ayrancı, B. Demirkan, B. Sen, A. Savk, M. Ak, F. Sen, Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection, Materials Science and Engineering: C, 99 (2019) 951-956. https://doi.org/10.1016/j.msec.2019.02.040
[119] B. Sen, A. Savk, F. Sen, Highly Efficient Monodisperse Pt Nanoparticles Confined in The Carbon Black Hybrid Material for Hydrogen Liberation, Journal of Colloid and Interface Science, 520 (2018) 112-118. https://doi.org/10.1016/j.jcis.2018.03.004
[120] S. Ertan, F. Sen, S. Sen G. Gokagac, Platinum nanocatalysts prepared with different surfactants for C1-C3 alcohol oxidations and their surface morphologies by AFM, Journal of Nanoparticle Research, 14 (2012) 922-934. https://doi.org/10.1007/s11051-012-0922-5
[121] B. Sen, B. Demirkan, A. Savk, R. Kartop, M.S. Nas, M.H. Alma, S. Sürdem, F. Sen, High-performance graphite-supported ruthenium nanocatalyst for hydrogen evolution reaction, Journal of Molecular Liquids, 268 (2018) 807-812. https://doi.org/10.1016/j.molliq.2018.07.117
[122] R. Ayranci, G. Baskaya, M. Guzel, S. Bozkurt, M. Ak, A. Savk, F. Sen, Activated Carbon Furnished Monodisperse Pt Nanocomposites as a Superior Adsorbent for Methylene Blue Removal from Aqueous Solutions, Nano-Structures and Nano-Objects, 17 (2017) 4799-4804. https://doi.org/10.1166/jnn.2017.13776
[123] R. Ayranci, G. Baskaya, M. Guzel, S. Bozkurt, M. Ak, A. Savk, F. Sen, Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation, Nano-Structures & Nano-Objects, 11 (2017) 13-19. https://doi.org/10.1016/j.nanoso.2017.05.008
[124] B. Sen, A. Aynur, T.O. Okyay, A. Savk, R. Kartopu, F. Sen, Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane, International Journal of Hydrogen Energy, 43 (2018) 20176-20182. https://doi.org/10.1016/j.ijhydene.2018.03.175
[125] F. Sen, Y. Karatas, M. Gulcan, M. Zahmarikan, Amylamine stabilized platinum(0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane, RSC Adv. 4 (2014) 1526-1531. https://doi.org/10.1039/C3RA43701A
[126] Y. Koskun, A. Savk, B. Sen, F. Sen, Highly Sensitive Glucose Sensor Based on Monodisperse Palladium Nickel/Activated Carbon Nanocomposites, Analytica Chimica Acta, 1010 (2018) 37-43. https://doi.org/10.1016/j.aca.2018.01.035
[127] B. Sahin, E. Demir, A. Aynur, H. Gunduz, F. Sen, Investigation of The Effect Of Pomegranate Extract And Monodisperse Silver Nanoparticle Combination on MCF-7 Cell Line, Journal of Biotechnology, 260 (2017) 79-83. https://doi.org/10.1016/j.jbiotec.2017.09.012
[128] B. Sen, E. Kuyuldar, B. Demirkan, T.O. Okyay, A. Savk, F. Sen, Highly Efficient Polymer Supported Monodisperse Ruthenium-nickel Nanocomposites for Dehydrocoupling of Dimethylamine Borane, Journal of Colloid and Interface Science, 526 (2018) 480-486. https://doi.org/10.1016/j.jcis.2018.05.021
[129] N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, F. Sen, Composites of Palladium-Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile, ACS Omega, 4 (2019) 6848-6853. https://doi.org/10.1021/acsomega.9b00485
[130] H. Goksu, B. Çelik, Y. Yunus, F. Sen, B. Kilbas, Superior Monodisperse CNT-Supported CoPd (CoPd@CNT) Nanoparticles for Selective Reduction of Nitro Compounds to Primary Amines with NaBH 4 in Aqueous Medium, ChemistrySelect, 1 (2016) 2366-2372. https://doi.org/10.1002/slct.201600509
[131] F. Sen, H. Gokagac, Different Sized Platinum Nanoparticles Supported on Carbon: An XPS Study on These Methanol Oxidation Catalysts, Journal of Physical Chemistry C, 111 (2007) 5715-5720. https://doi.org/10.1021/jp068381b
[132] S. Gunbatar, A. Aygun, Y. Karatas, M. Gulcan, F. Sen, Carbon-nanotube-based Rhodium Nanoparticles as Highly-Active Catalyst for Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature, Journal of Colloid and Interface Science, 530 (2018) 321-327. https://doi.org/10.1016/j.jcis.2018.06.100
[133] E. Demir, A. Savk, B. Sen, F. Sen, A Novel Monodisperse Metal Nanoparticles Anchored Graphene Oxide as Counter Electrode for Dye-Sensitized Solar Cells, Nano-Structures and Nano-Objects, 12 (2017) 41-45. https://doi.org/10.1016/j.nanoso.2017.08.018
[134] B. Sen, A. Aygun, A. Savk, S. Akocak, F. Sen, Bimetallic Palladium-iridium Alloy Nanoparticles as Highly Efficient and Stable Catalyst for The Hydrogen Evolution Reaction, International Journal of Hydrogen Energy, 43 (2018) 20183-20191. https://doi.org/10.1016/j.ijhydene.2018.07.081
[135] Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, F. Sen, Different Ligand Based Monodispersed Pt Nanoparticles Decorated with rGO As Highly Active and Reusable Catalysts for The Methanol Oxidation, International Journal of Hydrogen Energy, 42 (2017) 13061-13069. https://doi.org/10.1016/j.ijhydene.2017.03.230