Metal Sulphides for Lithium-ion Batteries

$30.00

Metal Sulphides for Lithium-ion Batteries

Udaya Bhat K., Sunil Meti, C. Prabukumar, Suma Bhat

Increasing demand for flimsier, thinner, flexible batteries with higher capacities encourage present and future research for newer electrode materials with improved features. Metal sulphide based nanomaterials, due to their unique properties have opened a new domain for exploration in the domain of lithium-ion batteries. This review summarizes various metal sulphides, their developmental highlights and opportunities as the electrode materials. It offers updated knowledge on various metal sulphide systems. Review concludes by highlighting the promises metal sulphides as electrodes for the future lithium-ion batteries and challenges to be crossed to make it successful.

Keywords
Lithium-ion Batteries, Metal Sulphides, Improved Performance, Nanocomposites

Published online 7/25/2020, 32 pages

Citation: Udaya Bhat K., Sunil Meti, C. Prabukumar, Suma Bhat, Metal Sulphides for Lithium-ion Batteries, Materials Research Foundations, Vol. 80, pp 91-122, 2020

DOI: https://doi.org/10.21741/9781644900918-4

Part of the book on Lithium-ion Batteries

References
[1] C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries, Mater. Today. 19 (2016) 109–123. https://doi.org/10.1016/j.mattod.2015.10.009.
[2] J.R. Miller, P. Simon, Materials science: Electrochemical capacitors for energy management, Science 321 (2008) 651–652. https://doi.org/10.1126/science.1158736.
[3] M. Li, J. Lu, Z. Chen, K. Amine, 30 Years of Lithium-ion batteries, Adv. Mater. 30 30 (2018) 1800561. https://doi.org/10.1002/adma.201800561.
[4] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359–67. https://doi.org/10.1038/35104644.
[5] M.S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A review of carbon materials and their composites with alloy metals for sodium ion battery anodes, Carbon N. Y. 98 (2016) 162–178. https://doi.org/10.1016/j.carbon.2015.09.091.
[6] F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu, Review on solid electrolytes for all-solid-state lithium-ion batteries, J. Power Sources 389 (2018) 198–213. https://doi.org/10.1016/j.jpowsour.2018.04.022.
[7] X. Xu, W. Liu, Y. Kim, J. Cho, Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges, Nano Today 9 (2014) 604–630. https://doi.org/10.1016/J.NANTOD.2014.09.005.
[8] J. Wang, Y. Li, X. Sun, Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries, Nano Energy 2 (2013) 443–467. https://doi.org/10.1016/j.nanoen.2012.11.014.
[9] Z. Ma, X. Yuan, L. Li, Z.F. Ma, D.P. Wilkinson, L. Zhang, J. Zhang, A review of cathode materials and structures for rechargeable lithium-air batteries, Energy Environ. Sci. 8 (2015) 2144–2198. https://doi.org/10.1039/c5ee00838g.
[10] M.R. Palacín, Recent advances in rechargeable battery materials: A chemist’s perspective, Chem. Soc. Rev. 38 (2009) 2565–2575. https://doi.org/10.1039/b820555h.
[11] N. Alias, A.A. Mohamad, Advances of aqueous rechargeable lithium-ion battery: A review, J. Power Sources 274 (2015) 237–251. https://doi.org/10.1016/j.jpowsour.2014.10.009.
[12] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845–854. https://doi.org/10.1038/nmat2297.
[13] J. Zhu, R. Duan, S. Zhang, N. Jiang, Y. Zhang, J. Zhu, The application of graphene in lithium ion battery electrode materials, J. Korean Phys. Soc. 3 (2014) 1–8. https://doi.org/10.1186/2193-1801-3-585.
[14] Y. Wang, H. Li, P. He, E. Hosono, H. Zhou, Nano active materials for lithium-ion batteries, Nanoscale 2 (2010) 1294–1305. https://doi.org/10.1039/c0nr00068j.
[15] B. Xu, D. Qian, Z. Wang, Y.S. Meng, Recent progress in cathode materials research for advanced lithium ion batteries, Mater. Sci. Eng. R Reports 73 (2012) 51–65. https://doi.org/10.1016/j.mser.2012.05.003.
[16] N. Zhou, E. Uchaker, H.Y. Wang, M. Zhang, S.Q. Liu, Y.N. Liu, X. Wu, G. Cao, H. Li, Additive-free solvothermal synthesis of hierarchical flower-like LiFePO4/C mesocrystal and its electrochemical performance, RSC Adv. 3 (2013) 19366–19374. https://doi.org/10.1039/c3ra42855a.
[17] F. Brochu, A. Guerfi, J. Trottier, M. Kopeć, A. Mauger, H. Groult, C.M. Julien, K. Zaghib, Structure and electrochemistry of scaling nano C-LiFePO4 synthesized by hydrothermal route: Complexing agent effect, J. Power Sources 214 (2012) 1–6. https://doi.org/10.1016/j.jpowsour.2012.03.092.
[18] Z.J. Zhang, P. Ramadass, Lithium-Ion Battery Systems and Technology, in: Batter. Sustain., 2012: pp. 319–357. https://doi.org/10.1007/978-1-4614-5791-6_10.
[19] H. Zhang, X. Yu, P. V. Braun, Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes, Nat. Nanotechnol. 6 (2011) 277–281. https://doi.org/10.1038/nnano.2011.38.
[20] B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging, Nature 458 (2009) 190–193. https://doi.org/10.1038/nature07853.
[21] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets., Nat. Chem. 5 (2013) 263–75. https://doi.org/10.1038/nchem.1589.
[22] J. Zhao, Y. Zhang, Y. Wang, H. Li, Y. Peng, The application of nanostructured transition metal sulfides as anodes for lithium ion batteries, J. Energy Chem. 27 (2018) 1536–1554. https://doi.org/10.1016/j.jechem.2018.01.009.
[23] X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface, Adv. Funct. Mater. 25 (2015) 1393–1403. https://doi.org/10.1002/adfm.201404078.
[24] H. Nishide, K. Oyaizu, MATERIALS SCIENCE: Toward Flexible Batteries, Science 319 (2008) 737–738. https://doi.org/10.1126/science.1151831.
[25] W. Pi, T. Mei, J. Li, J. Wang, J. Li, X. Wang, Durian-like NiS2@rGO nanocomposites and their enhanced rate performance, Chem. Eng. J. 335 (2018) 275–281. https://doi.org/10.1016/j.cej.2017.10.142.
[26] Q. Pan, J. Xie, T. Zhu, G. Cao, X. Zhao, S. Zhang, Reduced graphene oxide-induced recrystallization of NiS nanorods to nanosheets and the improved Na-storage properties, Inorg. Chem. 53 (2014) 3511–3518. https://doi.org/10.1021/ic402948s.
[27] J.S. Nam, J.H. Lee, S.M. Hwang, Y.-J. Kim, New insights into the phase evolution in CuS during lithiation and delithiation processes, J. Mater. Chem. A. (2019). https://doi.org/10.1039/c9ta03008e.
[28] X. Li, X. He, C. Shi, B. Liu, Y. Zhang, S. Wu, Z. Zhu, J. Zhao, Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries, ChemSusChem 7 (2014) 3328–3333. https://doi.org/10.1002/cssc.201402862.
[29] B. Jache, B. Mogwitz, F. Klein, P. Adelhelm, Copper sulfides for rechargeable lithium batteries: Linking cycling stability to electrolyte composition, J. Power Sources. 247 (2014) 703–711. https://doi.org/10.1016/j.jpowsour.2013.08.136.
[30] A. Débart, L. Dupont, R. Patrice, J.M. Tarascon, Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide, Solid State Sci. 8 (2006) 640–651. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2006.01.013.
[31] M.T. McDowell, Z. Lu, K.J. Koski, J.H. Yu, G. Zheng, Y. Cui, In situ observation of divergent phase transformations in individual sulfide nanocrystals, Nano Lett. 15 (2015) 1264–1271. https://doi.org/10.1021/nl504436m.
[32] X. Wang, Y. Wang, X. Li, B. Liu, J. Zhao, A facile synthesis of copper sulfides composite with lithium-storage properties, J. Power Sources 281 (2015) 185–191. https://doi.org/10.1016/j.jpowsour.2015.01.172.
[33] A. Débart, L. Dupont, P. Poizot, J.-B. Leriche, J.M. Tarascon, A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward Lithium, J. Electrochem. Soc. 148 (2002) A1266. https://doi.org/10.1149/1.1409971.
[34] J.Y. Park, S.J. Kim, K. Yim, K.S. Dae, Y. Lee, K.P. Dao, J.S. Park, H.B. Jeong, J.H. Chang, H.K. Seo, C.W. Ahn, J.M. Yuk, Pulverization‐tolerance and capacity recovery of copper sulfide for high‐performance sodium storage, Adv. Sci. 6 (2019) 1900264. https://doi.org/10.1002/advs.201900264.
[35] J. Zhao, Y. Zhang, Y. Wang, H. Li, Y. Peng, The application of nanostructured transition metal sulfides as anodes for lithium ion batteries, J. Energy Chem. 27 (2018) 1536–1554. https://doi.org/10.1016/J.JECHEM.2018.01.009.
[36] J. Zhang, A. Yu, Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries, Sci. Bull. 60 (2015) 823–838. https://doi.org/10.1007/s11434-015-0771-6.
[37] C.H. Lai, K.W. Huang, J.H. Cheng, C.Y. Lee, B.J. Hwang, L.J. Chen, Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries, J. Mater. Chem. 20 (2010) 6638–6645. https://doi.org/10.1039/c0jm00434k.
[38] C. Feng, L. Zhang, M. Yang, X. Song, H. Zhao, Z. Jia, K. Sun, G. Liu, One-pot synthesis of copper sulfide nanowires/reduced graphene oxide nanocomposites with excellent lithium-storage properties as anode materials for lithium-ion batteries, ACS Appl. Mater. Interfaces 7 (2015) 15726–15734. https://doi.org/10.1021/acsami.5b01285.
[39] C. Feng, L. Zhang, Z. Wang, X. Song, K. Sun, F. Wu, G. Liu, Synthesis of copper sulfide nanowire bundles in a mixed solvent as a cathode material for lithium-ion batteries, J. Power Sources 269 (2014) 550–555. https://doi.org/10.1016/j.jpowsour.2014.07.006.
[40] Z. Li, W. Li, H. Xue, W. Kang, X. Yang, M. Sun, Y. Tang, C.S. Lee, Facile fabrication and electrochemical properties of high-quality reduced graphene oxide/cobalt sulfide composite as anode material for lithium-ion batteries, RSC Adv. 4 (2014) 37180–37186. https://doi.org/10.1039/c4ra06067a.
[41] X. Li, N. Fu, J. Zou, X. Zeng, Y. Chen, L. Zhou, W. Lu, H. Huang, Ultrafine cobalt sulfide nanoparticles encapsulated hierarchical N-doped carbon nanotubes for high-performance lithium storage, Electrochim. Acta 225 (2017) 137–142. https://doi.org/10.1016/j.electacta.2016.12.127.
[42] A. Abdulla, A. Supervisor, X. Sun, Metal sulfides as anode for lithium ion and sodium ion battery recommended citation, 2017. https://ir.lib.uwo.ca/etd (accessed March 7, 2019).
[43] X. Zhang, X. Jie Liu, G. Wang, H. Wang, Cobalt disulfide nanoparticles/graphene/carbon nanotubes aerogels with superior performance for lithium and sodium storage, J. Colloid Interface Sci. 505 (2017) 23–31. https://doi.org/10.1016/j.jcis.2017.05.028.
[44] Y. Zhou, Y. Zhu, B. Xu, X. Zhang, K.A. Al-Ghanim, S. Mahboob, Cobalt sulfide confined in N-doped porous branched carbon nanotubes for lithium-ion batteries, Nano-Micro Lett. 11 (2019). https://doi.org/10.1007/s40820-019-0259-z.
[45] J. Liu, C. Wu, D. Xiao, P. Kopold, L. Gu, P.A. Van Aken, J. Maier, Y. Yu, MOF-Derived Hollow Co9S8 Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Li-Ion Storage, Small 12 (2016) 2354–2364. https://doi.org/10.1002/smll.201503821.
[46] W. Chen, T. Li, Q. Hu, C. Li, H. Guo, Hierarchical CoS2@C hollow microspheres constructed by nanosheets with superior lithium storage, J. Power Sources 286 (2015)159-165. https://doi.org/10.1016/j.jpowsour.2015.03.154.
[47] R. Jin, L. Yang, G. Li, G. Chen, Hierarchical worm-like CoS2 composed of ultrathin nanosheets as an anode material for lithium-ion batteries, J. Mater. Chem. A 3 (2015) 10677–10680. https://doi.org/10.1039/c5ta02646f.
[48] Y. Hu, D. Ye, B. Luo, H. Hu, X. Zhu, S. Wang, L. Li, S. Peng, L. Wang, A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries, Adv. Mater. 30 (2018) 1703824. https://doi.org/10.1002/adma.201703824.
[49] Y. Zhou, D. Yan, H. Xu, J. Feng, X. Jiang, J. Yue, J. Yang, Y. Qian, Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries, Nano Energy 12 (2015) 528–537. https://doi.org/10.1016/j.nanoen.2015.01.019.
[50] H. Li, F. Xie, W. Li, B.D. Fahlman, M. Chen, W. Li, Preparation and adsorption capacity of porous MoS 2 nanosheets, RSC Adv. 6 (2016) 105222–105230. https://doi.org/10.1039/c6ra22414h.
[51] Y. Tian, X. Zhao, L. Shen, F. Meng, L. Tang, Y. Deng, Z. Wang, Synthesis of amorphous MoS2 nanospheres by hydrothermal reaction, Mater. Lett. 60 (2006) 527–529. https://doi.org/10.1016/j.matlet.2005.09.029.
[52] S.K. Park, S.H. Yu, S. Woo, J. Ha, J. Shin, Y.E. Sung, Y. Piao, A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties, CrystEngComm 14 (2012) 8323–8325. https://doi.org/10.1039/c2ce26447a.
[53] B. Guo, Y. Feng, X. Chen, B. Li, K. Yu, Preparation of yolk-shell MoS2 nanospheres covered with carbon shell for excellent lithium-ion battery anodes, Appl. Surf. Sci. 434 (2018) 1021–1029. https://doi.org/10.1016/j.apsusc.2017.11.018.
[54] N. Chaudhary, M. Khanuja, Abid, S.S. Islam, Hydrothermal synthesis of MoS2nanosheets for multiple wavelength optical sensing applications, Sensors Actuators A Phys. 277 (2018) 190–198. https://doi.org/10.1016/j.sna.2018.05.008.
[55] G. Yang, Y. Gu, P. Yan, J. Wang, J. Xue, X. Zhang, N. Lu, G. Chen, Chemical vapor deposition growth of vertical MoS2 nanosheets on p-GaN nanorods for photodetector application, ACS Appl. Mater. Interfaces 11 (2019) 8453–8460. https://doi.org/10.1021/acsami.8b22344.
[56] D. Kathiravan, B.R. Huang, A. Saravanan, A. Prasannan, P. Da Hong, Highly enhanced hydrogen sensing properties of sericin-induced exfoliated MoS2 nanosheets at room temperature, Sensors Actuators B Chem. 279 (2019) 138–147. https://doi.org/10.1016/j.snb.2018.09.104.
[57] C. Prabukumar, M.M.J. Sadiq, D.K. Bhat, K.U. Bhat, Effect of solvent on the morphology of MoS2 nanosheets prepared by ultrasonication-assisted exfoliation, in: AIP Conf. Proc., 2018. https://doi.org/10.1063/1.5029660.
[58] Y. Liu, L. Zhang, Y. Zhao, T. Shen, X. Yan, C. Yu, H. Wang, H. Zeng, Novel plasma-engineered MoS2 nanosheets for superior lithium-ion batteries, J. Alloys Compd. 787 (2019) 996–1003. https://doi.org/10.1016/j.jallcom.2019.02.156.
[59] T. Xiang, Q. Fang, H. Xie, C. Wu, C. Wang, Y. Zhou, D. Liu, S. Chen, A. Khalil, S. Tao, Q. Liu, L. Song, Vertical 1T-MoS2 nanosheets with expanded interlayer spacing edged on a graphene frame for high rate lithium-ion batteries, Nanoscale 9 (2017) 6975–6983. https://doi.org/10.1039/c7nr02003a.
[60] G.S. Bang, K.W. Nam, J.Y. Kim, J. Shin, J.W. Choi, S. Choi, Effective liquid-phase exfoliation and sodium ion battery, ACS Appl. Mater. Interfaces7 (2014) 7084-7089. https://doi.org/10.1021/am4060222
[61] W. Qin, T. Chen, L. Pan, L. Niu, B. Hu, D. Li, J. Li, Z. Sun, MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance, Electrochim. Acta 153 (2015) 55–61. https://doi.org/10.1016/j.electacta.2014.11.034.
[62] A. Prabakaran, F. Dillon, J. Melbourne, L. Jones, R.J. Nicholls, P. Holdway, J. Britton, A.A. Koos, A. Crossley, P.D. Nellist, N. Grobert, WS2 2D nanosheets in 3D nanoflowers, Chem. Commun. 50 (2014) 12360–12362. https://doi.org/10.1039/c4cc04218b.
[63] G.A. Asres, A. Dombovari, T. Sipola, R. Puskás, A. Kukovecz, Z. Kónya, A. Popov, J.F. Lin, G.S. Lorite, M. Mohl, G. Toth, A. Lloyd Spetz, K. Kordas, A novel WS2 nanowire-nanoflake hybrid material synthesized from WO3 nanowires in sulfur vapor, Sci. Rep. 6 (2016) 1–7. https://doi.org/10.1038/srep25610.
[64] S.M. Ng, H.F. Wong, W.C. Wong, C.K. Tan, S.Y. Choi, C.L. Mak, G.J. Li, Q.C. Dong, C.W. Leung, WS2 nanotube formation by sulphurization: Effect of precursor tungsten film thickness and stress, Mater. Chem. Phys. 181 (2016) 352–358. https://doi.org/10.1016/j.matchemphys.2016.06.069.
[65] C. Feng, L. Huang, Z. Guo, H. Liu, Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application, Electrochem. Commun. 9 (2007) 119–122. https://doi.org/10.1016/j.elecom.2006.08.048.
[66] S. Cao, T. Liu, S. Hussain, W. Zeng, X. Peng, F. Pan, Hydrothermal synthesis of variety low dimensional WS2 nanostructures, Mater. Lett. 129 (2014) 205–208. https://doi.org/10.1016/j.matlet.2014.05.013.
[67] H. Liu, D. Su, G. Wang, S.Z. Qiao, An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries, J. Mater. Chem. 22 (2012) 17437–17440. https://doi.org/10.1039/c2jm33992g.
[68] Y. Du, X. Zhu, L. Si, Y. Li, X. Zhou, J. Bao, Improving the anode performance of WS2 through self-assembled double carbon coating, (2015) 1–8.
[69] D. Su, S. Dou, G. Wang, WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances, Chem. Commun. 50 (2014) 4192–4195. https://doi.org/10.1039/c4cc00840e.
[70] T. Wang, C. Sun, M. Yang, L. Zhang, Y. Shao, Y. Wu, X. Hao, Enhanced reversible lithium ion storage in stable 1T@2H WS2 nanosheet arrays anchored on carbon fiber, Electrochim. Acta 259 (2018) 1–8. https://doi.org/10.1016/j.electacta.2017.10.154.
[71] Y. Tao, K. Rui, Z. Wen, Q. Wang, J. Jin, T. Zhang, T. Wu, FeS2 microsphere as cathode material for rechargeable lithium batteries, Solid State Ionics 290 (2016) 47–52. https://doi.org/10.1016/j.ssi.2016.04.005.
[72] Y. Cheng, J. Huang, J. Li, Z. Xu, L. Cao, H. Ouyang, J. Yan, H. Qi, SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance, J. Alloys Compd. 658 (2016) 234–240. https://doi.org/10.1016/j.jallcom.2015.10.212.
[73] X. Xu, Z. Meng, X. Zhu, S. Zhang, W.Q. Han, Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery, J. Power Sources. 380 (2018) 12–17. https://doi.org/10.1016/j.jpowsour.2018.01.057.
[74] H. Xue, D.Y.W. Yu, J. Qing, X. Yang, J. Xu, Z. Li, M. Sun, W. Kang, Y. Tang, C.S. Lee, Pyrite FeS2 microspheres wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes, J. Mater. Chem. A. 3 (2015) 7945–7949. https://doi.org/10.1039/c5ta00988j.
[75] Y. Du, S. Wu, M. Huang, X. Tian, Reduced graphene oxide-wrapped pyrite as anode materials for Li-ion batteries with enhanced long-term performance under harsh operational environments, Chem. Eng. J. 326 (2017) 257–264. https://doi.org/10.1016/j.cej.2017.05.111.
[76] H.H. Fan, H.H. Li, K.C. Huang, C.Y. Fan, X.Y. Zhang, X.L. Wu, J.P. Zhang, Metastable Marcasite-FeS2 as a New Anode Material for Lithium Ion Batteries: CNFs-Improved Lithiation/Delithiation Reversibility and Li-Storage Properties, ACS Appl. Mater. Interfaces. 9 (2017) 10708–10716. https://doi.org/10.1021/acsami.7b00578.
[77] B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Layered SnS2-reduced graphene oxide composite – A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material, Adv. Mater. 26 (2014) 3854–3859. https://doi.org/10.1002/adma.201306314.
[78] Y. Wang, J. Zhou, J. Wu, F. Chen, P. Li, N. Han, W. Huang, Y. Liu, H. Ye, F. Zhao, Y. Li, Engineering SnS2 nanosheet assemblies for enhanced electrochemical lithium and sodium ion storage, J. Mater. Chem. A. 5 (2017) 25618–25624. https://doi.org/10.1039/c7ta08056e.
[79] H. Chen, B. Zhang, J. Zhang, W. Yu, J. Zheng, Z. Ding, H. Li, L. Ming, D.A.M. Bengono, S. Chen, H. Tong, In-situ grown SnS2 nanosheets on rGO as an advanced anode material for lithium and sodium ion batteries, Front. Chem. 6 (2018). https://doi.org/10.3389/fchem.2018.00629.
[80] J. Wang, C. Luo, J. Mao, Y. Zhu, X. Fan, T. Gao, A.C. Mignerey, C. Wang, Solid-State fabrication of SnS2/C nanospheres for high-performance sodium ion battery anode, ACS Appl. Mater. Interfaces. 7 (2015) 11476–11481. https://doi.org/10.1021/acsami.5b02413.
[81] M. Wang, Y. Huang, Y. Zhu, X. Wu, N. Zhang, H. Zhang, Binder-free flower-like SnS2 nanoplates decorated on the graphene as a flexible anode for high-performance lithium-ion batteries, J. Alloys Compd. 774 (2019) 601–609. https://doi.org/10.1016/j.jallcom.2018.09.378.
[82] Y. Liu, J. Zeng, J. Liu, X. Wang, C. Peng, R. Wang, R. Zhang, Hexagonal sheet-like tin disulfide@graphene oxide prepared by a novel two-step method as anode material for high-performance lithium-ion batteries, Mater. Lett. 237 (2019) 29–33. https://doi.org/10.1016/j.matlet.2018.11.053.
[83] J. Wang, J. Liu, H. Xu, S. Ji, J. Wang, Y. Zhou, P. Hodgson, Y. Li, Gram-scale and template-free synthesis of ultralong tin disulfide nanobelts and their lithium ion storage performances, J. Mater. Chem. A. 1 (2013) 1117–1122. https://doi.org/10.1039/c2ta00033d.
[84] Y. Zhang, Y. Guo, Y. Wang, T. Peng, Y. Lu, R. Luo, Y. Wang, X. Liu, J.K. Kim, Y. Luo, Rational Design of 3D Honeycomb-Like SnS 2 Quantum Dots/rGO Composites as High-Performance Anode Materials for Lithium/Sodium-Ion Batteries, Nanoscale Res. Lett. 13 (2018). https://doi.org/10.1186/s11671-018-2805-x.
[85] L. Mi, Q. Ding, W. Chen, L. Zhao, H. Hou, C. Liu, C. Shen, Z. Zheng, 3D porous nano/micro nickel sulfides with hierarchical structure: Controlled synthesis, structure characterization and electrochemical properties, Dalt. Trans. 42 (2013) 5724–5730. https://doi.org/10.1039/c3dt00017f.
[86] H. Ruan, Y. Li, H. Qiu, M. Wei, Synthesis of porous NiS thin films on Ni foam substrate via an electrodeposition route and its application in lithium-ion batteries, J. Alloys Compd. 588 (2014) 357–360. https://doi.org/10.1016/j.jallcom.2013.11.070.
[87] S. Xiao, X. Li, W. Sun, B. Guan, Y. Wang, General and facile synthesis of metal sulfide nanostructures: In situ microwave synthesis and application as binder-free cathode for Li-ion batteries, Chem. Eng. J. 306 (2016) 251–259. https://doi.org/10.1016/J.CEJ.2016.05.068.
[88] J.J. Cheng, Y. Ou, J.T. Zhu, H.J. Song, Y. Pan, Nickel sulfide cathode for stable charge-discharge rates in lithium rechargeable battery, Mater. Chem. Phys. 231 (2019) 131–137. https://doi.org/10.1016/j.matchemphys.2019.04.024.
[89] H.C. Tao, X.L. Yang, L.L. Zhang, S.B. Ni, One-step synthesis of nickel sulfide/N-doped graphene composite as anode materials for lithium ion batteries, J. Electroanal. Chem. 739 (2015) 36–42. https://doi.org/10.1016/j.jelechem.2014.10.035.
[90] X. Dong, Z.P. Deng, L.H. Huo, X.F. Zhang, S. Gao, Large-scale synthesis of NiS@N and S co-doped carbon mesoporous tubule as high performance anode for lithium-ion battery, J. Alloys Compd. 788 (2019) 984–992. https://doi.org/10.1016/j.jallcom.2019.02.326.
[91] K. Suzuki, T. Iijima, M. Wakihara, Chromium Chevrel phase sulfide (CrxMo6S8−y) as the cathode with long cycle life in lithium rechargeable batteries, Solid State Ionics. 109 (1998) 311–320. https://doi.org/10.1016/S0167-2738(98)00074-5.
[92] X.Y. Yu, X.W. David Lou, Mixed metal sulfides for electrochemical energy storage and conversion, Adv. Energy Mater. 8 (2018) 1701592. https://doi.org/10.1002/aenm.201701592.
[93] Y. Zhang, N. Wang, C. Sun, Z. Lu, P. Xue, B. Tang, Z. Bai, S. Dou, 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries, Chem. Eng. J. 332 (2018) 370–376. https://doi.org/10.1016/J.CEJ.2017.09.092.
[94] L. Luo, M. Shi, S. Zhao, W. Tan, X. Lin, H. Wang, F. Jiang, Hydrothermal synthesis of MoS 2 with controllable morphologies and its adsorption properties for bisphenol A, J. Saudi Chem. Soc. 23 (2019) 762-773. https://doi.org/10.1016/j.jscs.2019.01.005.
[95] X. Zheng, Y. Zhu, Y. Sun, Q. Jiao, Hydrothermal synthesis of MoS2 with different morphology and its performance in thermal battery, J. Power Sources 395 (2018) 318–327. https://doi.org/10.1016/j.jpowsour.2018.05.092.
[96] Y.C. Chen, Y.G. Zhang, Hydrothermal synthesis of Co9S8 nanocrystalline aggregations and spectral study, Spectrosc. Spectr. Anal. 26 (2006) 1117–1119.
[97] B. Naresh, D. Punnoose, S.S. Rao, A. Subramanian, B. Raja Ramesh, H.J. Kim, Hydrothermal synthesis and pseudocapacitive properties of morphology-tuned nickel sulfide (NiS) nanostructures, New J. Chem. 42 (2018) 2733–2742. https://doi.org/10.1039/c7nj05054b.
[98] F. Soofivand, E. Esmaeili, M. Sabet, M. Salavati-Niasari, Simple synthesis, characterization and investigation of photocatalytic activity of NiS2 nanoparticles using new precursors by hydrothermal method, J. Mater. Sci. Mater. Electron. 29 (2018) 858–865. https://doi.org/10.1007/s10854-017-7981-4.
[99] G. Pengbiao, Z. Shasha, T. Hao, Z. Rongmei, Z. Li, C. Shuai, X. Huaiguo, P. Huan, Transition metal sulfides based on graphene for electrochemical energy storage, Adv. Energy Mater. 8 (2018) 1703259. https://doi.org/10.1002/aenm.201703259.
[100] Y. Wang, Y. Zhang, H. Li, Y. Peng, J. Li, J. Wang, B.-J. Hwang, J. Zhao, Realizing high reversible capacity: 3D intertwined CNTs inherently conductive network for CuS as an anode for lithium ion batteries, Chem. Eng. J. 332 (2018) 49–56. https://doi.org/10.1016/J.CEJ.2017.09.070.
[101] M. Salavati-Niasari, G. Banaiean-Monfared, H. Emadi, M. Enhessari, Synthesis and characterization of nickel sulfide nanoparticles via cyclic microwave radiation, Comptes Rendus Chim. 16 (2013) 929–936. https://doi.org/10.1016/j.crci.2013.01.011.
[102] Y. Zou, Y. Wang, Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries, Chem. Eng. J. 229 (2013) 183–189. https://doi.org/10.1016/j.cej.2013.05.119.
[103] D.H. Youn, C. Jo, J.Y. Kim, J. Lee, J.S. Lee, Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries, J. Power Sources 295 (2015) 228–234. https://doi.org/10.1016/j.jpowsour.2015.07.013.
[104] H. Li, Y. Wang, J. Huang, Y. Zhang, J. Zhao, Microwave-assisted Synthesis of CuS/Graphene Composite for Enhanced Lithium Storage Properties, Electrochim. Acta 225 (2017) 443–451. https://doi.org/10.1016/j.electacta.2016.12.117.
[105] D. Mondal, G. Villemure, G. Li, C. Song, J. Zhang, R. Hui, J. Chen, C. Fairbridge, Synthesis, characterization and evaluation of unsupported porous NiS2 sub-micrometer spheres as a potential hydrodesulfurization catalyst, Appl. Catal. A Gen. 450 (2013) 230–236. https://doi.org/10.1016/j.apcata.2012.10.030.
[106] J.H.L. Beal, P.G. Etchegoin, R.D. Tilley, Transition metal polysulfide complexes as single-source precursors for metal sulfide nanocrystals, J. Phys. Chem. C. 114 (2010) 3817–3821. https://doi.org/10.1021/jp910354q.
[107] B. Geng, X. Liu, J. Ma, Q. Du, A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal sulfides, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 145 (2007) 17–22. https://doi.org/10.1016/j.mseb.2007.09.065.