Lignin-Derived Materials for Energy Storage


Lignin-Derived Materials for Energy Storage

Paul Thomas, Nelson Pynadathu Rumjit, Shivani Garg, Chin Wei Lai, Mohd Rafie Bin Johan

Lignin is an abundant by-product derived from biorefinery, paper and pulp industry and it is one of the most inexpensive natural biopolymer. Although lignin has been used for broad applications, the suitability of lignin for energy storage has not been explored in detail. Lignin suitability is mainly utilized as binders, electrodes for batteries and supercapacitors. The application of lignin in energy storage devices enhanced the performance of energy storage devices and also makes it eco-friendly and cheaper. This chapter focuses on the application of lignin towards fabrication and replacement of toxic and synthetic compounds with emphasis on batteries, supercapacitors and other energy storage devices.

Lignin, Supercapacitor, Energy Storage, Composite Materials

Published online 6/20/2020, 20 pages

Citation: Paul Thomas, Nelson Pynadathu Rumjit, Shivani Garg, Chin Wei Lai, Mohd Rafie Bin Johan, Lignin-Derived Materials for Energy Storage, Materials Research Foundations, Vol. 78, pp 91-110, 2020


Part of the book on Biomass Based Energy Storage Materials

[1] R.J.A. Gosselink, E. de Jong, B. Guran, A. Abächerli, Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN), Ind. Crops Prod. 20 (2004) 121–129.
[2] W.J. Liu, H. Jiang, H.Q. Yu, Thermochemical conversion of lignin to functional materials: a review and future directions, Green Chem. 17 (2015) 4888–4907.
[3] Q. Li, S. Xie, W.K. Serem, M.T. Naik, L. Liu, J.S. Yuan, Quality carbon fibers from fractionated lignin, Green Chem. 19 (2017) 1628–1634.
[4] A.G. Vishtal, A. Kraslawski, Challenges in industrial applications of technical lignins, Bioresources 6 (2011) 3547–3568.
[5] R. Rinaldi, R. Jastrzebski, M.T. Clough, J. Ralph, M. Kennema, P.C.A. Bruijnincx, B.M. Weckhuysen, Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis, Angew. Chem. Int. Ed. 55 (2016) 8164–8215.
[6] T. Renders, S. Van den Bosch, S.F. Koelewijn, W. Schutyser, B.F. Sels, Lignin-first biomass fractionation: the advent of active stabilisation strategies, Energy Environ. Sci. 10 (2017) 1551–1557.
[7] H. Mainka, O. Täger, E. Körner, L. Hilfert, S. Busse, F.T. Edelmann, A.S. Herrmann, Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber, J. Mater. Res. Technol. 4 (2015) 283–296.
[8] F.H.M. Graichen, W.J. Grigsby, S.J. Hill, L.G. Raymond, M. Sanglard, D.A. Smith, G.J. Thorlby, K.M. Torr, J.M. Warnes, Yes, we can make money out of lignin and other bio-based resources, Ind. Crops Prod. 106 (2017) 74–85.
[9] M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652–657.
[10] D. Kim, Kim, Daehwan, Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review, Molecules 23 (2018) 309.
[11] J.L. Espinoza-Acosta, P.I. Torres-Chávez, J.L. Olmedo-Martínez, A. Vega-Rios, S. Flores-Gallardo, E.A. Zaragoza-Contreras, Lignin in storage and renewable energy applications: A review, J. Energy Chem. 27 (2018) 1422–1438.
[12] J.H. Lora, W.G. Glasser, Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials, J. Polym. Environ. 10 (2002) 39–48.
[13] S. Beisl, A. Friedl, A. Miltner, S. Beisl, A. Friedl, A. Miltner, Lignin from Micro- to Nanosize: Applications, Int. J. Mol. Sci. 18 (2017) 2367.
[14] M.M. Titirici, R.J. White, N. Brun, V.L. Budarin, D.S. Su, F. del Monte, J.H. Clark, M.J. MacLachlan, Sustainable carbon materials, Chem. Soc. Rev. 44 (2015) 250–290.
[15] E. Frank, L.M. Steudle, D. Ingildeev, J.M. Spörl, M.R. Buchmeiser, Carbon fibers: Precursor systems, processing, structure, and properties, Angew. Chem. Int. Ed. 53 (2014) 5262–5298.
[16] D.A. Baker, T.G. Rials, Recent advances in low-cost carbon fiber manufacture from lignin, J. Appl. Polym. Sci. 130 (2013) 713–728.
[17] O. Faruk, M. Sain, Lignin in Polymer Composites, 1st ed., William Andrew, United State of America, 2015.
[18] Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Adv. Mater. 23 (2011) 4828–4850.
[19] O. Hosseinaei, D.P. Harper, J.J. Bozell, T.G. Rials, O. Hosseinaei, D.P. Harper, J.J. Bozell, T.G. Rials, Improving processing and performance of pure lignin carbon fibers through hardwood and herbaceous lignin blends, Int. J. Mol. Sci. 18 (2017) 1410.
[20] M. Cho, M. Karaaslan, S. Chowdhury, F. Ko, S. Renneckar, Skipping oxidative thermal stabilization for lignin-based carbon nanofibers, ACS Sustain. Chem. Eng. 6 (2018) 6434–6444.
[21] Y. Nordström, I. Norberg, E. Sjöholm, R. Drougge, A new softening agent for melt spinning of softwood kraft lignin, J. Appl. Polym. Sci. 129 (2013) 1274–1279.
[22] Q. Li, W.K. Serem, W. Dai, Y. Yue, M.T. Naik, S. Xie, P. Karki, L. Liu, H.J. Sue, H. Liang, F. Zhou, J.S. Yuan, Molecular weight and uniformity define the mechanical performance of lignin-based carbon fiber, J. Mater. Chem. A. 5 (2017) 12740–12746.
[23] S. Wang, Z. Zhou, H. Xiang, W. Chen, E. Yin, T. Chang, M. Zhu, Reinforcement of lignin-based carbon fibers with functionalized carbon nanotubes, Compos. Sci. Technol. 128 (2016) 116–122.
[24] W. Qu, J. Liu, Y. Xue, X. Wang, X. Bai, Potential of producing carbon fiber from biorefinery corn stover lignin with high ash content, J. Appl. Polym. Sci. 135 (2018) 45736.
[25] Z. Dai, X. Shi, H. Liu, H. Li, Y. Han, J. Zhou, High-strength lignin-based carbon fibers via a low-energy method, RSC Adv. 8 (2018) 1218–1224.
[26] M. Nar, H.R. Rizvi, R.A. Dixon, F. Chen, A. Kovalcik, N. D’Souza, Superior plant based carbon fibers from electrospun poly-(caffeyl alcohol) lignin, Carbon 103 (2016) 372–383.
[27] W.-J. Liu, H. Jiang, H.Q. Yu, Thermochemical conversion of lignin to functional materials: a review and future directions, Green Chem. 17 (2015) 4888–4907.
[28] S. Hu, S. Zhang, N. Pan, Y.-L. Hsieh, High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes, J. Power Sources 270 (2014) 106–112.
[29] M. Ago, M. Borghei, J.S. Haataja, O.J. Rojas, Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes, RSC Adv. 6 (2016) 85802–85810.
[30] R. Ruiz-Rosas, M.J. Valero-Romero, D. Salinas-Torres, J. Rodríguez-Mirasol, T. Cordero, E. Morallón, D. Cazorla-Amorós, Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates, ChemSusChem 7 (2014) 1458–1467.
[31] J. Tian, Z. Liu, Z. Li, W. Wang, H. Zhang, Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors, RSC Adv. 7 (2017) 12089–12097.
[32] A.M. Navarro-Suárez, J. Carretero-González, V. Roddatis, E. Goikolea, J. Ségalini, E. Redondo, T. Rojo, R. Mysyk, Nanoporous carbons from natural lignin: Study of structural–textural properties and application to organic-based supercapacitors, RSC Adv. 4 (2014) 48336–48343.
[33] D. Saha, Y. Li, Z. Bi, J. Chen, J.K. Keum, D.K. Hensley, H.A. Grappe, H.M. Meyer, S. Dai, M.P. Paranthaman, A.K. Naskar, Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon, Langmuir 30 (2014) 900–910.
[34] I. Isaev, G. Salitra, A. Soffer, Y.S. Cohen, D. Aurbach, J. Fischer, A new approach for the preparation of anodes for Li-ion batteries based on activated hard carbon cloth with pore design, J. Power Sources 119-121 (2003) 28-33.
[35] G.T.K. Fey, Y.D. Cho, C.L. Chen, K.P. Huang, Y.C. Lin, T.P. Kumar, S.H. Chan, Pyrolytic carbons from porogen-treated rice husk as lithium-insertion anode materials, Int. J. Chem. Eng. Appl. (2011) 20–25.
[36] Z.W. He, Q.F. Lü, Q. Lin, Fabrication, characterization and application of nitrogen-containing carbon nanospheres obtained by pyrolysis of lignosulfonate/poly(2-ethylaniline), Bioresour. Technol. 127 (2013) 66–71.
[37] S.X. Wang, L. Yang, L.P. Stubbs, X. Li, C. He, Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries, ACS Appl. Mater. Interfaces 5 (2013) 12275–12282.
[38] F. Yu, Y. Li, M. Jia, T. Nan, H. Zhang, S. Zhao, Q. Shen, Elaborate construction and electrochemical properties of lignin-derived macro-/micro-porous carbon-sulfur composites for rechargeable lithium-sulfur batteries: The effect of sulfur-loading time, J. Alloys Compd. 709 (2017) 677–685.
[39] H. Li, D. Yuan, C. Tang, S. Wang, J. Sun, Z. Li, T. Tang, F. Wang, H. Gong, C. He, Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor, Carbon 100 (2016) 151–157.
[40] F.J. García-Mateos, R. Berenguer, M.J. Valero-Romero, J. Rodríguez-Mirasol, T. Cordero, Phosphorus functionalization for the rapid preparation of highly nanoporous submicron-diameter carbon fibers by electrospinning of lignin solutions, J. Mater. Chem. A. 6 (2018) 1219–1233.
[41] R. Berenguer, R. Ruiz-Rosas, A. Gallardo, D. Cazorla-Amorós, E. Morallón, H. Nishihara, T. Kyotani, J. Rodríguez-Mirasol, T. Cordero, Enhanced electro-oxidation resistance of carbon electrodes induced by phosphorus surface groups, Carbon 95 (2015) 681–689.
[42] C. Huang, A.M. Puziy, O.I. Poddubnaya, D. Hulicova-Jurcakova, M. Sobiesiak, B. Gawdzik, Phosphorus, nitrogen and oxygen co-doped polymer-based core-shell carbon sphere for high-performance hybrid supercapacitors, Electrochim. Acta 270 (2018) 339–351.
[43] C. Lai, Z. Zhou, L. Zhang, X. Wang, Q. Zhou, Y. Zhao, Y. Wang, X.F. Wu, Z. Zhu, H. Fong, Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors, J. Power Sources 247 (2014) 134–141.
[44] W. Liu, Y. Yao, O. Fu, S. Jiang, Y. Fang, Y. Wei, X. Lu, Lignin-derived carbon nanosheets for high-capacitance supercapacitors, RSC Adv. 7 (2017) 48537–48543.
[45] C. Xiong, W. Zhong, Y. Zou, J. Luo, W. Yang, Electroactive biopolymer/graphene hydrogels prepared for high-performance supercapacitor electrodes, Electrochim. Acta 211 (2016) 941–949.
[46] G. Milczarek, O. Inganäs, Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks., Science 335 (2012) 1468–71.
[47] H. Xu, H. Jiang, X. Li, G. Wang, Synthesis and electrochemical capacitance performance of polyaniline doped with lignosulfonate, RSC Adv. 5 (2015) 76116–76121.
[48] P. Saini (Eds.), Fundamentals of conjugated polymer blends, copolymers and composites : synthesis, properties and applications, Wiley, 2015.
[49] L. Zhu, L. Wu, Y. Sun, M. Li, J. Xu, Z. Bai, G. Liang, L. Liu, D. Fang, W. Xu, Cotton fabrics coated with lignosulfonate-doped polypyrrole for flexible supercapacitor electrodes, RSC Adv. 4 (2014) 6261.
[50] T.T. Lin, W.D. Wang, Q.F. Lü, H.B. Zhao, X. Zhang, Q. Lin, Graphene-wrapped nitrogen-containing carbon spheres for electrochemical supercapacitor application, J. Anal. Appl. Pyrolysis. 113 (2015) 545–550.
[51] J. Jin, B. Yu, Z. Shi, C. Wang, C. Chong, Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries, J. Power Sources 272 (2014) 800–807.
[52] J.M. Rosas, R. Berenguer, M.J. Valero-Romero, J. Rodríguez-Mirasol, T. Cordero, Preparation of different carbon materials by thermochemical conversion of lignin, Front. Mater. 1 (2014) 29.
[53] H. Lu, A. Cornell, F. Alvarado, M. Behm, S. Leijonmarck, J. Li, P. Tomani, G. Lindbergh, H. Lu, A. Cornell, F. Alvarado, M. Behm, S. Leijonmarck, J. Li, P. Tomani, G. Lindbergh, Lignin as a binder material for eco-friendly li-ion batteries, Materials 9 (2016) 127.
[54] T. Chen, Q. Zhang, J. Pan, J. Xu, Y. Liu, M. Al-Shroofy, Y.T. Cheng, Low-temperature treated lignin as both binder and conductive additive for silicon nanoparticle composite electrodes in lithium-ion batteries, ACS Appl. Mater. Interfaces 8 (2016) 32341–32348.
[55] A.M. Navarro-Suárez, J. Carretero-González, T. Rojo, M. Armand, Poly(quinone-amine)/nanocarbon composite electrodes with enhanced proton storage capacity, J. Mater. Chem. A. 5 (2017) 23292–23298.
[56] K. Wang, M. Xu, Y. Gu, Z. Gu, Q.H. Fan, Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes, J. Power Sources 332 (2016) 180–186.
[57] X. Xu, J. Zhou, D.H. Nagaraju, L. Jiang, V.R. Marinov, G. Lubineau, H.N. Alshareef, M. Oh, Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices, Adv. Funct. Mater. 25 (2015) 3193–3202.
[58] S. Leguizamon, K.P. Díaz-Orellana, J. Velez, M.C. Thies, M.E. Roberts, High charge-capacity polymer electrodes comprising alkali lignin from the kraft process, J. Mater. Chem. A. 3 (2015) 11330–11339.
[59] S. Admassie, A. Elfwing, E.W.H. Jager, Q. Bao, O. Inganäs, A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage, J. Mater. Chem. A. 2 (2014) 1974–1979.
[60] M. Klose, R. Reinhold, F. Logsch, F. Wolke, J. Linnemann, U. Stoeck, S. Oswald, M. Uhlemann, J. Balach, J. Markowski, P. Ay, L. Giebeler, Softwood Lignin as a sustainable feedstock for porous carbons as active material for supercapacitors using an ionic liquid electrolyte, ACS Sustain. Chem. Eng. 5 (2017) 4094–4102.
[61] W. Zhang, M. Zhao, R. Liu, X. Wang, H. Lin, Hierarchical porous carbon derived from lignin for high performance supercapacitor, Colloids Surfaces A Physicochem. Eng. Asp. 484 (2015) 518–527.
[62] D. Salinas-Torres, R. Ruiz-Rosas, M.J. Valero-Romero, J. Rodríguez-Mirasol, T. Cordero, E. Morallón, D. Cazorla-Amorós, Asymmetric capacitors using lignin-based hierarchical porous carbons, J. Power Sources 326 (2016) 641–651.