Recent Progress in Electrode Materials for Sodium Ion Batteries


Recent Progress in Electrode Materials for Sodium Ion Batteries

Mesut Yıldız, Haydar Göksu, Husnu Gerengi, Kubilay Arıkan, Mohd Imran Ahamed, Fatih Şen

Fossil fuels, which meet most of the energy needs and have a limited reserve, are known to be exhausted. Due to the increase in fossil fuel prices and adverse environmental impacts, renewable energy sources such as water, sea wave, solar, wind, and geothermal energy are gaining importance. Renewable energy sources are of great importance since they are accessible and inexhaustible. Various devices are used for the storage of these renewable energy sources. Lithium batteries, called Li-ion batteries (LIBs), are the most widely used devices for storing this energy. The demand for portable electronic devices has increased with the developing technology. In addition, the importance of electric cars in the transport sector and the research and development activities on lithium-ion batteries are becoming increasingly important. LIBs are preferred by designers and consumers due to their low CO2 emissions. However, in addition to these advantages, different studies have been carried out due to the high cost of production of LIBs and limited lithium reserves. There are also sodium-ion batteries (SIBs) that can be alternative to LIBs and have large-scale energy storage capacity due to their widespread use and low costs. SIBs have essential advantages such as good cycle life, high energy density, and self-discharge. In this chapter, SIBs were compared with the LIB, and the history of SIB, the various anode materials used in SIB was examined.

Magnetic Nanomaterial, Nanoparticle, Ion Batteries, Sodium

Published online 5/20/2020, 22 pages

Citation: Mesut Yıldız, Haydar Göksu, Husnu Gerengi, Kubilay Arıkan, Mohd Imran Ahamed, Fatih Şen, Recent Progress in Electrode Materials for Sodium Ion Batteries, Materials Research Foundations, Vol. 76, pp 183-204, 2020


Part of the book on Sodium-Ion Batteries

[1] A. Manthiram, A. Vadivel Murugan, A. Sarkar, T. Muraliganth, Nanostructured electrode materials for electrochemical energy storage and conversion, Energy Environ. Sci. 1 (2008) 621. doi:10.1039/b811802g.
[2] M. Winter, R.J. Brodd*, What Are Batteries, Fuel Cells, and Supercapacitors?, (2004). doi:10.1021/CR020730K.
[3] D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage, Angew. Chemie Int. Ed. 54 (2015) 3431–3448. doi:10.1002/anie.201410376.
[4] M.S. Islam, C.A.J. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties, Chem. Soc. Rev. 43 (2014) 185–204. doi:10.1039/C3CS60199D.
[5] V. Palomares, M. Casas-Cabanas, E. Castillo-Martínez, M.H. Han, T. Rojo, Update on Na-based battery materials. A growing research path, Energy Environ. Sci. 6 (2013) 2312. doi:10.1039/c3ee41031e.
[6] W. Zhou, Y. Li, S. Xin, J.B. Goodenough, Rechargeable Sodium All-Solid-State Battery, ACS Cent. Sci. 3 (2017) 52–57. doi:10.1021/acscentsci.6b00321.
[7] Y. Li, Y. Lu, C. Zhao, Y.-S. Hu, M.-M. Titirici, H. Li, X. Huang, L. Chen, Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage, Energy Storage Mater. 7 (2017) 130–151. doi:10.1016/J.ENSM.2017.01.002.
[8] S. Guo, H. Yu, P. Liu, Y. Ren, T. Zhang, M. Chen, M. Ishida, H. Zhou, High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na 0.8 Ni 0.4 Ti 0.6 O 2, Energy Environ. Sci. 8 (2015) 1237–1244. doi:10.1039/C4EE03361B.
[9] Y.-L. Ding, P. Kopold, K. Hahn, P.A. van Aken, J. Maier, Y. Yu, A Lamellar Hybrid Assembled from Metal Disulfide Nanowall Arrays Anchored on a Carbon Layer: In Situ Hybridization and Improved Sodium Storage, Adv. Mater. 28 (2016) 7774–7782. doi:10.1002/adma.201602009.
[10] X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou, F. Zheng, C. Yang, J.-H. Wang, M. Liu, Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured Sb 2 S 3 on Sulfur-Doped Graphene Sheets, ACS Nano. 10 (2016) 10953–10959. doi:10.1021/acsnano.6b05653.
[11] J. Xu, J. Ma, Q. Fan, S. Guo, S. Dou, Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) Batteries, Adv. Mater. 29 (2017) 1606454. doi:10.1002/adma.201606454.
[12] W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, L. Hu, Na-Ion Battery Anodes: Materials and Electrochemistry, Acc. Chem. Res. 49 (2016) 231–240. doi:10.1021/acs.accounts.5b00482.
[13] J. Mao, T. Zhou, Y. Zheng, H. Gao, H. kun Liu, Z. Guo, Two-dimensional nanostructures for sodium-ion battery anodes, J. Mater. Chem. A. 6 (2018) 3284–3303. doi:10.1039/C7TA10500B.
[14] J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries, Adv. Sci. 4 (2017) 1700146. doi:10.1002/advs.201700146.
[15] Q. Wang, J. Xu, W. Zhang, M. Mao, Z. Wei, L. Wang, C. Cui, Y. Zhu, J. Ma, Research progress on vanadium-based cathode materials for sodium ion batteries, J. Mater. Chem. A. 6 (2018) 8815–8838. doi:10.1039/C8TA01627E.
[16] P. Simon, Y. Gogotsi, Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems, Acc. Chem. Res. 46 (2013) 1094–1103. doi:10.1021/ar200306b.
[17] W. Li, J. Liu, D. Zhao, Mesoporous materials for energy conversion and storage devices, Nat. Rev. Mater. 1 (2016) 16023. doi:10.1038/natrevmats.2016.23.
[18] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage, Nat. Mater. 14 (2015) 271–279. doi:10.1038/nmat4170.
[19] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science (80-. ). 347 (2015) 1246501. doi:10.1126/science.1246501.
[20] E. Pomerantseva, Y. Gogotsi, Two-dimensional heterostructures for energy storage, Nat. Energy. 2 (2017) 17089. doi:10.1038/nenergy.2017.89.
[21] P.G. Bruce, B. Scrosati, J.-M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries, Angew. Chemie Int. Ed. 47 (2008) 2930–2946. doi:10.1002/anie.200702505.
[22] C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Advanced Materials for Energy Storage, Adv. Mater. 22 (2010) E28–E62. doi:10.1002/adma.200903328.
[23] D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, X. Fan, S. V. Savilov, J. Lin, H.J. Fan, Z.X. Shen, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance, Nat. Commun. 7 (2016) 12122. doi:10.1038/ncomms12122.
[24] C. Fouassier, C. Delmas, P. Hagenmuller, Evolution structurale et proprietes physiques des phases AXMO2 (A = Na, K; M = Cr, Mn, Co) (x ⩽ 1), Mater. Res. Bull. 10 (1975) 443–449. doi:10.1016/0025-5408(75)90166-X.
[25] J.J. Braconnier, C. Delmas, P. Hagenmuller, Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2, Mater. Res. Bull. 17 (1982) 993–1000. doi:10.1016/0025-5408(82)90124-6.
[26] M.S. Whittingham, Chemistry of intercalation compounds: Metal guests in chalcogenide hosts, Prog. Solid State Chem. 12 (1978) 41–99. doi:10.1016/0079-6786(78)90003-1.
[27] A.S. Nagelberg, W.L. Worrell, A thermodynamic study of sodium-intercalated TaS2 and TiS2, J. Solid State Chem. 29 (1979) 345–354. doi:10.1016/0022-4596(79)90191-9.
[28] C. Delmas, J. Braconnıer, C. Fouassıer, P. Hagenmuller, Electrochemical intercalation of sodium in NaxCoO2 bronzes, Solid State Ionics. 3–4 (1981) 165–169. doi:10.1016/0167-2738(81)90076-X.
[29] J. Molenda, C. Delmas, P. Hagenmuller, Electronic and electrochemical properties of NaxCoO2−y cathode, Solid State Ionics. 9–10 (1983) 431–435. doi:10.1016/0167-2738(83)90271-0.
[30] L.W. Shacklette, T.R. Jow, L. Townsend, Rechargeable Electrodes from Sodium Cobalt Bronzes, J. Electrochem. Soc. 135 (1988) 2669. doi:10.1149/1.2095407.
[31] J.M. Tarascon, G.W. Hull, Sodium intercalation into the layer oxides NaxMo2O4, Solid State Ionics. 22 (1986) 85–96. doi:10.1016/0167-2738(86)90062-7.
[32] T.R. Jow, L.W. Shacklette, M. Maxfield, D. Vernick, The Role of Conductive Polymers in Alkali-Metal Secondary Electrodes, J. Electrochem. Soc. 134 (1987) 1730. doi:10.1149/1.2100746.
[33] K. West, B. Zachau-Christiansen, T. Jacobsen, S. Skaarup, Sodium insertion in vanadium oxides, Solid State Ionics. 28–30 (1988) 1128–1131. doi:10.1016/0167-2738(88)90343-8.
[34] L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries, J. Power Sources. 293 (2015) 784–789. doi:10.1016/J.JPOWSOUR.2015.06.015.
[35] M. Armand, J.-M. Tarascon, Building better batteries, Nature. 451 (2008) 652–657. doi:10.1038/451652a.
[36] J. Tang, A.D. Dysart, V.G. Pol, Advancement in sodium-ion rechargeable batteries, Curr. Opin. Chem. Eng. 9 (2015) 34–41. doi:10.1016/j.coche.2015.08.007.
[37] Shoshen Umeed Maaroof Alı, Ulusal Tez Merkezi, Yüksek Öğretim Kurumu. (2018) 63. (accessed July 9, 2019).
[38] K. Kubota, S. Komaba, Review—Practical Issues and Future Perspective for Na-Ion Batteries, J. Electrochem. Soc. 162 (2015) A2538–A2550. doi:10.1149/2.0151514jes.
[39] R. Mogensen, D. Brandell, R. Younesi, Solubility of the Solid Electrolyte Interphase (SEI) in Sodium Ion Batteries, ACS Energy Lett. 1 (2016) 1173–1178. doi:10.1021/acsenergylett.6b00491.
[40] J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future, Chem. Soc. Rev. 46 (2017) 3529–3614. doi:10.1039/C6CS00776G.
[41] X. Chen, K. Du, Y. Lai, G. Shang, H. Li, Z. Xiao, Y. Chen, J. Li, Z. Zhang, In-situ carbon-coated Na 2 FeP 2 O 7 anchored in three-dimensional reduced graphene oxide framework as a durable and high-rate sodium-ion battery cathode, J. Power Sources. 357 (2017) 164–172. doi:10.1016/j.jpowsour.2017.04.075.
[42] C. Zhu, F. Xu, H. Min, Y. Huang, W. Xia, Y. Wang, Q. Xu, P. Gao, L. Sun, Identifying the Conversion Mechanism of NiCo 2 O 4 during Sodiation-Desodiation Cycling by In Situ TEM, Adv. Funct. Mater. 27 (2017) 1606163. doi:10.1002/adfm.201606163.
[43] K. Zhang, Z. Hu, X. Liu, Z. Tao, J. Chen, FeSe 2 Microspheres as a High-Performance Anode Material for Na-Ion Batteries, Adv. Mater. 27 (2015) 3305–3309. doi:10.1002/adma.201500196.
[44] H. Yu, Y. Ren, D. Xiao, S. Guo, Y. Zhu, Y. Qian, L. Gu, H. Zhou, An ultrastable anode for long-life room-temperature sodium-ion batteries., Angew. Chem. Int. Ed. Engl. 53 (2014) 8963–9. doi:10.1002/anie.201404549.
[45] J. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries, Angew. Chemie Int. Ed. 52 (2013) 4633–4636. doi:10.1002/anie.201209689.
[46] M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-Ion Batteries, Adv. Funct. Mater. 23 (2013) 947–958. doi:10.1002/adfm.201200691.
[47] U. Halim, C.R. Zheng, Y. Chen, Z. Lin, S. Jiang, R. Cheng, Y. Huang, X. Duan, A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction, Nat. Commun. 4 (2013) 2213. doi:10.1038/ncomms3213.
[48] L. Shi, T. Zhao, Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries, J. Mater. Chem. A. 5 (2017) 3735–3758. doi:10.1039/C6TA09831B.
[49] J. Shi, Q. Ji, Z. Liu, Y. Zhang, Recent Advances in Controlling Syntheses and Energy Related Applications of MX 2 and MX 2 /Graphene Heterostructures, Adv. Energy Mater. 6 (2016) 1600459. doi:10.1002/aenm.201600459.
[50] C. Guerrero-Bermea, L.P. Rajukumar, A. Dasgupta, Y. Lei, Y. Hashimoto, S. Sepulveda-Guzman, R. Cruz-Silva, M. Endo, M. Terrones, Two-dimensional and three-dimensional hybrid assemblies based on graphene oxide and other layered structures: A carbon science perspective, Carbon N. Y. 125 (2017) 437–453. doi:10.1016/j.carbon.2017.09.082.
[51] S. Wu, Y. Du, S. Sun, Transition metal dichalcogenide based nanomaterials for rechargeable batteries, Chem. Eng. J. 307 (2017) 189–207. doi:10.1016/J.CEJ.2016.08.044.
[52] M. Pumera, Z. Sofer, A. Ambrosi, Layered transition metal dichalcogenides for electrochemical energy generation and storage, J. Mater. Chem. A. 2 (2014) 8981–8987. doi:10.1039/C4TA00652F.
[53] C.N.R. Rao, H.S.S. Ramakrishna Matte, U. Maitra, Graphene Analogues of Inorganic Layered Materials, Angew. Chemie Int. Ed. 52 (2013) 13162–13185. doi:10.1002/anie.201301548.
[54] M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L. Zhang, A.Z. Moshfegh, Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives, Nanoscale Horizons. 3 (2018) 90–204. doi:10.1039/C7NH00137A.
[55] W. Kang, Y. Wang, J. Xu, Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries, J. Mater. Chem. A. 5 (2017) 7667–7690. doi:10.1039/C7TA00003K.x”
[56] Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries, Nat. Commun. 5 (2014) 4033. doi:10.1038/ncomms5033.
[57] Y. Liu, F. Fan, J. Wang, Y. Liu, H. Chen, K.L. Jungjohann, Y. Xu, Y. Zhu, D. Bigio, T. Zhu, C. Wang, In Situ Transmission Electron Microscopy Study of Electrochemical Sodiation and Potassiation of Carbon Nanofibers, Nano Lett. 14 (2014) 3445–3452. doi:10.1021/nl500970a.
[58] H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life, Adv. Mater. 27 (2015) 7861–7866. doi:10.1002/adma.201503816.
[59] W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, A high performance sulfur-doped disordered carbon anode for sodium ion batteries, Energy Environ. Sci. 8 (2015) 2916–2921. doi:10.1039/C5EE01985K.
[60] H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen, X. Ji, Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries., Adv. Sci. (Weinheim, Baden-Wurttemberg, Ger. 4 (2017) 1600243. doi:10.1002/advs.201600243.
[61] M. Zhong, L. Kong, N. Li, Y.-Y. Liu, J. Zhu, X.-H. Bu, Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries, Coord. Chem. Rev. 388 (2019) 172–201. doi:10.1016/j.ccr.2019.02.029.
[62] M. Wang, Z. Yang, W. Li, L. Gu, Y. Yu, Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network, Small. 12 (2016) 2559–2566. doi:10.1002/smll.201600101.
[63] W. Li, L. Zeng, Z. Yang, L. Gu, J. Wang, X. Liu, J. Cheng, Y. Yu, Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers, Nanoscale. 6 (2014) 693–698. doi:10.1039/C3NR05022J.
[64] Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, C. Wang, Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode, ACS Nano. 7 (2013) 6378–6386. doi:10.1021/nn4025674.
[65] F. Qin, H. Hu, Y. Jiang, K. Zhang, Z. Fang, Y. Lai, J. Li, Mesoporous MoSe2/C composite as anode material for sodium/lithium ion batteries, J. Electroanal. Chem. 823 (2018) 67–72. doi:10.1016/J.JELECHEM.2018.05.023.
[66] D.-H. Kim, B. Kang, H. Lee, Comparative study of fluoroethylene carbonate and succinic anhydride as electrolyte additive for hard carbon anodes of Na-ion batteries, J. Power Sources. 423 (2019) 137–143. doi:10.1016/j.jpowsour.2019.03.047.
[67] W. Meng, M. Guo, X. Liu, J. Chen, Z. Bai, Z. Wang, Spherical nano Sb@HCMs as high-rate and superior cycle performance anode material for sodium-ion batteries, J. Alloys Compd. 795 (2019) 141–150. doi:10.1016/j.jallcom.2019.04.285.
[68] V. Velez, G. Ramos-Sánchez, B. Lopez, L. Lartundo-Rojas, I. González, L. Sierra, Synthesis of novel hard mesoporous carbons and their applications as anodes for Li and Na ion batteries, Carbon N. Y. 147 (2019) 214–226. doi:10.1016/J.CARBON.2019.02.083.
[69] L. Wang, Z. Wei, M. Mao, H. Wang, Y. Li, J. Ma, Metal oxide/graphene composite anode materials for sodium-ion batteries, Energy Storage Mater. 16 (2019) 434–454. doi:10.1016/j.ensm.2018.06.027.
[70] R. Zhang, Y. Cui, W. Fan, G. He, X. Liu, Ambient stable Na0.76Mn0.48Ti0.44O2 as anode for Na-ion battery, Electrochim. Acta. 295 (2019) 181–186. doi:10.1016/j.electacta.2018.10.126.
[71] L. Li, Y. Ding, D. Yu, L. Li, S. Ramakrishna, S. Peng, Electrospun NiCo2O4 nanotubes as anodes for Li- and Na-ion batteries, J. Alloys Compd. 777 (2019) 1286–1293. doi:10.1016/J.JALLCOM.2018.11.115.
[72] L. Wang, J. Światowska, S. Dai, M. Cao, Z. Zhong, Y. Shen, M. Wang, Promises and challenges of alloy-type and conversion-type anode materials for sodium–ion batteries, Mater. Today Energy. 11 (2019) 46–60. doi:10.1016/J.MTENER.2018.10.017.
[73] J. Li, X. Xu, Z. Luo, C. Zhang, X. Yu, Y. Zuo, T. Zhang, P. Tang, J. Arbiol, J. Llorca, J. Liu, A. Cabot, Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution, Electrochim. Acta. 304 (2019) 246–254. doi:10.1016/J.ELECTACTA.2019.02.098.
[74] V.M. Nagulapati, Y.H. Yoon, D.S. Kim, H. Kim, W.S. Lee, J.H. Lee, K.H. Kim, J. Hur, I.T. Kim, S.G. Lee, Effect of binders and additives to tailor the electrochemical performance of Sb2Te3-TiC alloy anodes for high-performance sodium-ion batteries, J. Ind. Eng. Chem. 76 (2019) 419–428. doi:10.1016/J.JIEC.2019.04.008.
[75] W. Ma, K. Yin, H. Gao, J. Niu, Z. Peng, Z. Zhang, Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries, Nano Energy. 54 (2018) 349–359. doi:10.1016/J.NANOEN.2018.10.027.
[76] P. Feng, W. Wang, K. Wang, S. Cheng, K. Jiang, A high-performance carbon with sulfur doped between interlayers and its sodium storage mechanism as anode material for sodium ion batteries, J. Alloys Compd. 795 (2019) 223–232. doi:10.1016/J.JALLCOM.2019.04.338.
[77] J. Xu, W. Wei, X. Zhang, L. Liang, M. Xu, Lotus-stalk Bi4Ge3O12 as binder-free anode for lithium and sodium ion batteries, Chinese Chem. Lett. 30 (2019) 1341–1345. doi:10.1016/J.CCLET.2019.03.005.
[78] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research Development on Sodium-Ion Batteries, Chem. Rev. 114 (2014) 11636–11682. doi:10.1021/cr500192f.
[79] J.B. Goodenough, H..-P. Hong, J.A. Kafalas, Fast Na+-ion transport in skeleton structures, Mater. Res. Bull. 11 (1976) 203–220. doi:10.1016/0025-5408(76)90077-5.
[80] W. Song, X. Ji, Z. Wu, Y. Yang, Z. Zhou, F. Li, Q. Chen, C.E. Banks, Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries, J. Power Sources. 256 (2014) 258–263. doi:10.1016/J.JPOWSOUR.2014.01.025.
[81] Q. Yang, W. Wang, H. Li, J. Zhang, F. Kang, B. Li, Investigation of iron hexacyanoferrate as a high rate cathode for aqueous batteries: Sodium-ion batteries and lithium-ion batteries, Electrochim. Acta. 270 (2018) 96–103. doi:10.1016/J.ELECTACTA.2018.02.171.
[82] T. Huang, D. Lu, L. Ma, X. Xi, R. Liu, D. Wu, A hit-and-run strategy towards perylene diimide/reduced graphene oxide as high performance sodium ion battery cathode, Chem. Eng. J. 349 (2018) 66–71. doi:10.1016/J.CEJ.2018.05.078.
[83] G.K. Veerasubramani, Y. Subramanian, M.-S. Park, B. Senthilkumar, A. Eftekhari, S.J. Kim, D.-W. Kim, Enhanced sodium-ion storage capability of P2/O3 biphase by Li-ion substitution into P2-type Na0.5Fe0.5Mn0.5O2 layered cathode, Electrochim. Acta. 296 (2019) 1027–1034. doi:10.1016/J.ELECTACTA.2018.11.160.
[84] X. Song, T. Meng, Y. Deng, A. Gao, J. Nan, D. Shu, F. Yi, The effects of the functional electrolyte additive on the cathode material Na0.76Ni0.3Fe0.4Mn0.3O2 for sodium-ion batteries, Electrochim. Acta. 281 (2018) 370–377. doi:10.1016/J.ELECTACTA.2018.05.185.
[85] S. Guo, Y. Sun, P. Liu, J. Yi, P. He, X. Zhang, Y. Zhu, R. Senga, K. Suenaga, M. Chen, H. Zhou, Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries, Sci. Bull. 63 (2018) 376–384. doi:10.1016/J.SCIB.2018.02.012.
[86] S. Bao, S. Luo, Z. Wang, S. Yan, Q. Wang, Improving the electrochemical performance of layered cathode oxide for sodium-ion batteries by optimizing the titanium content, J. Colloid Interface Sci. 544 (2019) 164–171. doi:10.1016/J.JCIS.2019.02.094.
[87] Y. Lyu, Y. Liu, Z.-E. Yu, N. Su, Y. Liu, W. Li, Q. Li, B. Guo, B. Liu, Recent advances in high energy-density cathode materials for sodium-ion batteries, Sustain. Mater. Technol. 21 (2019) e00098. doi:10.1016/J.SUSMAT.2019.E00098.
[88] K. Tang, Y. Wang, X. Zhang, S. Jamil, Y. Huang, S. Cao, X. Xie, Y. Bai, X. Wang, Z. Luo, G. Chen, High-performance P2-Type Fe/Mn-based oxide cathode materials for sodium-ion batteries, Electrochim. Acta. 312 (2019) 45–53. doi:10.1016/J.ELECTACTA.2019.04.183.
[89] X. Li, S. Zhou, Q. Wu, X. Wang, T. Yao, Y. Zhang, B. Song, Na0.9Ni0.45Ti0.55O2 as novel bipolar material for sodium ion batteries, Solid State Ionics. 334 (2019) 14–20. doi:10.1016/J.SSI.2019.01.033.
[90] R. Córdoba, A. Kuhn, J.C. Pérez-Flores, E. Morán, J.M. Gallardo-Amores, F. García-Alvarado, Sodium insertion in high pressure β-V2O5: A new high capacity cathode material for sodium ion batteries, J. Power Sources. 422 (2019) 42–48. doi:10.1016/J.JPOWSOUR.2019.03.018.
[91] D. Zhou, W. Huang, X. Lv, F. Zhao, A novel P2/O3 biphase Na0.67Fe0.425Mn0.425Mg0.15O2 as cathode for high-performance sodium-ion batteries, J. Power Sources. 421 (2019) 147–155. doi:10.1016/J.JPOWSOUR.2019.02.061.
[92] Y. Fang, Q. Liu, L. Xiao, Y. Rong, Y. Liu, Z. Chen, X. Ai, Y. Cao, H. Yang, J. Xie, C. Sun, X. Zhang, B. Aoun, X. Xing, X. Xiao, Y. Ren, A Fully Sodiated NaVOPO4 with Layered Structure for High-Voltage and Long-Lifespan Sodium-Ion Batteries, Chem. 4 (2018) 1167–1180. doi:10.1016/J.CHEMPR.2018.03.006.
[93] Y. Qi, L. Mu, J. Zhao, Y.-S. Hu, H. Liu, S. Dai, Superior Na-Storage Performance of Low-Temperature-Synthesized Na 3 (VO 1− x PO 4 ) 2 F 1+2 x (0≤ x ≤1) Nanoparticles for Na-Ion Batteries, Angew. Chemie Int. Ed. 54 (2015) 9911–9916. doi:10.1002/anie.201503188.
[94] V.S. Rangasamy, S. Thayumanasundaram, J.-P. Locquet, Solvothermal synthesis and electrochemical properties of Na2CoSiO4 and Na2CoSiO4/carbon nanotube cathode materials for sodium-ion batteries, Electrochim. Acta. 276 (2018) 102–110. doi:10.1016/J.ELECTACTA.2018.04.166.
[95] R. Rajagopalan, Z. Wu, Y. Liu, S. Al-Rubaye, E. Wang, C. Wu, W. Xiang, B. Zhong, X. Guo, S.X. Dou, H.K. Liu, A novel high voltage battery cathodes of Fe2+/Fe3+ sodium fluoro sulfate lined with carbon nanotubes for stable sodium batteries, J. Power Sources. 398 (2018) 175–182. doi:10.1016/J.JPOWSOUR.2018.07.066.
[96] X. Liu, L. Tang, Q. Xu, H. Liu, Y. Wang, Ultrafast and ultrastable high voltage cathode of Na2+2xFe2-x(SO4)3 microsphere scaffolded by graphene for sodium ion batteries, Electrochim. Acta. 296 (2019) 345–354. doi:10.1016/J.ELECTACTA.2018.11.064.
[97] D. Jin, H. Qiu, F. Du, Y. Wei, X. Meng, Co-doped Na2FePO4F fluorophosphates as a promising cathode material for rechargeable sodium-ion batteries, Solid State Sci. 93 (2019) 62–69. doi:10.1016/J.SOLIDSTATESCIENCES.2019.04.014.
[98] Y.-L. Ruan, K. Wang, S.-D. Song, X. Han, B.-W. Cheng, Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries, Electrochim. Acta. 160 (2015) 330–336. doi:10.1016/J.ELECTACTA.2015.01.186.
[99] X. Cao, A. Pan, B. Yin, G. Fang, Y. Wang, X. Kong, T. Zhu, J. Zhou, G. Cao, S. Liang, Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications, Nano Energy. 60 (2019) 312–323. doi:10.1016/J.NANOEN.2019.03.066.
[100] J. Xu, J. Chen, L. Tao, Z. Tian, S. Zhou, N. Zhao, C.-P. Wong, Investigation of Na3V2(PO4)2O2F as a sodium ion battery cathode material: Influences of morphology and voltage window, Nano Energy. 60 (2019) 510–519. doi:10.1016/J.NANOEN.2019.03.063.
[101] N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, F. Sen, Composites of Palladium–Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile, ACS Omega. 4 (2019) 6848–6853. doi:10.1021/acsomega.9b00485.
[102] H. Göksu, B. Çelik, Y. Yıldız, F. Şen, B. Kılbaş, Superior Monodisperse CNT-Supported CoPd (CoPd@CNT) Nanoparticles for Selective Reduction of Nitro Compounds to Primary Amines with NaBH4 in Aqueous Medium, ChemistrySelect. 1 (2016) 2366–2372. doi:10.1002/slct.201600509.
[103] ‡ and Fatih Şen†, † Gülsün Gökaǧaç*, Different Sized Platinum Nanoparticles Supported on Carbon:  An XPS Study on These Methanol Oxidation Catalysts, (2007). doi:10.1021/JP068381B.
[104] B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine−borane, Int. J. Hydrogen Energy. 42 (2017) 23292–23298. doi:10.1016/J.IJHYDENE.2017.06.032.
[105] E. Demir, A. Savk, B. Sen, F. Sen, A Novel Monodisperse Metal Nanoparticles Anchored Graphene Oxide as Counter Electrode for Dye-Sensitized Solar Cells, Nano-Structures and Nano-Objects. 12 (2017) 41–45. doi:10.1016/j.nanoso.2017.08.018.
[106] R. Ayranci, B. Demirkan, B. Sen, A. Şavk, M. Ak, F. Şen, Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection., Mater. Sci. Eng. C. Mater. Biol. Appl. 99 (2019) 951–956. doi:10.1016/j.msec.2019.02.040.
[107] B. Sen, A. Şavk, F. Sen, Highly Efficient Monodisperse Pt Nanoparticles Confined in The Carbon Black Hybrid Material for Hydrogen Liberation, J. Colloid Interface Sci. 520 (2018) 112–118. doi:10.1016/j.jcis.2018.03.004.
[108] S. Ertan, F. Şen, S. Şen, G. Gökağaç, Platinum nanocatalysts prepared with different surfactants for C1–C3 alcohol oxidations and their surface morphologies by AFM, J. Nanoparticle Res. 14 (2012) 922–934. doi:10.1007/s11051-012-0922-5.
[109] B. Şen, B. Demirkan, A. Savk, R. Kartop, M.S. Nas, M.H. Alma, S. Sürdem, F. Şen, High-performance graphite-supported ruthenium nanocatalyst for hydrogen evolution reaction, J. Mol. Liq. 268 (2018) 807–812. doi:10.1016/j.molliq.2018.07.117.
[110] R. Ayranci, G. Baskaya, M. Guzel, S. Bozkurt, M. Ak, A. Savk, F. Sen, Activated Carbon Furnished Monodisperse Pt Nanocomposites as a Superior Adsorbent for Methylene Blue Removal from Aqueous Solutions, Nano-Structures and Nano-Objects. 11 (2017) 13–19. doi:10.1016/j.nanoso.2017.05.008.
[111] R. Ayranci, G. Baskaya, M. Guzel, S. Bozkurt, M. Ak, A. Savk, F. Sen, Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation, Nano-Structures & Nano-Objects. 11 (2017) 13–19. doi:10.1016/j.nanoso.2017.05.008.
[112] B. Şen, A. Aygün, T.O. Okyay, A. Şavk, R. Kartop, F. Şen, Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide with The High Catalytic Activity and Reusability in The Dehydrogenation of Dimethylamine-borane. International Journal of Hydrogen Energy, 43 (2018) 20176–20182., Int. J. Hydrogen Energy. (2018). doi:10.1016/j.ijhydene.2018.03.175.
[113] F. Sen, Y. Karatas, M. Gulcan, M. Zahmakiran, Amylamine stabilized platinum(0) nanoparticles: Active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane, RSC Adv. (2014). doi:10.1039/c3ra43701a.
[114] Y. Koskun, A. Şavk, B. Şen, F. Şen, Highly Sensitive Glucose Sensor Based on Monodisperse Palladium Nickel/Activated Carbon Nanocomposites, Anal. Chim. Acta. 1010 (2018) 37–43. doi:10.1016/j.aca.2018.01.035.
[115] S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, F. Şen, Carbon-nanotube-based Rhodium Nanoparticles as Highly-Active Catalyst for Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature, J. Colloid Interface Sci. 530 (2018) 321–327. doi:10.1016/j.jcis.2018.06.100.
[116] B. Şen, A. Aygün, A. Şavk, S. Akocak, F. Şen, Bimetallic Palladium–iridium Alloy Nanoparticles as Highly Efficient and Stable Catalyst for The Hydrogen Evolution Reaction, Int. J. Hydrogen Energy. 43 (2018) 20183–20191. doi:10.1016/j.ijhydene.2018.07.081.
[117] B. Şen, A. Aygün, A. Şavk, S. Akocak, F. Şen, Bimetallic palladium–iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction, Int. J. Hydrogen Energy. 43 (2018) 20183–20191. doi:10.1016/J.IJHYDENE.2018.07.081.
[118] Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, F. Şen, Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation, Int. J. Hydrogen Energy. 42 (2017) 13061–13069. doi:10.1016/j.ijhydene.2017.03.230.