Tin-Based Materials for Sodium-Ion Batteries


Tin-Based Materials for Sodium-Ion Batteries

Bhawana Jain, Ajaya K. Singh, Md. Abu Bin Hasan Susan

Due to intermittent behavior, renewable energy sources can be used for storage of sustainable electrical energy in stationary devices. Sodium ion batteries have the bright prospect for energy storage from economic point of view because of its high abundance in nature. But batteries of this kind are associated with lower energy density, which moves scientist back to Li-ion batteries. However, sodium ion batteries (NaIBs) with Sn as advanced anode material may be more suitable for energy storage with high cycling capacity and negligible capacity loss. Anode material of NaIBs highly affects the basic characteristics of such devices such as cycling effect, capacity etc. In this account, we deliberate recent developments in Sn based anode material of NaIBs. We have highlighted the role of Sn as anode along with the mechanism. We focused and discussed in detail Sn-alloys which offer highest reported capacities albeit some challenges and solution.

Na-Ion Batteries, Sn-Anode, Types of Sn-Based Anode, Mechanism, Performance

Published online 5/20/2020, 24 pages

Citation: Bhawana Jain, Ajaya K. Singh, Md. Abu Bin Hasan Susan, Tin-Based Materials for Sodium-Ion Batteries, Materials Research Foundations, Vol. 76, pp 135-158, 2020

DOI: https://doi.org/10.21741/9781644900833-6

Part of the book on Sodium-Ion Batteries

[1] J. Deng, W. B. Luo, S. L. Chou, H. K. Liu, S. X. Dou, Sodium ion batteries: From academic research to practical commercialization, Adv. Energy Mater. 8(5) (2018) 1701428. https://doi.org/10.1002/aenm.201701428
[2] V. L. Chevrier, G. Ceder, Challenges for Na-ion negative electrodes, J. Electrochem. Soc. 158 (2011) A1011-A1014. https://doi.org/10.1149/1.3607983
[3] C. Bommier, X. L. Ji, Recent development on anodes for Na-ion batteries, Isr. J. Chem. 55 (2015) 486-507. https://doi.org/10.1002/ijch.201400118
[4] M. Dhabi, N. Yabuuchi, K. Kubota, K. Tokiwa, S. Komaba, Negative electrodes for Na-ion batteries, Phys. Chem. Chem. Phys. 16 (2014) 15007-15028. https://doi.org/10.1039/c4cp00826j
[5] L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao, Z. Guo, Recent progress on sodium ion batteries:Potential high performance anode, Energy Environ. Sci. 11 (2018) 2310-2340. https://doi.org/10.1039/C8EE01023D
[6] M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, S. X. Dou, Alloy based anode materials toward advanced sodium batteries, Adv. Mater. 29 (2017) 1700622 https://doi.org/10.1002/adma.201700622
[7] M. S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A review of carbon materials and their composites with alloy metals for sodium ion battery anodes, Carbon 98 (2016) 162-178. https://doi.org/10.1016/j.carbon.2015.09.091
[8] G. J. Jung, Y. Lee, Y. S. Mun, H. Kim, J. Hur, T. Y. Kim, K. S. Suh, J. H. Kim, D. Lee, W. Choi, I. T. Kim, Sb-AlC0.75-composite anodes for high performance sodium ion batteries, J. Power Sources 340 (2017) 393-400. https://doi.org/10.1016/j.jpowsour.2016.11.086
[9] L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang and Y. Cao, Electrochemical properties and morphological evolution of pitaya like Sb@C microspheres as high performance anode for sodium ion batteries, J. Mater. Chem. A 3 (2015) 5708-5713. https://doi.org/10.1039/C4TA06086E
[10] L. Baggetto, P. Ganesh, R. P. Meisner, R. R. Unocic, J. C. Jumas, C. A. Bridges, G. M. Veith, Characterization of sodium ion electrochemical reaction with tin anodes:Experiment and theory, J. Power Sources 234 (2013) 48-59. https://doi.org/10.1016/j.jpowsour.2013.01.083
[11] N. Yabuuchi, K. Kubota, M. Dhabi, S. Komaba, Research development on sodium ion batteries, Chem. Rev. 11 (2014) 11636-11682. https://doi.org/10.1021/cr500192f
[12] Z. Li, J. Ding, D. Mitlin, Tin and tin compounds for sodium ion battery anodes:Phase transformations and performance, ACC. Chem. Res. 48 (2015) 1657-1665. https://doi.org/10.1021/acs.accounts.5b00114
[13] M. D. Slater, D. Kim, E. Lee and C. S. Johnson, Sodium ion batteries, Adv. Funct. Mater. 23 (2013) 947-958. https://doi.org/10.1002/adfm.201200691
[14] Y. Kim, K. H. Ha, S. M. Oh, K. T. Lee, High capacity anode materials for sodium ion batteries, Chem. Eur. J. 20 (2014) 11980. https://doi.org/10.1002/chem.201402511
[15] H. Pan, Y. S. Hu, L. Chen, Room temperature stationary sodium ion batteries for large scale electric energy storage, Energy Environ. Sci. 6 (2013) 2338-2360. https://doi.org/10.1039/c3ee40847g
[16] J. W. Wang, X. H. Liu, S. X. Mao, J. Y. Huang, Microstructural evolution of tin nanoparticles during insitu sodium insertion and extraction, Nano Lett. 12 (2012) 5897-5902. https://doi.org/10.1021/nl303305c
[17] Y. Liu, Y. Xu, Y. Zhu, J. N. Culver C.A. Lundgren, K. Xu, C. Wang, Tin coated viral nanoforests as sodium ion battery anodes, ACS Nano 7 (2013) 3627-3634. https://doi.org/10.1021/nn400601y
[18] B. Farbod, K. Cui, W.P. Kalisvaart, M. Kupsta, B. Zahiri, A. Kohandehghan, E.M. Lotfabad, Z. Li, E. J. Luber, D. Mitlin, Anodes for sodium ion batteries based on tin-germanium-antimony alloys. ACS Nano 8 (2014) 4415-4429. https://doi.org/10.1021/nn4063598
[19] J. Liu, Y. Wen, P. A. van Aken, J. Maier, Y. Yu, Facile synthesis of highly porous Ni−Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage, Nano Lett. 14 (2014) 6387−6392. https://doi.org/10.1021/nl5028606
[20] X. Xie, K. Kretschmer, J. Zhang, B. Sun, D. Su, G. Wang, Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free standing anode for sodium ion batteries, Nano Energy 13 (2015) 208-217. https://doi.org/10.1016/j.nanoen.2015.02.022
[21] J. Zhu, D. Deng, Amorphous bimetallic Co3Sn2 nanoalloys are better than crystalline counterparts for sodium storage, J. Phys. Chem. C 119 (2015) 21323-21328. https://doi.org/10.1021/acs.jpcc.5b05232
[22] L. D. Ellis, T. D. Hatchard, M. N. Obrovac, Reversible insertion of sodium in tin, J. Electrochem. Soc. 159 (2012) A1801−A1805. https://doi.org/10.1149/2.037211jes
[23] Y. M. Lin, P.R. Abel, A. Gupta, J.B. Goodenough, A. Heller, C.B. Mullins, Sn−Cu nanocomposite anodes for rechargeable sodium-ion batteries, ACS Appl. Mater. Interfaces 5 (2013) 8273−8277. https://doi.org/10.1021/am4023994
[24] L. Baggetto, J.C. Jumas, J. Gorka, C.A. Bridges, G.M. Veith, Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using [small eta]-Cu6Sn5 thin films as a model system, Phys. Chem. Chem. Phys. 15 (2013) 10885−10894. https://doi.org/10.1039/c3cp51657a
[25] C. Kim, K.Y. Lee, I. Kim, J. Park, G. Cho, K. W. Kim, J. H. Ahn, H.J. Ahn, Long term cycling stability of porous Sn anode for sodium ion batteries, J. Power Sources 317 (2016) 153-158. https://doi.org/10.1016/j.jpowsour.2016.03.060
[26] Y. Liu, N. Zhang, L. Jiao, Z. Tao, J. Chen, Ultra small Sn nanoparticles embedded in carbon as high performance anode for sodium ion batteries, Adv. Funct. Mater. 25 (2015) 214-220. https://doi.org/10.1002/adfm.201402943
[27] Y. Jeon, X. Han, K. Fu, J. Dai, J. H. Kim, L. Hu, T. Song, U. Paik, Flash induced reduced graphene oxide as a Sn anode host for high performance sodium ion batteries, J. Mater. Chem. A 4 (2016) 18306-18313. https://doi.org/10.1039/C6TA07582G
[28] D. H. Nam, T. H. Kim, K. S. Hong, H. S. Kwon, Template free electrochemical synthesis of Sn nanofiber as high performance anode materials for Na-ion batteries, ACS Nano 8 (2014) 11824-11835. https://doi.org/10.1021/nn505536t
[29] B. Luo, T. Qiu, D. Ye, L. Wang, L. Zhi, Tin nanoparticles encapsulated in graphene backbone carbonaceous foams as high performance anodes for lithium ion and sodium ion storage, Nano Energy 22 (2016) 232-240. https://doi.org/10.1016/j.nanoen.2016.02.024
[30] D. H. Nam, K. S. Hong, S. J. Lim, T. H. Kim, H. S. Kwon, Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries, J. Phys. Chem. C 118 (2014) 20086. https://doi.org/10.1021/jp504055j
[31] M. Dirican, Y. Lu, Y. Ge, O. Yildiz, X. Zhang, Carbon confined SnO2 electrodeposited porous carbon nanofiber composite as high capacity sodium ion battery anode material, ACS Appl. Meter. Interfaces 7 (2015) 18387-18396. https://doi.org/10.1021/acsami.5b04338
[32] N. Oehl, P. Michalowski, M. Knipper, J. Kolny-Olesiask, T. Plaggenborg, J. Parisi, Size dependent strain of Sn/SnOx core/shell nanoparticles, J. Phys. Chem C 118 (2014) 30238-30243. https://doi.org/10.1021/jp5096147
[33] J. Ding, Z. Li, H. Wang, K. Cui, A. Kohandehghan, X. Tan, D. Karpuzov, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy power rivals lithium ion capacitor, Energy Environ. Sci. 8 (2015) 941-955. https://doi.org/10.1039/C4EE02986K
[34] M. Gu, A. Kushima, Y. Shao, J. G. Zhang, J. Liu, N.D. Browning, J. Li, C. Wang, Probing the failure mechanism of SnO2 nanowires for sodium ion batteries, Nano Lett. 13 (2013) 5203-5211. https://doi.org/10.1021/nl402633n
[35] Y. Zhang, J. Xie, S. Zhang, P. Zhu, G. Cao, X. Zhao, Ultrafine tin oxide on reduced graphene oxide as high performance anode for sodium ion batteries, Electrochim. Acta 151 (2015) 8-15. https://doi.org/10.1016/j.electacta.2014.11.009
[36] D. Tang, Q. Huang, R. Yi, F. Dai, M. L. Gordin, S. Hu, S. Chen, Z. Yu, H. Sohn, J. Song, D. Wang, Room temperature synthesis of mesoporous Sn/SnO2 composite as anode for sodium ion batteries, Eur. J. Inorg. Chem. 2016 (2016) 1950-1954. https://doi.org/10.1002/ejic.201501441
[37] Y. C. Lu, C. Ma, J. Alvarado, T. Kidera, N. Dimov, Y. S. Meng, S. Okada, Electrochemical properties of tin oxide anodes for sodium ion batteries, J. Power Sources 284 (2015) 287-295. https://doi.org/10.1016/j.jpowsour.2015.03.042
[38] J. Patra, H. C. Chen, C. H. Yang, C. T. Hsieh, C.Y. Su, J. K. Chang, High dispersion of 1 nm SnO2 nanoparticles between graphene nanosheet constructed using supercritical CO2 fluid for sodium ion battery anode, Nano Energy 28 (2016) 124-134. https://doi.org/10.1016/j.nanoen.2016.08.044
[39] D. Su, H. J. Ahn, G. Wang, SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance, Chem. Commun. 49 (2013) 3131-3133. https://doi.org/10.1039/c3cc40448j
[40] A. Jahel, C. M. Ghimbeu, A. Darwiche, L. Vidal, S. H. Garreau, C. V. Guterl, L. Monconduit, Exceptionally high performing Na-ion battery anode using crystalline SnO2 nanoparticles confined in mesoporous carbon, J. Mater. Chem. A 3 (2015) 11960-11969. https://doi.org/10.1039/C5TA01963J
[41] P. K. Dutta, U. K. Sen, S. Mitra, Excellent electrochemical performance of tinmonosulfide (SnS) as a sodium battery anode, RSC Adv. 4 (2014) 43155-43159. https://doi.org/10.1039/C4RA05851H
[42] W. Sun, X. Rui, D. Yang, Z. Sun, B. Li, W. Zhang, Y. Zong, S. Madhavi, S. X. Dou, Q. Yan, Two dimensional tin disulfide nanosheets for enhanced sodium storage, ACS Nano 9 (2015) 11371-11381. https://doi.org/10.1021/acsnano.5b05229
[43] G. Li, R. Su, J. Rao, J. Wu, P. Rudolf, G. R. Blake, R. A. de Groot, F. Besenbacher, T. T. M. Palstra, Band gap narrowing of SnS2 superstructures with improved hydrogen production, J. Mater. Chem. A 4 (2016) 209-216. https://doi.org/10.1039/C5TA07283B
[44] D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen, X. Liu, X. Xia, Y. Zhao, S. V. Savilov, J. Lin, Z. X. Shen, Psuedocapacitive Na ion storage boosts high rate and areal capacity of self branched 2D layer metal chalcogenide nanoarrays, ACS Nano 10 (2016) 10211-10219. https://doi.org/10.1021/acsnano.6b05566
[45] E. Cho, K. Song, M. H. Park, K. W. Nam, Y. M. Kang, SnS 3D flower with superb kinetic properties for anodic use in next generation sodium rechargeable batteries, Small 12 (2016) 2510-2517. https://doi.org/10.1002/smll.201503168
[46] L. Shi, D. Li, P. Yao, J. Yu, C. Li, B. Yang, C. Zhu, J. Xu, Sodium ion batteries:SnS2 nanosheets coating on nanohollow cubic CoS2/C for ultralong life and high rate capability half/full sodium ion batteries, Small 14 (2018) 1870187. https://doi.org/10.1002/smll.201870187
[47] D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, X. Fan, S. V. Savilov, J. Lin, H. J. Fan, Z. X. Shen, Array of nanosheets render ultrafast and high capacity Na-ion storage by tunable psuedocapacitance, Nature Commun. 7 (2016) 12122. https://doi.org/10.1038/ncomms12122
[48] L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, Improved sodium storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium ion batteries, J. Power Sources 293 (2015) 784-789. https://doi.org/10.1016/j.jpowsour.2015.06.015
[49] T. Zhou, W. Pang, C. Zhang, J. Yang, Z. Chen, H. Liu, Z. Guo, Enhanced sodium ion battery performance by structural phase transition from two dimensional hexagonal SnS2 to orthorhombic SnS, ACS Nano 8 (2014) 8323-8333. https://doi.org/10.1021/nn503582c
[50] C. Zhu, P. Kopold, W. Li, P. A. van Aken, J. Maier, Y. Yu, A general stratergy to fabricate carbon coated 3D porous interconnected metal sulfides:Case study of SnS/C nanocomposite for high performance lithium and sodium ion batteries, Adv. Sci. 2 (2015) 1500200. https://doi.org/10.1002/advs.201500200
[51] H. Li, M. Zhou, W. Li, K. Wang, S. Cheng, K. Jiang, Layered SnS2 cross linked by carbon nanotubes as high performance anode for sodium ion batteries, RSC Adv. 6 (2016) 35197-35202. https://doi.org/10.1039/C6RA04941A
[52] P. V. Prikhodchenko, D. Y. W. Yu, S. K. Batabyal, V. Uvarov, J. Gun, S. Sladkevich, A. A. Mikhaylov, A. G. Medvedev, O. Lev, Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for the sodium battery anodes, J. Mater. Chem. A 2 (2014) 8431-8437. https://doi.org/10.1039/c3ta15248k
[53] Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok, N. S. Choi, Y. S. Jung, J. H. Ryu, S. M. Oh, K. T. Lee, Tin phosphide as a promising anode material for Na-ion batteries, Adv. Mater. 26 (2014) 4139−4144. https://doi.org/10.1002/adma.201305638
[54] W. Li, S. L. Chou, J.Z. Wang, J. H. Kim, H. K. Liu, S. X. Dou, Sn4+xP3 @ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv. Mater. 26 (2014) 4037−4042. https://doi.org/10.1002/adma.201400794
[55] Y. Liu, N. Zhang, L. Jiao, Z. Tao, J. Chen, Ultrasmall Sn nanoparticles embedded in carbon as high performance anodes for sodium ion batteries, Adv. Funct. Mater. 25 (2015) 214-220. https://doi.org/10.1002/adfm.201402943
[56] T. Jin, Y. Liu, Y. Li, K. Cao, X. Wang, L. Jiao, Electrospun NaVPO4F/C nanofibers as self standing cathode material for ultralong cycle life Na-ion batteries, Adv. Energy Mater. 7 (2015) 1700087. https://doi.org/10.1002/aenm.201700087
[57] Z. Li, W. Lv, C. Zhang, J. Qin, W. Wei, J. J. Shao, D. W. Wang, B. Li, F. Kang, Q. H. Yang, Nanospace confined formation of flattened Sn sheets in pre seeded graphene for lithium ion batteries, Nanoscale 16 (2014) 9554-9558. https://doi.org/10.1039/C4NR01924E
[58] G. D. Park, J. H. Lee, Y. C. Kang, Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by spray pyrolysis process, Nanoscale 8 (2016) 11889-11896. https://doi.org/10.1039/C6NR02983C
[59] Z. Zhang, X. Zhao, J. Li, SnSe/carbon naocomposite synthesized by high energy ball milling as an anode materials for sodium ion and lithium ion batteries, Electrochim. Acta 176 (2015) 1296-1301. https://doi.org/10.1016/j.electacta.2015.07.140
[60] X. Yang, R. Zhang, N. Chen, X. Meng, P. Yang, C. Wang, Y. Zhang, Y. Wei, G. Chen, F. Du, Assembly of SnSe nanoparticles confined in graphene for enhanced sodium ion storage performance, Chemistry 22 (2016) 1445-1451. https://doi.org/10.1002/chem.201504074
[61] F. Zhang, C. Xia, J. Zhu, B. Ahmed, H. Liang, D.B. Velusamy, U. Schwingenschlögl, H.N. Alshareef, SnSe2 2D anodes for advanced sodium ion batteries, Adv. Energy Mater. 6 (2016) 1601188. https://doi.org/10.1002/aenm.201601188
[62] Q. Li, Z. Li, Z. Zhang, C. Li, J. Ma, C. Wang, X. Ge, S. Dong, L. Yin, Low temperature solution based phophorization reaction route to Sn3P4/reduced graphene oxide nanohybrid as anodes for sodium ion batteries, Adv. Energy Mater. 6 (2016) 1600376. https://doi.org/10.1002/aenm.201600376
[63] Y. Xu, Y. Zhu, Y. Liu, C. Wang, Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries, Adv. Energy Mater. 3 (2013) 128−133. https://doi.org/10.1002/aenm.201200346
[64] Y. Wang, D. Su, C. Wang, G. Wang, SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries, Electrochem. Commun. 29 (2013) 8−11. https://doi.org/10.1016/j.elecom.2013.01.001
[65] X. Han, Y. Liu, Z. Jia, Y. C. Chen, J. Wan, N. Weadock, K.J. Gaskell, T. Li, L. Hu, Atomic-layer-deposition oxide nanoglue for sodium ion batteries, Nano Lett. 14 (2013) 139−147. https://doi.org/10.1021/nl4035626
[66] M. K. Datta, R. Epur, P. Saha, K. Kadakia, S. K. Park, P. N. Kumta, Tin and graphite based nanocomposites: Potential anode for sodium ion batteries, J. Power Sources 225 (2013) 316−322. https://doi.org/10.1016/j.jpowsour.2012.10.014
[67] J. Ding, Z. Li, H. L. Wang, K. Cui, A. Kohandehghan, X. H. Tan, D. Karpuzov, D. Mitlin, Sodiation vs. lithiation phase trans- formations in a high rate-high stability SnO2 in carbon nanocomposite, J. Mater. Chem. A 3 (2015) 7100−7111. https://doi.org/10.1039/C5TA00399G
[68] K. Dai, H. Zhao, Z. Wang, X. Song, V. Battaglia, G. Liu, Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries, J. Power Sources 263 (2014) 276−279. https://doi.org/10.1016/j.jpowsour.2014.04.012
[69] Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability, Adv. Funct. Mater. 25 (2015) 481−489. https://doi.org/10.1002/adfm.201402833
[70] B. Wang, B. Luo, X. L. Li, L. J. Zhi, The dimensionality of Sn anode in Li ion batteries, Mater. Today 15 (2012) 544-552. https://doi.org/10.1016/S1369-7021(13)70012-9
[71] P. G. Bruce, B. Scrosati, J. M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47 (2008) 2930-2946. https://doi.org/10.1002/anie.200702505
[72] H. Ying W. Q. Han, Metallic Sn based anode materials:Application in high performance lithium ion and sodium ion batteries, Adv. Science 4 (2017) 1700298. https://doi.org/10.1002/advs.201700298
[73] N. E. Motl, A. K. P. Mann, S. E. Skrabalak, Aerosol assisted synthesis and assembly of nanoscale building blocks, J. Mater. Chem. A 1 (2013) 5193-5202. https://doi.org/10.1039/c3ta01703f
[74] C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, C. Sanchez, Aerosol route to functional nanostructured inorganic and hybrid porous materials, Adv. Mater. 23 (2011) 599-623. https://doi.org/10.1002/adma.201001410
[75] Y. Liu, N. Zhang, L. Jiao, J. Chen, MnFe2O4@C nanofibers as high performance anode for sodium ion batteries, Nano Lett. 16(5) (2016) 3321-3328. https://doi.org/10.1021/acs.nanolett.6b00942
[76] X. Y. Tao, R. Wu, Y. Xia, H. Huang, W. C. Chai, T. Feng, Y. P. Gan, W. K. Zhang, Supercritical fluid assisted biotemplating synthesis of Si-O-C microspheres from microalgae for advanced Li ion batteries, ACS Appl. Mater. Interfaces 6 (2014) 3696. batteries, ACS Appl. Mater. Interfaces 6 (2014) 3696.
[77] Y. Yu, Q. Yang, D. Teng, X. Yang, S. Ryu, Reticular Sn nanoparticles dispersed PAN based carbon nanofibers for anode material in rechargeable lithium ion batteries, Electrochem. Commun. 12 (2010) 1187-1190. https://doi.org/10.1016/j.elecom.2010.06.015
[78] S. D. Seo, G. H. Lee, A. H. Lim, K. M. Min, J. C. Kim, H. W. Shim, K. S. Park, D. W. Kim, Direct assembly of tin MWCNT 3D networked anode for rechargeable lithium ion batteries, RSC Adv. 2 (2012) 3315-3320. https://doi.org/10.1039/c2ra00943a
[79] Y. Liu, N. Zhang, L. Jiao, J. Chen, The nanodots encapsulated in porous nitrogen doped carbon nanofibers as a free standing anode for advanced sodium ion batteries, Adv. Mater. 27 (2015) 6702-6707. https://doi.org/10.1002/adma.201503015
[80] V. Chabot, D. Higgins, A. P. Yu, X. C. Xiao, Z. W. Chen, J. J. Zhang, A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment, Energy Environ. Sci. 7 (2014) 1564-1596. https://doi.org/10.1039/c3ee43385d
[81] M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Mxene: a new family of two dimensional materials, Adv. Mater. 26 (2014) 992-1005. https://doi.org/10.1002/adma.201304138
[82] F. Pan, W. Zhang, J. J. Ma, N. Yao, L. Xu, Y. S. He, X. W. Yang, Z. F. Ma, Integrating insitu solvothermal approach synthesized nanostructured tin anchored on graphene sheets into film anodes for sodium ion batteries, Electrochim. Acta 196 (2016) 572-578. https://doi.org/10.1016/j.electacta.2016.02.204
[83] H. Ying, F. Xin, W. Han, Structure evolution of 3D nano-Sn/reduced graphene oxide composite from a sandwich like structure to a curly Sn@carbon nanocage like structure during lithiation/delithiation, Adv. Mater. Interfaces 3 (2016) 1600498. https://doi.org/10.1002/admi.201600498
[84] N. Li, H. Song, H. Cui, C. Wang, Sn@graphene grown on vertically aligned graphene for high capacity, high rate and long life lithium storage, Nano Energy 3 (2014) 102-112. https://doi.org/10.1016/j.nanoen.2013.10.014
[85] H. Ying, S. Zhang, Z. Meng, Z. Sun, W. Q. Han, Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high performance lithium and sodium ion battery anodes, J. Mater. Chem. A 5 (2017) 8334-8342. https://doi.org/10.1039/C7TA01480E
[86] D. Deng, J. Y. Lee Reversible storage of lithium in a rambutan like tin-carbon electrode, Angew. Chem., Int. Ed. 48 (2009) 1660-1663. https://doi.org/10.1002/anie.200803420
[87] S. Chen, Z. Ao, B. Sun, X. Xie, G. Wang, Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium ion batteries, Energy Storage Mater. 5 (2016) 180-190. https://doi.org/10.1016/j.ensm.2016.07.001
[88] J. Qin, C. N. He, N. Q. Zhao, Z. Y. Wang, C. S. Shi, E. Z. Liu, J. J. Li, Graphene networks anchored with Sn@graphene as lithium ion battery anode, ACS Nano 8 (2014) 1728-1738. https://doi.org/10.1021/nn406105n
[89] Y. H. Xu, Y. J. Zhu, F. D. Han, C. Luo, C. S. Wang, Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li ion batteries, Adv. Energy Mater. 5 (2015) 1400753. https://doi.org/10.1002/aenm.201400753
[90] J. Liu, P. Kopold, P. A. van Aken, J. Maier, Y. Yu, Uniform yolk shell Sn4P3@C nanosphere as high capacity and cycle stable anode materials for sodium ion batteries, Energy Environ. Sci. 8 (2015) 3531-3538. https://doi.org/10.1039/C5EE02074C
[91] W. Chen, D. Deng, Deflated carbon nanospheres encapsulating tin cores decorated on layered 3D carbon structures for low cost sodium ion batteries, ACS Sustainable Chem. Eng. 3 (2015) 63-70. https://doi.org/10.1021/sc500543u
[92] X. Li, A. Dhanabalan, L. Gu, C. L. Wang, Three dimensional porous core shell Sn@carbon composite anodes for high performance lithium ion battery applications, Adv. Energy Mater. 2 (2012) 238-244. https://doi.org/10.1002/aenm.201100380
[93] H. Kim, G. Jeong, Y. U. Kim, J. H. Kim, C. M. Park, H. J. Sohn, Metallic anodes for next generation secondary batteries, Chem. Soc. Rev. 42 (2013) 9011-9034. https://doi.org/10.1039/c3cs60177c
[94] M. Shimizu, H. Usui, H. Sakaguchi, Electrochemical Na-insertion/extraction properties of SnO thick film electrodes prepared by gas-deposition, J. Power Sources 248 (2014) 378-382. https://doi.org/10.1016/j.jpowsour.2013.09.046
[95] J. Park, J. W. Park, J. H. Han, S. W. Lee, K. Y. Lee, H. S. Ryu, K. W. Kim, G. Wang, J. H. Ahn, H. J. Ahn, Charge discharge properties of tin oxide for sodium ion battery, Mater. Res. Bull. 58 (2014) 186-189. https://doi.org/10.1016/j.materresbull.2014.04.051
[96] D. Su, C. Wang, H. Ahn, G. Wang, Octahedral tin oxide nanocrystals as high capacity anode materials for Na-ion batteries, Phy. Chem. Chem. Phys. 15 (2013) 12543-12550. https://doi.org/10.1039/c3cp52037d
[97] H. Zhu, Z. Jia, Y. Chen, N. Weadock, J. Wan, O. Vaaland, X. Han, T. Li, L. Hu, Tin anode for sodium ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir, Nano Lett. 13 (2013) 3093-3100. https://doi.org/10.1021/nl400998t
[98] Z. Li, J. Ding, H. Wang, K. Cui, T. Stephenson, D. Karpuzov, D. Mitlin, High rate SnO2-graphene dual aerogel anodes and their kinetics of lithiation and sodiation, Nano Energy 15 (2015) 369-378. https://doi.org/10.1016/j.nanoen.2015.04.018
[99] X. Xia, M. N. Obrovac, J. R. Dahn, Comparision of the reactivity of NaxC6 and LixC6 with nonaqueous solvent and electrolyte, Electrochem. Solid-State Lett. 14 (2011) A130-A133. https://doi.org/10.1149/1.3606364
[100] J. Zhao, L. Zhao, N. Dimov, S. Okada and T. Nishida, Electrochemical and thermal properties of -NaFeO2 cathode for Na-ion batteries, J. Electrochem. Soc. 160 (2013) A3077-A3081. https://doi.org/10.1149/2.007305jes
[101] J. Zhao, J. Xu, D. H. Lee, N. Dimov, Y. S. Meng, S. Okada, Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na ion batteries, J. Power Sources 264 (2014) 235-239. https://doi.org/10.1016/j.jpowsour.2014.04.048
[102] X. Xia, J. R. Dahn, A study of the reactivity of deintercalated NaNi0.5Mn0.5O2 with nonaqueous solvent and electrolyte by accelerating rate calorimetry, J. Electrochem. Soc. 159 (2012) A1048-A1051. https://doi.org/10.1149/2.060207jes
[103] Y. Lee, H. Lim, S. O. Kim, H. S. Kim, K. J. Kim, K. Y. Lee, W. Choi, Thermal stability of Sn anode material with nonaqueous electrolytes in sodium ion batteries, J. Mater. Chem. A 6 (2018) 20383-20392. https://doi.org/10.1039/C8TA07854H
[104] I. A. Profatilova, S. S. Kim, N. S. Choi, Electrochim. Acta Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate, 54 (2009) 4445-4450. https://doi.org/10.1016/j.electacta.2009.03.032
[105] T. Li, U. Gulzar, X. Bai, M. Lenocini, M. Prato, K. E. Aifantis, C. Capigila, R. P. Zaccaria, Insight on failure mechanism of Sn electrodes for sodium ion batteries:Evidence of pore formations during sodiation while crack formation during desodiation, Appl. Energy Mater. 2 (2019) 860-866. https://doi.org/10.1021/acsaem.8b01934
[106] S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials, Energy Environ. Sci. 4 (2011) 3680–3688. https://doi.org/10.1039/c1ee01782a
[107] T. Ramireddy, N. Sharma, T. Xing, Y. Chen, J. Leforestier, A.M. Glushenkov, Size and composition effects in Sb-carbon nanocomposites for sodium ion batteries, ACS Appl. Mater. Interfaces 8 (2016) 30152-30164. https://doi.org/10.1021/acsami.6b09619
[108] J. Zhu, D. Deng, Amorphous bimetallic Co3Sn2 nanoalloys are better than crystalline counterparts for sodium storage, J. Phys. Chem. C 119 (2015) 21323-21328. https://doi.org/10.1021/acs.jpcc.5b05232
[109] Y. S. Choi, Y. W. Byeon, J. P. Ahn, J.C. Lee, Formation of zintl ions and their configurational change during sodiation in Na-sn battery, Nano Lett. 17 (2) (2017) 679-686. https://doi.org/10.1021/acs.nanolett.6b03690
[110] K. Li, H. Liu, G. Wang, Sb2O3 nanowires as anode material for sodium ion batteries, Arabian J. Sci. Eng. 39 (2014) 6589-6593. https://doi.org/10.1007/s13369-014-1194-4
[111] M. Hu, Y. Jiang, W. Sun, H. Wang, C. Jin, M. Yan, Reversible conversion alloying of Sb2O3 as a high capacity, high rate, and durable anode for sodium ion batteries, ACS Appl. Mater. Interfaces 6 (2014) 19449-19455. https://doi.org/10.1021/am505505m
[112] Y. Cheng, J. Huang, R. Li, Z. Xu, L. Cao, H. Ouyang, J. Li, H. Qi, C. Wang, Enhanced cycling performances of hollow Sn compared to solid Sn in Na-ion battery, Electrochim. Acta 180 (2015) 227–233. https://doi.org/10.1016/j.electacta.2015.08.125
[113] D. H. Nam, T. H. Kim, K.S. Hong, H.S. Kwon, Template free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries, ACS Nano 8 (2014) 11824–11835. https://doi.org/10.1021/nn505536t
[114] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources, 257 (2014) 421-443. https://doi.org/10.1016/j.jpowsour.2013.11.103
[115] T. Ishihara, M. Nakasu, M. Yoshio, H. Nishiguchi, Y. Takita, Carbon nanotube coating silicon doped with Cr as a high capacity anode, J. Power Sources 146 (2005) 161-165. https://doi.org/10.1016/j.jpowsour.2005.03.110
[116] H. Usui, S. Yoshioka, K. Wasada, M. Shimizu, H. Sakaguchi, Nb doped rutile TiO2: A potential anode material for Na ion battery, ACS Appl. Mater. Interfaces 7 (2015) 6567-6573. https://doi.org/10.1021/am508670z
[117] Y. W. Byeon, Y. S. Choi, J. P. Ahn, J. C. Lee, Origin of high coulombic loss during sodiation in Na-Sn battery, J. Power Sources 343 (2017) 513-519. https://doi.org/10.1016/j.jpowsour.2017.01.089
[118] A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson and M. R. Palacin, Non-aqueous electrolytes for sodium ion batteries, J. Mater. Chem. A 3 (2015) 22–42. https://doi.org/10.1039/C4TA04428B