Mn-Based Materials for Sodium-Ion Batteries


Mn-Based Materials for Sodium-Ion Batteries

N. Suresh Kumar, R. Padma Suvarna, S. Ramesh, D. Baba Basha, K. Srinivas, K. Chandra Babu Naidu

In this chapter, we discussed thoroughly about the Na-ion batteries along with Mn-based sodium-ion batteries. In addition, electrochemical parameters like potential, current density, and reversible capacity were described for Mn-based sodium-ion batteries applications. Using this comparison, we pointed out the high-performance Mn-based materials for sodium-ion batteries.

Sodium-Ion Batteries, Reversible Capacity, Mn-Based Materials

Published online 5/20/2020, 18 pages

Citation: N. Suresh Kumar, R. Padma Suvarna, S. Ramesh, D. Baba Basha, K. Srinivas, K. Chandra Babu Naidu, Mn-Based Materials for Sodium-Ion Batteries, Materials Research Foundations, Vol. 76, pp 117-134, 2020


Part of the book on Sodium-Ion Batteries

[1] D. Larcher, J. M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7 (2015) 19-29.
[2] P. G. Bruce, S. A. Freunberger, L.J. Hardwick, and J.M. Tarascon, Li-O and Li-S batteries with high energy storage, Nat. Mater. 11 (2012) 19–29.
[3] B. Dunn, H. Kamath, J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Sci. 334 (2011) 928–935.
[4] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage, Adv. Mater. 22 (2010) 28–62.
[5] J. Yang, S. Muhammad, M. R. Jo, H. Kim, K. Song, D. A. Agyeman, Y. Kim, W. Yoon and Y. Kang, In situ analyses for ion storage materials, Chem. Soc. Rev. 45 (2016) 5717-5770.
[6] K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao and J. Chen, Nanostructured Mn-based oxides for electrochemical energy storage and conversion, Chem. Soc. Rev. 44 (2015) 699-728.
[7] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. Portillo Guisado, M. A. M. Prats, J. I. Leon, N. Moreno Alfonso, Power-electronic systems for the grid integration of renewable energy sources: A Survey, IEEE T.. Ind. Electron. 53 (2006) 1002-1016.
[8] S. Hameer, J. L. Van Niekerk, A review of large‐scale electrical energy storage, Int. J. Energy Res. 39 (2015) 1179-1195.
[9] B. Dunn, H. Kamath, J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Sci. 334 (2011) 928-935.
[10] K. C. DivyaK, J. Østergaard, Battery energy storage technology for power systems-An overview, Electr. Power Syst. Res. 79 (2009) 511-520.
[11] W. Leonard, W. Labaree, The Papers of Benjamin Franklin (New Haven, Connecticut: Yale University Press, 1961), Benjamin Franklin et al., 3 (1961) 352: Letter to Peter Collinson, April 29, 1749. Paragraph 18. Retrieved 2012-08-29.
[12] S. Bernard Finn, Origin of Electrical Power, National Museum of American History. (September 2002). Retrieved 2012-08-29.
[13] Gaston Planté, Corrosion Doctors, Retrieved 2012-08-29.
[14] J. Desilvestro, O. Haas, Metal Oxide Cathode Materials for Electrochemical Energy Storage: A Review, J. Electrochem. Soc. 137 (1990) 5-22.
[15] D. Linden, Handbook of Batteries and Fuel cells, Mc Gran- Hill Book Company, New York, 1984.
[16] T. R Crompton, Battery Reference Book, Third Edition. Newnes, Oxford, 2010
[17] T. Takamura, Trends in advanced batteries and key materials in the new century, Solid State Ion. 152-153 (2002) 19-34.
[18] B. Scrosati, The present status of battery technology, Renew. Energy. 5 (1994) 285-294.
[19] F. Yu, L. Zhang, Y. Li, Y. An, M. Zhu and B. Dai, Mechanism Studies of LiFePO4 Cathode Material: Lithiation/delithiation process, electrochemical modification and synthetic reaction, RSC Adv. 4 (2014) 54576-54602.
[20] S. Miyazaki, S. Kikkawa, M. Koizumi, Chemical and electrochemical deintercalactions of layered compounds, LiCrO2, LiCoO2 and NaCrO2, NaFeO2, NaCoO2 and NaNiO. Synth. Met. 6 (1983) 211–217.2.
[21] M. Thomas, P.G. Bruce, J.B. Goodenough, AC impedance analysis of polycrystalline insertion electrodes – application to Li1-xCoO2, J. Electrochem. Soc. 132 (1986) 1521–1528.
[22] K. Mizushima, P. C. Jones, P. J. Wiseman, John B Good enough, LixCoO2 (0