Organic Electrode Material for Sodium-Ion Batteries

$30.00

Organic Electrode Material for Sodium-Ion Batteries

Aneela Sabir, Tahmina Zia, Muhammad Usman, Muhammad Shafiq, Rafi Ullah Khan, Karl I Jacob, Rajender Boddula

A lot of work is done on functionalizing organic electrodes (OE) and incorporation of nanostructures to tune their electrochemical properties. In collation, OE exhibit merits like high capacity and structural design ability. Here in, organic electrodes based on their reactions are divided into three classes; C=O, C-N=O and doping reactions. The conductivity issue can be resolved through increasing conjugation. Theoretical capacity can be elevated by expanding active groups. Working voltage can be regulated by tuning grafting overseeing lowest unoccupied molecular orbital (LUMO). Future of organic electrode relies mainly on aprotic electrolyte based full NaIBs with long cycle life.

Keywords
Organic Electrodes, Sodium-Ion Batteries, Electrochemical Energy Storage, C=N Based Reaction, C=O Based Reaction, Doping Reaction

Published online 5/20/2020, 20 pages

Citation: Aneela Sabir, Tahmina Zia, Muhammad Usman, Muhammad Shafiq, Rafi Ullah Khan, Karl I Jacob, Rajender Boddula, Organic Electrode Material for Sodium-Ion Batteries, Materials Research Foundations, Vol. 76, pp 73-92, 2020

DOI: https://doi.org/10.21741/9781644900833-3

Part of the book on Sodium-Ion Batteries

References
[1] S. Jeong, B.H. Kim, Y.D. Park, C.Y. Lee, J. Mun, A. Tron, Artificially coated NaFePO4 for aqueous rechargeable sodium-ion batteries, J. Alloys Compd. 784 (2019) 720-726. https://doi.org/10.1016/j.jallcom.2019.01.046
[2] J. Huang, Z. Wei, J. Liao, W. Ni, C. Wang, J. Ma, Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2, J. Energy Chem. 33 (2019) 100-124. https://doi.org/10.1016/j.jechem.2018.09.001
[3] Y. Zhang, Z. Gao, High performance anode material for sodium-ion batteries derived from covalent-organic frameworks, Electrochim. Acta 301 (2019) 23-28. https://doi.org/10.1016/j.electacta.2019.01.147
[4] F. Wu, C. Zhao, S. Chen, Y. Lu, Y. Hou, Y.-S. Hu, J. Maier, Y. Yu, Multi-electron reaction materials for sodium-based batteries, Mater. Today 21 (2018) 960-973. https://doi.org/10.1016/j.mattod.2018.03.004
[5] H. Gao, S. Xin, L. Xue, J.B. Goodenough, Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte, Chem 4 (2018) 833-844. https://doi.org/10.1016/j.chempr.2018.01.007
[6] J.H. Kim, M.J. Jung, M.J. Kim, Y.S. Lee, Electrochemical performances of lithium and sodium ion batteries based on carbon materials, J. Industrial Eng. Chem. 61 (2018) 368-380. https://doi.org/10.1016/j.jiec.2017.12.036
[7] T. Liu, X. Cheng, H. Yu, H. Zhu, N. Peng, R. Zheng, J. Zhang, M. Shui, Y. Cui, J. Shu, An overview and future perspectives of aqueous rechargeable polyvalent ion batteries, Energy Storage Mater. 18 (2019) 68-91. https://doi.org/10.1016/j.ensm.2018.09.027
[8] S. Wang, L. Wang, K. Zhang, Z. Zhu, Z. Tao, J. Chen, Organic Li4C8H2O6 nanosheets for lithium-ion batteries, Nano Letters 13 (2013) 4404-4409. https://doi.org/10.1021/nl402239p
[9] C. Luo, R. Huang, R. Kevorkyants, M. Pavanello, H. He, C. Wang, Self-assembled organic nanowires for high power density lithium ion batteries, Nano Lett. 14 (2014) 1596-1602. https://doi.org/10.1021/nl500026j
[10] G. Li, R. Xue, L. Chen, The influence of polytetrafluorethylene reduction on the capacity loss of the carbon anode for lithium ion batteries, Solid State Ionics 90 (1996) 221-225. https://doi.org/10.1016/S0167-2738(96)00367-0
[11] C. Zhang, C. Lu, F. Zhang, F. Qiu, X. Zhuang, X. Feng, Two-dimensional organic cathode materials for alkali-metal-ion batteries, J. Energy Chem. 27 (2018) 86-98. https://doi.org/10.1016/j.jechem.2017.11.008
[12] J. Chen, Y. Liu, W. li, C. Wu, L. Xu, H. Yang, Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications, 50 (2015) 5466-5474. https://doi.org/10.1007/s10853-015-9092-z
[13] X. Dou, I. Hasa, D. Saurel, C. Vaalma, L. Wu, D. Buchholz, D. Bresser, S. Komaba, S. Passerini, Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry, Mater. Today 23 (2019) 87-104. https://doi.org/10.1016/j.mattod.2018.12.040
[14] N. Ingersoll, Z. Karimi, D. Patel, R. Underwood, R. Warren, Metal organic framework-derived carbon structures for sodium-ion battery anodes, Electrochim. Acta 297 (2019) 129-136. https://doi.org/10.1016/j.electacta.2018.11.140
[15] J. Wang, C. Lv, Y. Zhang, L. Deng, Z. Peng, Polyphenylene wrapped sulfur/multi-walled carbon nano-tubes via spontaneous grafting of diazonium salt for improved electrochemical performance of lithium-sulfur battery, Electrochim. Acta 165 (2015) 136-141. https://doi.org/10.1016/j.electacta.2015.03.013
[16] D. Wu, K. Luo, S. Du, X. Hu, A low-cost non-conjugated dicarboxylate coupled with reduced graphene oxide for stable sodium-organic batteries, J. Power Sources 398 (2018) 99-105. https://doi.org/10.1016/j.jpowsour.2018.07.067
[17] C. Luo, J. Wang, X. Fan, Y. Zhu, F. Han, L. Suo, C. Wang, Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries, Nano Energy 13 (2015) 537-545. https://doi.org/10.1016/j.nanoen.2015.03.041
[18] X. Gao, G. Zhu, X. Zhang, T. Hu, Porous carbon materials derived from in situ construction of metal-organic frameworks for high-performance sodium ions batteries, Micropor. Mesopor. Mater. 273 (2019) 156-162. https://doi.org/10.1016/j.micromeso.2018.07.002
[19] D. Li, L. Chen, L. Chen, Q. Sun, M. Zhu, Y. Zhang, Y. Liu, Z. Liang, P. Si, J. Lou, J. Feng, L. Ci, Potassium gluconate-derived N/S Co-doped carbon nanosheets as superior electrode materials for supercapacitors and sodium-ion batteries, J. Power Sources 414 (2019) 308-316. https://doi.org/10.1016/j.jpowsour.2018.12.091
[20] J. Geng, J.-P. Bonnet, S. Renault, F. Dolhem, P. Poizot, Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of tetraketopiperazine unit, Energy Environ. Sci. 3 (2010) 1929-1933. https://doi.org/10.1039/c0ee00126k
[21] M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribière, P. Poizot, J.M. Tarascon, Conjugated dicarboxylate anodes for Li-ion batteries, Nat. Mater. 8 (2009) 120. https://doi.org/10.1038/nmat2372
[22] H.-g. Wang, Y. Shuang, D.-l. Ma, X.-l. Huang, F. Meng, X.-b. Zhang, Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries, Adv. Energy Mater. 4 (2014) 1301651. https://doi.org/10.1002/aenm.201301651
[23] L. Chen, W. Li, Y. Wang, C. Wang, Y. Xia, Polyimide as anode electrode material for rechargeable sodium batteries, RSC Adv. 4 (2014) 25369-25373. https://doi.org/10.1039/C4RA03473B
[24] F. Xu, J. Xia, W. Shi, Anthraquinone-based polyimide cathodes for sodium secondary batteries, Electrochem. Commun. 60 (2015) 117-120. https://doi.org/10.1016/j.elecom.2015.08.027
[25] K.C. Kim, T. Liu, K.H. Jung, S.W. Lee, S.S. Jang, Unveiled correlations between electron affinity and solvation in redox potential of quinone-based sodium-ion batteries, Energy Storage Mater. 19 (2019) 242-250. https://doi.org/10.1016/j.ensm.2019.01.017
[26] X. Wang, Z. Shang, A. Yang, Q. Zhang, F. Cheng, D. Jia, J. Chen, Combining quinone cathode and ionic liquid electrolyte for organic sodium-ion Batteries, Chem 5 (2019) 364-375. https://doi.org/10.1016/j.chempr.2018.10.018
[27] C. Luo, X. Fan, Z. Ma, T. Gao, C. Wang, Self-healing chemistry between organic material and binder for stable sodium-ion batteries, Chem 3 (2017) 1050-1062. https://doi.org/10.1016/j.chempr.2017.09.004
[28] Y. Liang, P. Zhang, J. Chen, Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries, Chem. Sci. 4 (2013) 1330-1337. https://doi.org/10.1039/c3sc22093a
[29] L. Chen, S. Liu, Y. Wang, L. Zhao, Y. Zhao, 2, 3-Dicyano-5, 6-dichloro-1, 4-benzoquinone as a novel organic anode for sodium-ion batteries, J. Electroanal. Chem. 837 (2019) 226-229. https://doi.org/10.1016/j.jelechem.2019.02.029
[30] Z. Wang, A. Li, L. Gou, J. Ren, G. Zhai, Computational electrochemistry study of derivatives of anthraquinone and phenanthraquinone analogues: The substitution effect, RSC Adv. 6 (2016) 89827-89835. https://doi.org/10.1039/C6RA19128B
[31] A. Choi, Y.K. Kim, T.K. Kim, M.-S. Kwon, K.T. Lee, H.R. Moon, 4,4′-Biphenyldicarboxylate sodium coordination compounds as anodes for Na-ion batteries, J. Mater. Chem. A 2 (2014) 14986-14993. https://doi.org/10.1039/C4TA02424A
[32] M.A. Sk, S. Manzhos, Exploring the sodium storage mechanism in disodium terephthalate as anode for organic battery using density-functional theory calculations, J. Power Sources 324 (2016) 572-581. https://doi.org/10.1016/j.jpowsour.2016.05.101
[33] H. Zhu, J. Yin, X. Zhao, C. Wang, X. Yang, Humic acid as promising organic anodes for lithium/sodium ion batteries, Chem. Commun. 51 (2015) 14708-14711. https://doi.org/10.1039/C5CC04772B
[34] L. Wang, J. Zou, S. Chen, J. Yang, F. Qing, P. Gao, J. Li, Zinc terephthalates ZnC8H4O4 as anodes for lithium ion batteries, Electrochim. Acta 235 (2017) 304-310. https://doi.org/10.1016/j.electacta.2017.03.095
[35] Q. Deng, C. Fan, L. Wang, B. Cao, Y. Jin, C.-M. Che, J. Li, Organic potassium terephthalate (K2C8H4O4) with stable lattice structure exhibits excellent cyclic and rate capability in li-ion batteries, Electrochim. Acta 222 (2016) 1086-1093. https://doi.org/10.1016/j.electacta.2016.11.079
[36] H.-g. Wang, S. Yuan, Z. Si, X.-b. Zhang, Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries, Energy Environ. Sci. 8 (2015) 3160-3165. https://doi.org/10.1039/C5EE02589C
[37] J.T. Price, J.A. Paquette, C.S. Harrison, R. Bauld, G. Fanchini, J.B. Gilroy, 6-Oxoverdazyl radical polymers with tunable electrochemical properties, Polymer Chem. 5 (2014) 5223-5226. https://doi.org/10.1039/C4PY00829D
[38] K. Oyaizu, Y. Ando, H. Konishi, H. Nishide, Nernstian adsorbate-like bulk layer of organic radical polymers for high-density charge storage purposes, J. Am. Chem. Soc. 130 (2008) 14459-14461. https://doi.org/10.1021/ja803742b
[39] J.K. Kim, Y. Kim, S. Park, H. Ko, Y. Kim, Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries, Energy Environ. Sci. 9 (2016) 1264-1269. https://doi.org/10.1039/C5EE02806J
[40] Q. Zhao, X. Hu, K. Zhang, N. Zhang, Y. Hu, J. Chen, Sulfur nanodots electrodeposited on ni foam as high-performance cathode for Li–S batteries, Nano Lett. 15 (2015) 721-726. https://doi.org/10.1021/nl504263m
[41] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, Chem. Commun. (1977) 578-580. https://doi.org/10.1039/c39770000578
[42] Q. Zhao, A. Whittaker, X.S. Zhao, Polymer Electrode Materials for Sodium-ion Batteries, Mater. 17 (2018) E2567. https://doi.org/10.3390/ma11122567
[43] D. Su, J. Zhang, S. Dou, G. Wang, Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries, Chem. Commun. 51 (2015) 16092-16095. https://doi.org/10.1039/C5CC04229A
[44] Q. Liao, H. Hou, X. Liu, Y. Yao, Z. Dai, C. Yu, D. Li, l-lactic acid and sodium p-toluenesulfonate co-doped polypyrrole for high performance cathode in sodium ion battery, J. Phys. Chem. Solids 115 (2018) 233-237. https://doi.org/10.1016/j.jpcs.2017.12.015
[45] R. Zhao, L. Zhu, Y. Cao, X. Ai, H. X. Yang, An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries, Electrochem. Commun. 21 (2012) 36-38. https://doi.org/10.1016/j.elecom.2012.05.015
[46] S. Zhang, W. Huang, P. Hu, C. Huang, C. Shang, C. Zhang, R. Yang, G. Cui, Conjugated microporous polymers with excellent electrochemical performance for lithium and sodium storage, J. Mater. Chem A 3 (2014) 1896-1901. https://doi.org/10.1039/C4TA06058J
[47] J. Xie, P. Gu, Q. Zhang, Nanostructured conjugated polymers: Toward high-performance organic electrodes for rechargeable batteries, ACS Energy Lett. 2 (2017) 1985-1996. https://doi.org/10.1021/acsenergylett.7b00494
[48] H. Zhong, G. Wang, Z. Song, X. Li, H. Tang, Y. Zhou, H. Zhan, Organometallic polymer material for energy storage, Chem. Commun. 50 (2014) 6768-6770. https://doi.org/10.1039/C4CC01572J
[49] R. Precht, S. Stolz, E. Mankel, T. Mayer, W. Jaegermann, R. Hausbrand, Investigation of sodium insertion into tetracyanoquinodimethane (TCNQ): Results for a TCNQ thin film obtained by a surface science approach, Phys. Chem. Chem. Phys. 18 (2016) 3056-3064. https://doi.org/10.1039/C5CP06659J
[50] Y. Chen, S. Manzhos, A comparative computational study of lithium and sodium insertion into van der Waals and covalent tetracyanoethylene (TCNE)-based crystals as promising materials for organic lithium and sodium ion batteries, Phys. Chem. Chem. Phys. 18 (2016) 8874-8880. https://doi.org/10.1039/C5CP07474F
[51] J.K. Kim, J. Scheers, J.H. Ahn, P. Johansson, A. Matic, P. Jacobsson, Nano-fibrous polymer films for organic rechargeable batteries, J. Mater. Chem. A 1 (2013) 2426-2430. https://doi.org/10.1039/C2TA00743F
[52] H. Kim, J. Hong, K.Y. Park, H. Kim, S.-W. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries, Chem. Rev. 114 (2014) 11788-11827. https://doi.org/10.1021/cr500232y