State-of-the-Art, Future Prospects and Challenges in Sodium-Ion Battery Technology


State-of-the-Art, Future Prospects and Challenges in Sodium-Ion Battery Technology

Kritika S. Sharma, Vaishali Tomar, Rekha Sharma and Dinesh Kumar

Energy is a matter of interest for scientists, business and policymakers. This concern will continue to increase due to the gradual reduction of fossil fuels day by day. Though, lithium-ion batteries (LIBs) have widely been used due to high energy density, little memory effect, and low self-discharge for portable electronics across the world since 1991. Research in the field of sodium-ion batteries (SIBs) is comparatively new and thus has broad scope due to the abundance and low price of sodium precursors. Presently available electrodes and electrolytes are at the beginning stage of development, and more research is needed to produce SIBs at a massive scale. Selenium and selenium-sulfur (SexSy)-based cathode materials for room temperature lithium, and sodium batteries have been developed. This chapter summarizes current research on materials, discuss prospects and challenges in SIBs technology. This will provide valuable understanding to scientific, commercial, and practical opportunity in the development of sodium-ion batteries.

Battery, Sodium-Ion, Research, Lithium-Ion, Challenges

Published online 5/20/2020, 22 pages

Citation: Kritika S. Sharma, Vaishali Tomar, Rekha Sharma and Dinesh Kumar, State-of-the-Art, Future Prospects and Challenges in Sodium-Ion Battery Technology, Materials Research Foundations, Vol. 76, pp 229-250, 2020


Part of the book on Sodium-Ion Batteries

[1] M. Sawicki, L.L. Shaw, Advances and challenges of sodium ion batteries as post-lithium-ion batteries, RSC Adv. 5 (2015) 53129–53154.
[2] C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K.L. More, N.J. Dudney, M. Chi, Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy, Nano Lett. 16 (2016) 7030–7036.
[3] A. Longfield, Foundations for the future, Early Years Educ. 13 (2014) 1–8.
[4] S. Roberts, E. Kendrick, The re-emergence of sodium ion batteries: Testing, processing, and manufacturability, Nanotechnol. Sci. Appl. 11 (2018) 23.
[5] R. Yazami, Y. Ozawa, H. Gabrisch, B. Fultz, Mechanism of electrochemical performance decay in LiCoO2 aged at high voltage, Electrochim. Acta 50 (2004) 385–390.
[6] J. Ye, H. Chen, Q. Wang, P. Huang, J. Sun, S. Lo, Thermal behavior and failure mechanism of lithium-ion cells during overcharge under adiabatic conditions, Appl. Energy 182 (2016) 464–474.
[7] D. Milan, D. Peal, (12) Patent Application Publication (10) Pub. No .: US 2002/0187020 A1, 1 (2013).
[8] K. Smith, J. Treacher, D. Ledwoch, P. Adamson, E. Kendrick, Novel high energy density sodium layered oxide cathode materials: from material to cells. ECS Transactions 75(22) (2017) 13–24.
[9] J.B. Robinson, D.P. Finegan, T.M.M. Heenan, K. Smith, E. Kendrick, D.J.L. Brett, P.R. Shearing, Microstructural analysis of the effects of thermal runaway on li-ion and na-ion battery electrodes, J. Electrochem. Energy Convers. Storage 15 (2017) 011010.
[10] Y. You, A. Manthiram, Progress in high-voltage cathode materials for rechargeable sodium-ion batteries, Adv. Energy Mater. 8 (2017) 1–11.
[11] R.J. Clément, P.G. Bruce, C.P. Grey, Review—Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials, J. Electrochem. Soc. 162 (2015) A2589–A2604.
[12] T.A. Pham, K.E. Kweon, A. Samanta, V. Lordi, J.E. Pask, Solvation and dynamics of sodium and potassium in ethylene carbonate from ab initio molecular dynamics simulations, J. Phys. Chem. C. 121 (2017) 21913–21920.
[13] F. Bonaccorso, V. Pellegrini, Graphene and Other 2D crystals for rechargeable batteries, material matters, (2016), Retrieved from
[14] M.D. Farrington, Proposed amendments to UN ST/SG/AC.10/11: Transport of dangerous goods – lithium batteries, J. Power Sources 80 (1999) 278–285.
[15] M.D. Farrington, Safety of lithium batteries in transportation, J. Power Sources 96 (2001) 260–265.
[16] K. Takada, M. Itose, K. Fukuda, R. Ma, T. Sasaki, Y. Ebina, X. Yang, Highly Swollen Layered Nickel Oxide with a Trilayer Hydrate Structure, Chem. Mater. 20 (2007) 479–485.
[17] D. Buchholz, L.G. Chagas, C. Vaalma, L. Wu, S. Passerini, Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material, J. Mater. Chem. A. 2 (2014) 13415–13421.
[18] A. Ponrouch, R. Dedryvère, D. Monti, A.E. Demet, J.M. Ateba Mba, L. Croguennec, C. Masquelier, P. Johansson, M.R. Palacín, Towards high energy density sodium ion batteries through electrolyte optimization, Energy Environ. Sci. 6 (2013) 2361–2369.
[19] Next-generation battery research (2019). Retrieved from, cited on March 28, 2019
[20] A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng, K. Amine, A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode, J. Am. Chem. Soc. 134 (2012) 4505–4508.
[21] P. M. Hansen, K. Anderko, Construction of binary alloys, New York 1958; p 1162.
[22] M.F. Kotkata, S.A. Nouh, L. Farkas, M.M. Radwan, Structural studies of glassy and crystalline selenium-sulphur compounds, J. Mater. Sci. 27 (1992) 1785–1794.
[23] K. Chihara, A. Kitajou, I.D. Gocheva, S. Okada, J.I. Yamaki, Cathode properties of Na3M2(PO4)2F3 [M = Ti, Fe, V] for sodium-ion batteries, J. Power Sources 227 (2013) 80–85.
[24] S. Komaba, T. Ishikawa, N. Yabuuchi, W. Murata, A. Ito, Y. Ohsawa, Fluorinated ethylene carbonate as electrolyte additive for, ACS Appl. Mater. Interfaces 3 (2011) 4165–4168.
[25] A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism, J. Am. Chem. Soc. 135 (2012) 10179.
[26] S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries, Adv. Energy Mater. 2 (2012) 710–721.
[27] A. Darwiche, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries, Electrochem. Commun. 32 (2013) 18–21.
[28] L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie, J. Liu, High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications, Chem. Commun. 48 (2012) 3321–3323.
[29] M.K. Datta, R. Epur, P. Saha, K. Kadakia, S.K. Park, P.N. Kumta, Tin and graphite based nanocomposites: Potential anode for sodium-ion batteries, J. Power Sources 225 (2013) 316–322.
[30] J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai, H. Yang, High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries, Chem. Commun. 48 (2012) 7070–7072.
[31] S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, S. Kuze, Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell, Electrochem. Commun. 21 (2012) 65–68.
[32] H.A. Wilhelm, C. Marino, A. Darwiche, L. Monconduit, B. Lestriez, Significant electrochemical performance improvement of TiSnSb as anode material for Li-ion batteries with composite electrode formulation and the use of VC and FEC electrolyte additives, Electrochem. Commun. 24 (2012) 89–92.
[33] A. Ponrouch, A.R. Goñi, M.R. Palacín, High capacity hard carbon anodes for sodium ion batteries in additive-free electrolyte, Electrochem. Commun. 27 (2013) 85–88.
[34] J.F. Peters, A. Peña Cruz, M. Weil, Exploring the Economic Potential of Sodium-Ion Batteries, Batteries 5 (2019) 10.
[35] J. Barker, R. Heap, Doped nickelate compounds. International Patent Application No. WO2014/009710 A1, 16 January 2014
[36] M.F. Kotkata, S.A. Nouh, L. Farkas, M.M. Radwan, Structural studies of glassy and crystalline selenium-sulfur compounds, J. Mater. Sci. 27 (1992) 1785–1794.
[37] J. Peters, D. Buchholz, S. Passerini, M. Weil, Life cycle assessment of sodium-ion batteries, Energy Environ. Sci. 9(5), (2016), 1744-1751.
[38] T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim, C.P. Grey, U. CA Cambardella, USDA Agricultural Research Service, Ames, Formation and Decomposition, Sci. Technol. 350 (2005) 2004.
[39] Y.X. Wang, S.L. Chou, H.K. Liu, S.X. Dou, Reduced graphene oxide with superior cycling stability and rate capability for sodium storage, Carbon 57 (2013) 202–208.
[40] J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, carbon nanosheet frameworks derived from peat moss as high-performance NIBs, ACS Nano (2013) 11004–11015.
[41] P.A. Nelson, K.G. Gallagher, I.D. Bloom, D.W. Dees, Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles – 2 Ed, (2012).
[42] U.S. Geological Survey, Mineral commodities summaries, Miner. Commod. Summ. 2016. (2016) 205.
[43] F. Renard, 2020 cathode materials cost competition for large scale applications and promising LFP best-in-class performer in term of price per kWh. In Proceedings of the International Conference on Olivines for Rechargeable Batteries, Montreal, QC, Canada, 25–28 May 2014
[44] J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: Present and future, Chem. Soc. Rev. 46 (2017) 3529–3614.
[45] W. Ren, Z. Zhu, Q. An, L. Mai, Emerging prototype sodium-ion full cells with nanostructured electrode materials, Small 13 (2017) 1–31.
[46] G. Crabtree, E. Kócs, L. Trahey, The energy-storage frontier: Lithium-ion batteries and beyond, MRS Bull. 40 (2015) 1067–1078.
[47] R.C. Armstrong, C. Wolfram, K.P. de Jong, R. Gross, N.S. Lewis, B. Boardman, A.J. Ragauskas, K. Ehrhardt-Martinez, G. Crabtree, M. V. Ramana, The frontiers of energy, Nat. Energy. 1 (2016) 15020.
[48] SANYO Energy (U.S.A.) Corporation, Panasonic NCR18650B Specifications, (2012) 18650.
[49] Richard Van Noorden. (2014, March 5). The rechargeable revolution: A better battery. Retrieved from
[50] J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater. 1 (2016) 16013.
[51] V.L. Chevrier, G. Ceder, Challenges for Na-ion Negative Electrodes, J. Electrochem. Soc. 158 (2011) A1011.