Nanocellulose-Improved Food Packaging


Nanocellulose-Improved Food Packaging

Elaine Cristina Lengowski, Eraldo Antonio Bonfatti Júnior, Kestur Gundappa Satyanarayana

Although traditional food packaging has contributed to the early development of the distribution system, these are not sufficient to meet new consumer requirements. The application of nanocellulose in packaging and coatings promises to open new possibilities to improve not only the properties of the packaging, but also the efficiency, contributing to the preservation of fresh food by extending its shelf life and reducing environmental waste. The main objective of this chapter is to present the scientific information of relevance regarding nanocellulose and the development of composites applied to the food packaging sector.

Nanotechnology, Natural Fibers, Smart Packaging

Published online 4/20/2020, 48 pages

Citation: Elaine Cristina Lengowski, Eraldo Antonio Bonfatti Júnior, Kestur Gundappa Satyanarayana, Nanocellulose-Improved Food Packaging, Materials Research Foundations, Vol. 73, pp 136-183, 2020


Part of the book on Advanced Applications of Polysaccharides and their Composites

[1] W. Patrick Noonan, C. Noonan, Legal requirements for “functional food” claims, Toxicol. Lett. 150 (2004) 19–24.
[2] R.T. Mendes, R. Vilarta, G.L. Gutierres, Qualidade de vida e cultura alimentar, Ipê Editorial, Campinas, 2009.
[3] N.-S. Kwak, D.J. Jukes, Functional foods. Part 1: the development of a regulatory concept, Food Control. 12 (2001) 99–107.
[4] F.P. Moraes, L. Colla, Functional foods and nutraceuticals: definition, legislation and health benefits, Rev. Eletrônica Farmácia. 3 (2006) 109–122.
[5] U.L. Opara, A. Mditshwa, A review on the role of packaging in securing food system: Adding value to food products and reducing losses and waste, African J. Agric. Res. 8 (2013) 2621–2630.
[6] T.E. Quested, A.D. Parry, S. Easteal, R. Swannell, Food and drink waste from households in the UK, Nutr. Bull. 36 (2011) 460–467.
[7] F. Wikström, H. Williams, Potential environmental gains from reducing food losses through development of new packaging – a life-cycle model, Packag. Technol. Sci. 23 (2010) 403–411.
[8] T.E. Quested, A.D. Parry, S. Esteal, R. Swannell, Food and drink waste from households in the UK, Nutr. Bull. 36 (2011) 460–467.
[9] N. Jorge, Food packagings, Cultura Acadêmica, São Paulo, 2013.
[10] P.E.M. Bernardo, S.A. Navas, L. Tieco, F. Murata, M.R. da S. Alcântara, Bisphenol A: Review on its use in the food packaging, exposure and toxicity, Rev. Inst. Adolfo Lutz. 74 (2015) 1–11.
[11] H. Wang, L. Wang, Developing a bio-based packaging film from soya by-products incorporated with valonea tannin, J. Clean. Prod. 143 (2017) 624–633.
[12] K.L. Yam, P.T. Takhistov, J. Miltz, Intelligent Packaging: Concepts and Applications, J. Food Sci. 70 (2005) R1–R10.
[13] G.L. Robertson, Food packaging : principles and practice, CRC Press, Boca Raton, 2013.
[14] K. Marsh, B. Bugusu, Food Packaging – Roles, Materials, and Environmental Issues, J. Food Sci. 72 (2007) R39–R55.
[15] L.M. Oliveira, P.A.P.L. V Oliveira, Principais agentes antimicrobianos utilizados em embalagens plásticas (Revisão), Braz. J. Food Technol. 7 (2004) 161–165.
[16] F. Wikström, H. Williams, K. Verghese, S. Clune, The influence of packaging attributes on consumer behaviour in food-packaging life cycle assessment studies – a neglected topic, J. Clean. Prod. 73 (2014) 100–108.
[17] H. Kour, N.A.T. Wani, A. Malik, R. Kaul, H. Chauhan, P. Gupta, A. Bhat, J. Singh, Advances in food packaging – a review, Stewart Postharvest Rev. 9 (2013) 1–7.
[18] J. Shin, S.E.M. Selke, Food Packaging, in: S. Clark, S. Jung, B. Lamsal (Eds.), Food Process., John Wiley &amp Sons, Ltd, Chichester, UK, 2014: pp. 249–273.
[19] W. Soroka, Illustrated Glossary of Packaging Terminology, 2nd ed., Institute of Packaging Professionals, Naperville, 2008.
[20] A.L. Missio, B.D. Mattos, D. de F. Ferreira, W.L.E. Magalhães, D.A. Bertuol, D.A. Gatto, A. Petutschnigg, G. Tondi, Nanocellulose-tannin films: From trees to sustainable active packaging, J. Clean. Prod. 184 (2018) 143–151.
[21] M.L. Rooney, ed., Active Food Packaging, Springer US, Boston, MA, 1995.
[22] L. Vermeiren, F. Devlieghere, J. Debevere, Effectiveness of some recent antimicrobial packaging concepts., Food Addit. Contam. 19 Suppl (2002) 163–171.
[23] C.E. Realini, B. Marcos, Active and intelligent packaging systems for a modern society, Meat Sci. 98 (2014) 404–419.
[24] S. Yildirim, B. Röcker, M.K. Pettersen, J. Nilsen-Nygaard, Z. Ayhan, R. Rutkaite, T. Radusin, P. Suminska, B. Marcos, V. Coma, Active Packaging Applications for Food, Compr. Rev. Food Sci. Food Saf. 17 (2018) 165–199.
[25] D. Dainelli, N. Gontard, D. Spyropoulos, E. Zondervan-van den Beuken, P. Tobback, Active and intelligent food packaging: legal aspects and safety concerns, Trends Food Sci. Technol. 19 (2008) S103–S112.
[26] E.F. Beitzen-Heineke, N. Balta-Ozkan, H. Reefke, The prospects of zero-packaging grocery stores to improve the social and environmental impacts of the food supply chain, J. Clean. Prod. 140 (2017) 1528–1541.
[27] J.P. Kerry, M.N. O’Grady, S.A. Hogan, Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review, Meat Sci. 74 (2006) 113–130.
[28] L. Vermeiren, F. Devlieghere, M. van Beest, N. de Kruijf, J. Debevere, Developments in the active packaging of foods, Trends Food Sci. Technol. 10 (1999) 77–86.
[29] P. Zhu, Z. Lin, J.M. Goddard, Performance of photo-curable metal-chelating active packaging coating in complex food matrices, Food Chem. 286 (2019) 154–159.
[30] M. Wrona, K. Bentayeb, C. Nerín, A novel active packaging for extending the shelf-life of fresh mushrooms (Agaricus bisporus), Food Control. 54 (2015) 200–207.
[31] Z.A.N. Hanani, F.C. Yee, M.A.R. Nor-Khaizura, Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging, Food Hydrocoll. 89 (2019) 253–259.
[32] J.H. Han, Innovations in food packaging, Academic Press, Cambridge, 2005.
[33] V. Coma, Bioactive packaging technologies for extended shelf life of meat-based products, Meat Sci. 78 (2008) 90–103.
[34] V.T. Nguyen, M.J. Gidley, G.A. Dykes, Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats, Food Microbiol. 25 (2008) 471–478.
[35] M. Özdemir, J.D. Floros, Active food packaging technologies, Crit. Rev. Food Sci. Nutr. 44 (2004) 185–193.
[36] P. Appendini, J.H. Hotchkiss, Review of antimicrobial food packaging, Innov. Food Sci. Emerg. Technol. 3 (2002) 113–126.
[37] C.G. Otoni, P.J.P. Espitia, R.J. Avena-Bustillos, T.H. McHugh, Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads, Food Res. Int. 83 (2016) 60–73.
[38] R. Ahvenainen, Novel food packaging techniques, CRC Press, Boca Raton, 2003.
[39] S. Özilgen, M. Özilgen, Kinetic Model of Lipid Oxidation in Foods, J. Food Sci. 55 (1990) 498–498.
[40] J.N. Coupland, D.J. McClements, Lipid oxidation in food emulsions, Trends Food Sci. Technol. 7 (1996) 83–91.
[41] T. Waraho, D.J. McClements, E.A. Decker, Mechanisms of lipid oxidation in food dispersions, Trends Food Sci. Technol. 22 (2011) 3–13.
[42] J. Yi, J. Ning, Z. Zhu, L. Cui, E.A. Decker, D.J. McClements, Impact of interfacial composition on co-oxidation of lipids and proteins in oil-in-water emulsions: Competitive displacement of casein by surfactants, Food Hydrocoll. 87 (2019) 20–28.
[43] S.S. Okubanjo, S.M. Loveday, A.M. Ye, P.J. Wilde, H. Singh, Droplet-stabilized oil-in-water emulsions protect unsaturated lipids from oxidation, J. Agric. Food Chem. (2019) acs.jafc.8b02871.
[44] J.M. Lorenzo, P.E.S. Munekata, B. Gómez, F.J. Barba, L. Mora, C. Pérez-Santaescolástica, F. Toldrá, Bioactive peptides as natural antioxidants in food products – A review, Trends Food Sci. Technol. 79 (2018) 136–147.
[45] J.M. Lorenzo, M. Pateiro, R. Domínguez, F.J. Barba, P. Putnik, D.B. Kovačević, A. Shpigelman, D. Granato, D. Franco, Berries extracts as natural antioxidants in meat products: A review, Food Res. Int. 106 (2018) 1095–1104.
[46] J.M. Lorenzo, P.E.S. Munekata, A.S. Sant’Ana, R.B. Carvalho, F.J. Barba, F. Toldrá, L. Mora, M.A. Trindade, Main characteristics of peanut skin and its role for the preservation of meat products, Trends Food Sci. Technol. 77 (2018) 1–10.
[47] T. Slots, L.H. Skibsted, J.H. Nielsen, The difference in transfer of all-rac-α-tocopherol stereo-isomers to milk from cows and the effect on its oxidative stability, Int. Dairy J. 17 (2007) 737–745.
[48] R.P.P. Fernandes, M.A. Trindade, J.M. Lorenzo, P.E.S. Munekata, M.P. de Melo, Effects of oregano extract on oxidative, microbiological and sensory stability of sheep burgers packed in modified atmosphere, Food Control. 63 (2016) 65–75.
[49] R. Battisti, N. Fronza, Á. Vargas Júnior, S.M. da Silveira, M.S.P. Damas, M.G.N. Quadri, Gelatin-coated paper with antimicrobial and antioxidant effect for beef packaging, Food Packag. Shelf Life. 11 (2017) 115–124.
[50] Z.A. Maryam Adilah, Z.A. Nur Hanani, Active packaging of fish gelatin films with Morinda citrifolia oil, Food Biosci. 16 (2016) 66–71.
[51] J.F. Martucci, L.B. Gende, L.M. Neira, R.A. Ruseckaite, Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films, Ind. Crops Prod. 71 (2015) 205–213.
[52] L. Barbosa-Pereira, I. Angulo, J.M. Lagarón, P. Paseiro-Losada, J.M. Cruz, Development of new active packaging films containing bioactive nanocomposites, Innov. Food Sci. Emerg. Technol. 26 (2014) 310–318.
[53] S. Min, J.M. Krochta, Ascorbic Acid-containing whey protein film coatings for control of oxidation, J. Agric. Food Chem. 55 (2007) 2964–2969.
[54] M. Huber, J. Ruiz, F. Chastellain, Off-flavour release from packaging materials and its prevention: a foods company’s approach., Food Addit. Contam. 19 Suppl (2002) 221–8.
[55] A.L. Brody, E.R. Strupinsky, L.R. Kline, Active packaging for food applications, Technomic Pub. Co, 2001.
[56] A. do N. Oliveira, M.C.P. Martins, C.G. de Oliveira, M.L. de souza Lopes, J.C.S. de Mattos, P.J.P. ESPITIA, J.M. de A. Teixeira, K. Pereira, N.R. de Melo, Evaluation of an active flavouring film and its application in cooked ham, Brazilian J. Food Technol. 13 (2011) 299–305.
[57] P. Kotler, K.L. Keller, Marketing management, Pearson, 2016.
[58] B. Kuswandi, Y. Wicaksono, Jayus, A. Abdullah, L.Y. Heng, M. Ahmad, Smart packaging: sensors for monitoring of food quality and safety, Sens. Instrum. Food Qual. Saf. 5 (2011) 137–146.
[59] P. Butler, Smart packaging–intelligent packaging for food, beverages, pharmaceuticals and household products, Mater. World. 9 (2001) 11–13.
[60] M. Vanderroost, P. Ragaert, F. Devlieghere, B. De Meulenaer, Intelligent food packaging: The next generation, Trends Food Sci. Technol. 39 (2014) 47–62.
[61] V. Manthou, M. Vlachopoulou, Bar-code technology for inventory and marketing management systems: A model for its development and implementation, Int. J. Prod. Econ. 71 (2001) 157–164.
[62] C. Chen, A.C. Kot, H. Yang, A two-stage quality measure for mobile phone captured 2D barcode images, Pattern Recognit. 46 (2013) 2588–2598.
[63] K. Domdouzis, B. Kumar, C. Anumba, Radio-frequency identification (RFID) applications: A brief introduction, Adv. Eng. Informatics. 21 (2007) 350–355.
[64] K. Fujisaki, Evaluation of 13.56 MHz RFID System Considering Communication Distance Between Reader and Tag, in: L. Barolli, F. Xhafa, N. Javaid, T. Enokido (Eds.), Innov. Mob. Internet Serv. Ubiquitous Comput., Springer International Publishing, Cham, 2019: pp. 190–200.
[65] C.M. Roberts, Radio frequency identification (RFID), Comput. Secur. 25 (2006) 18–26.
[66] R. Want, Enabling ubiquitous sensing with RFID, Computer (Long. Beach. Calif). 37 (2004) 84–86.
[67] A.S. Martínez-Sala, E. Egea-López, F. García-Sánchez, J. García-Haro, Tracking of returnable packaging and transport units with active RFID in the grocery supply chain, Comput. Ind. 60 (2009) 161–171.
[68] R. Jedermann, L. Ruiz-Garcia, W. Lang, Spatial temperature profiling by semi-passive RFID loggers for perishable food transportation, Comput. Electron. Agric. 65 (2009) 145–154.
[69] E. Abad, S. Zampolli, S. Marco, A. Scorzoni, B. Mazzolai, A. Juarros, D. Gómez, I. Elmi, G.C. Cardinali, J.M. Gómez, F. Palacio, M. Cicioni, A. Mondini, T. Becker, I. Sayhan, Flexible tag microlab development: Gas sensors integration in RFID flexible tags for food logistic, Sensors Actuators B Chem. 127 (2007) 2–7.
[70] A. Vergara, E. Llobet, J.L. Ramírez, P. Ivanov, L. Fonseca, S. Zampolli, A. Scorzoni, T. Becker, S. Marco, J. Wöllenstein, An RFID reader with onboard sensing capability for monitoring fruit quality, Sensors Actuators B Chem. 127 (2007) 143–149.
[71] S.A. Hogan, J.P. Kerry, Smart Packaging of Meat and Poultry Products, in: J. Kerry, P. Butler (Eds.), Smart Packag. Technol. Fast Mov. Consum. Goods, John Wiley & Sons, Ltd, Chichester, UK, 2008: pp. 33–59.
[72] K.B. Biji, C.N. Ravishankar, C.O. Mohan, T.K. Srinivasa Gopal, Smart packaging systems for food applications: a review., J. Food Sci. Technol. 52 (2015) 6125–35.
[73] A.C. Pinheiro, M.A. Cerqueira, B.W.S. Souza, J. Martins, J.A. Teixeira, A.A. Vicente, Use of edible coatings/films for food applications, Bol. Biotecnol. (2010) 18–28.
[74] F.M. Pelissari, D.C. Ferreira, L.B. Louzada, F. dos Santos, A.C. Corrêa, F.K.V. Moreira, L.H. Mattoso, Starch-Based Edible Films and Coatings: An Eco-friendly Alternative for Food Packaging, in: M.T.P.S. Clerici, M. Schmiele (Eds.), Starches Food Appl., Academic Press, Cambridge, 2019: pp. 359–420.
[75] S.S. Nallan Chakravartula, C. Cevoli, F. Balestra, A. Fabbri, M. Dalla Rosa, Evaluation of drying of edible coating on bread using NIR spectroscopy, J. Food Eng. 240 (2019) 29–37.
[76] T. Giancone, E. Torrieri, P. Di Pierro, L. Mariniello, M. Moresi, R. Porta, P. Masi, Role of constituents on the network formation of hydrocolloid edible films, J. Food Eng. 89 (2008) 195–203.
[77] S. Galus, J. Kadzińska, Food applications of emulsion-based edible films and coatings, Trends Food Sci. Technol. 45 (2015) 273–283.
[78] H.J. Park, Development of advanced edible coatings for fruits, Trends Food Sci. Technol. 10 (1999) 254–260.
[79] H.Y. Erbil, N. Muftugil, Lengthening the postharvest life of peaches by coating with hydrophobic emulsions, J. Food Process. Preserv. 10 (1986) 269–279.
[80] P. Rantamäki, V. Loimaranta, E. Vasara, J. Latva-Koivisto, H. Korhonen, J. Tenovuo, P. Marnila, Edible films based on milk proteins release effectively active immunoglobulins, Food Qual. Saf. (2019).
[81] E.C. Lengowski, E.A. Bonfatti Júnior, M.M.N. Kumode, M.E. Carneiro, K.G. Satyanarayana, Nanocellulose in the Paper Making, in: Inamuddin, S. Thomas, R.K. Mishra, A.M. Asiri (Eds.), Sustain. Polym. Compos. Nanocomposites, Springer International Publishing, Cham, 2019: pp. 1027–1066.
[82] K. Marsh, B. Bugusu, Food Packaging – Roles, materials, and environmental issues, J. Food Sci. 72 (2007) R39–R55.
[83] Y. Teck Kim, B. Min, K. Won Kim, General Characteristics of Packaging Materials for Food System, in: J.H. Han (Ed.), Innov. Food Packag., Academic Press, Cambridge, 2014: pp. 13–35.
[84] Z. Berk, Food packaging, in: Z. Berk (Ed.), Food Process Eng. Technol., Academic Press, Cambridge, 2018: pp. 625–641.
[85] B. Oraikul, M.E. Stiles, Modified atmosphere packaging of fruits and vegetables, Ellis Horwood, West Sussex, 1991.
[86] ASTM, C162-05(2015): Standard Terminology of Glass and Glass Products, West Conshohocken, 2015.
[87] B. Luo, M. Ma, M.-A. Zhang, J. Shang, C.-P. Wong, Composite glass-silicon substrates embedded with microcomponents for mems system integration, IEEE Trans. Components, Packag. Manuf. Technol. 9 (2019) 201–208.
[88] S. Sacharow, R.C. Griffin, Principles of food packaging, 2nd ed., Avi Publishers, New Delhi, 1980.
[89] S. Keller, Paper drying in the manufacturing process, in: G. Banik, I. Brückle (Eds.), Pap. Water A Guid. Conserv., Butterworth Heinemann, Oxiford, 2013: pp. 173–211.
[90] S.A. Gunaratne, Paper, Printing and the Printing Press, Gazette. 63 (2001) 459–479.
[91] C. Robusti, E.F. Viana, F. Ferreira Júnior, I. Gomes, L. Tognetta, O. Dos Santos, P. Dragoni, Paper, SENAI-SP, São Paulo, 2014.
[92] A.P.M. Landim, C.O. Bernardo, I.B.A. Martins, M.R. Francisco, M.B. Santos, N.R. de Melo, A.P.M. Landim, C.O. Bernardo, I.B.A. Martins, M.R. Francisco, M.B. Santos, N.R. de Melo, Sustainability concerning food packaging in Brazil, Polímeros. 26 (2016) 82–92.
[93] V. Katiyar, S.S. Gaur, A. k. Pal, A. Kumar, Properties of Plastics for Packaging Applications, in: S. Alavi, S. Thomas, K.P. Sandeep, N. Kalarikkal, J. Varghese, S. Yaragalla (Eds.), Polym. Packag. Appl., 1st Editio, CRC Press, Boca Raton, 2014: pp. 03–38.
[94] L. Lebreton, B. Slat, F. Ferrari, B. Sainte-Rose, J. Aitken, R. Marthouse, S. Hajbane, S. Cunsolo, A. Schwarz, A. Levivier, K. Noble, P. Debeljak, H. Maral, R. Schoeneich-Argent, R. Brambini, J. Reisser, Evidence that the great pacific garbage patch is rapidly accumulating plastic, Sci. Rep. 8 (2018) 4666.
[95] K. Petersen, P. Væggemose Nielsen, G. Bertelsen, M. Lawther, M.B. Olsen, N.H. Nilsson, G. Mortensen, Potential of biobased materials for food packaging, Trends Food Sci. Technol. 10 (1999) 52–68.
[96] A. Sorrentino, G. Gorrasi, V. Vittoria, Potential perspectives of bio-nanocomposites for food packaging applications, Trends Food Sci. Technol. 18 (2007) 84–95.
[97] A.F. Turbak, F.W. Snyder, K.R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, J. Appl. Polym. Sci. Appl. Polym. Symp.; (United States). 37 (1983).
[98] G. Mitchell, F. Gaspar, A. Mateus, V. Mahendra, D. Sousa, Advanced Materials from Forests, in: L.M.T. Martínez, O.V. Kharissova, B.I. Kharisov (Eds.), Handb. Ecomater., Springer, Cham, Chan, 2019: pp. 1–24.
[99] A.K. Bharimalla, S.P. Deshmukh, N. Vigneshwaran, P.G. Patil, V. Prasad, Nanocellulose-polymer composites for applications in food packaging: current status, future prospects and challenges, Polym. Plast. Technol. Eng. 56 (2017) 805–823.
[100] C. Salas, M. Hubbe, O.J. Rojas, Nanocellulose Applications in Papermaking, in: Z. Fang, R.L. Smith, X. Tian (Eds.), Prod. Mater. from Sustain. Biomass, Springer, Singapore, 2019: pp. 61–96.
[101] S. Fujisawa, Y. Okita, H. Fukuzumi, T. Saito, A. Isogai, Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups, Carbohydr. Polym. 84 (2011) 579–583.
[102] H. Sehaqui, M. Allais, Q. Zhou, L.A. Berglund, Wood cellulose biocomposites with fibrous structures at micro- and nanoscale, Compos. Sci. Technol. 71 (2011) 382–387.
[103] D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: A new family of nature-based materials, Angew. Chemie Int. Ed. 50 (2011) 5438–5466.
[104] A. Rodríguez-Rojas, A. Arango Ospina, P. Rodríguez-Vélez, R. Arana-Florez, What is the new about food packaging material: A bibliometric review during 1996–2016, Trends Food Sci. Technol. 85 (2019) 252–261.
[105] N.M. Julkapli, S. Bagheri, Developments in nano-additives for paper industry, J. Wood Sci. 62 (2016) 117–130.
[106] Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, in: L.D. Madsen, E.B. Svedberg (Eds.), Mater. Res. Manuf., Springer, Cham, Cham, 2010: pp. 3479–3500.
[107] K. Nelson, T. Retsina, M. Iakovlev, A. van Heiningen, Y. Deng, J.A. Shatkin, A. Mulyadi, American Process: Production of Low Cost Nanocellulose for Renewable, Advanced Materials Applications, in: L.D. Madsen, E.B. Svedber (Eds.), Mater. Res. Manuf., Springer, Cham, Cham, 2016: pp. 267–302.
[108] E.C. Lengowski, G.I.B. Muniz de, S. Nisgoski, W.L.E. Magalhães, Cellulose acquirement evaluation methods with different degrees of crystallinity, Sci. For. Sci. 41 (2013) 185–194.
[109] T. Nishino, I. Matsuda, K. Hirao, All-cellulose composite, Macromolecules. 37 (2004) 7863–7867.
[110] S. Janardhnan, M.M. Sain, Isolation of cellulose microfibrils – An enzymatic approach, BioResources. 1 (2006) 176–188.
[111] S. Kalia, S. Boufi, A. Celli, S. Kango, Nanofibrillated cellulose: surface modification and potential applications, Colloid Polym. Sci. 292 (2014) 5–31.
[112] J. Rojas, M. Bedoya, Y. Ciro, Current Trends in the Production of Cellulose Nanoparticles and Nanocomposites for Biomedical Applications, in: M. Poletto (Ed.), Cellul. – Fundam. Asp. Curr. Trends, InTech, London, 2015: pp. 193–228.
[113] M. Rabello, Aditivação de Polímeros, Artliber, São Paulo, 2000.
[114] G. Davis, J.H. Song, Biodegradable packaging based on raw materials from crops and their impact on waste management, Ind. Crops Prod. 23 (2006) 147–161.
[115] Q. Chaudhry, L. Castle, Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries, Trends Food Sci. Technol. 22 (2011) 595–603.
[116] C. Silvestre, D. Duraccio, S. Cimmino, Food packaging based on polymer nanomaterials, Prog. Polym. Sci. 36 (2011) 1766–1782.
[117] P. Podsiadlo, S.-Y. Choi, B. Shim, J. Lee, M. Cuddihy, N.A. Kotov, Molecularly Engineered Nanocomposites: Layer-by-Layer Assembly of Cellulose Nanocrystals, Biomacromolecules. 6 (2005) 2914–2918.
[118] A. Khan, T. Huq, R.A. Khan, B. Riedl, M. Lacroix, Nanocellulose-Based Composites and Bioactive Agents for Food Packaging, Crit. Rev. Food Sci. Nutr. 54 (2014) 163–174.
[119] A.K. Bharimalla, S.P. Deshmukh, N. Vigneshwaran, P.G. Patil, V. Prasad, Nanocellulose-polymer composites for applications in food packaging: current status, future prospects and challenges, Polym. Plast. Technol. Eng. 56 (2017) 805–823.
[120] E.C. Lengowski, G.I.B. de Muñiz, A.S. de Andrade, L.C. Simon, S. Nisgoski, Morphological, physical and thermal characterization of microfibrillated cellulose, Rev. Árvore. 42 (2018). .
[121] K. Syverud, P. Stenius, Strength and barrier properties of MFC films, Cellulose. 16 (2009) 75–85.
[122] H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, A. Isogai, Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules. 10 (2009) 162–165.
[123] C. Aulin, S. Ahola, P. Josefsson, T. Nishino, Y. Hirose, M. Österberg, L. Wågberg, Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water, Langmuir. 25 (2009) 7675–7685.
[124] K.L. Spence, R.A. Venditti, O.J. Rojas, Y. Habibi, J.J. Pawlak, The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications, Cellulose. 17 (2010) 835–848.
[125] M. Delgado-Aguilar, I. González, M.A. Pèlach, E. De La Fuente, C. Negro, P. Mutjé, Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition, Cellulose. 22 (2015) 789–802.
[126] L.C. Viana, D.C. Potulski, G.I.B. de Muniz, A.S. de Andrade, E.L. da Silva, L.C. Viana, D.C. Potulski, G.I.B. de Muniz, A.S. de Andrade, E.L. da Silva, Nanofibrillated cellulose as an additive for recycled paper, CERNE. 24 (2018) 140–148. .
[127] M. He, G. Yang, B.-U. Cho, Y.K. Lee, J.M. Won, Effects of addition method and fibrillation degree of cellulose nanofibrils on furnish drainability and paper properties, Cellulose. 24 (2017) 5657–5669.
[128] H. Sehaqui, L.A. Berglund, Q. Zhou, BIOREFINERY: Nanofibrillated cellulose for enhancement of strength in high-density paper structures, Nord. Pulp Pap. Res. J. 28 (2013) 182–189.
[129] C. Aulin, M. Gällstedt, T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose. 17 (2010) 559–574.
[130] C. Salas, M. Hubbe, O.J. Rojas, Nanocellulose Applications in Papermaking, in: Z. Fang, R.L. Smith, S. Tian (Eds.), Prod. Mater. from Sustain. Biomass Resour., Springer, Singapore, Singapore, 2019: pp. 61–96.
[131] M.A. Hubbe, A. Ferrer, P. Tyagi, Y. Yin, C. Salas, L. Pal, O.J. Rojas, Nanocellulose in thin films, coatings, and plies for packaging applications: a review, BioResources. 12 (2017) 2143–2233.
[132] A. Naderi, J. Sundström, T. Lindström, J. Erlandsson, Enhancing the properties of carboxymethylated nanofibrillated cellulose by inclusion of water in the pretreatment process, Nord. Pulp Pap. Res. J. 31 (2016) 372–378.
[133] A. Naderi, T. Lindström, G. Flodberg, J. Sundström, K. Junel, A. Runebjörk, C.F. Weise, J. Erlandsson, Phosphorylated nanofibrillated cellulose: production and properties, Nord. Pulp Pap. Res. J. 31 (2016) 20–29.
[134] T. Taipale, M. Österberg, A. Nykänen, J. Ruokolainen, J. Laine, Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength, Cellulose. 17 (2010) 1005–1020.
[135] E.C. Lengowski, Formation and characterization of films with nanocellulose, Federal University of Paraná, 2016.
[136] J. Lee, K. Sim, K. Sim, H.J. Youn, Strengthening effect of surface treatment of cellulose nanofibrils on aged paper, J. Korea Tech. Assoc. Pulp Pap. Ind. 48 (2016) 123.
[137] V. Ottesen, K. Syverud, Ø.W. Gregersen, Mixing of cellulose nanofibrils and individual furnish components: Effects on paper properties and structure, Nord. Pulp Pap. Res. J. 31 (2016) 441–447.
[138] I. González, S. Boufi, M.A. Pèlach, M. Alcalà, F. Vilaseca, P. Mutjé, Nanofibrillated cellulose as paper additive in eucalyptus pulps, Bio Resources. 7 (2012) 5167–5180.
[139] S. Belbekhouche, J. Bras, G. Siqueira, C. Chappey, L. Lebrun, B. Khelifi, S. Marais, A. Dufresne, Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films, Carbohydr. Polym. 83 (2011) 1740–1748.
[140] M. Visanko, H. Liimatainen, J.A. Sirviö, K.S. Mikkonen, M. Tenkanen, R. Sliz, O. Hormi, J. Niinimäki, Butylamino-functionalized cellulose nanocrystal films: barrier properties and mechanical strength, RSC Adv. 5 (2015) 15140–15146.
[141] C.A. Cozzolino, G. Cerri, A. Brundu, S. Farris, Microfibrillated cellulose (MFC): pullulan bionanocomposite films, Cellulose. 21 (2014) 4323–4335.
[142] J.M. Lagaron, R. Catalá, R. Gavara, Structural characteristics defining high barrier properties in polymeric materials, Mater. Sci. Technol. 20 (2004) 1–7.
[143] E.C. Lengowski, W.L.E. Magalhães, S. Nisgoski, G.I.B. de Muniz, K.G. Satyanarayana, M. Lazzarotto, New and improved method of investigation using thermal tools for characterization of cellulose from eucalypts pulp, Thermochim. Acta. 638 (2016) 44–51.
[144] Z. Wang, A.G. McDonald, R.J.M. Westerhof, S.R.A. Kersten, C.M. Cuba-Torres, S. Ha, B. Pecha, M. Garcia-Perez, Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis, J. Anal. Appl. Pyrolysis. 100 (2013) 56–66.
[145] A. Kiviranta, Paperboard grades, in: H. Paulapuro (Ed.), Pap. Board Grade Papermak. Sci. Technol., Fapet Oy, Helsinki, 2000: pp. 54–72.
[146] M. Henriksson, L.A. Berglund, P. Isaksson, T. Lindström, T. Nishino, Cellulose nanopaper structures of high toughness, Biomacromolecules. 9 (2008) 1579–1585.
[147] M. Bengtsson, P. Gatenholm, K. Oksman, The effect of crosslinking on the properties of polyethylene/wood flour composites, Compos. Sci. Technol. 65 (2005) 1468–1479.
[148] A.S. Singha, V.K. Thakur, Fabrication and characterization of h. sabdariffa fiber-reinforced green polymer composites, Polym. Plast. Technol. Eng. 48 (2009) 482–487.
[149] A.L. Leao, B.M. Cherian, S. Narine, M. Sain, S. Souza, S. Thomas, Applications for Nanocellulose in Polyolefins-Based Composites, in: S. Mohanty, S.K. Kayak, B.S. Kaith, S. Kalia (Eds.), Polym. Nanocomposites Based Inorg. Org. Nanomater., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2015: pp. 215–228.
[150] S. Iwamoto, S. Yamamoto, S.-H. Lee, T. Endo, Mechanical properties of polypropylene composites reinforced by surface-coated microfibrillated cellulose, Compos. Part A Appl. Sci. Manuf. 59 (2014) 26–29.
[151] N. Lin, A. Dufresne, Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites, Macromolecules. 46 (2013) 5570–5583.
[152] N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux, J.Y. Cavaillé, New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics, Biomacromolecules. 6 (2005) 2732–2739.
[153] V. Khoshkava, H. Ghasemi, M.R. Kamal, Effect of cellulose nanocrystals (CNC) on isothermal crystallization kinetics of polypropylene, Thermochim. Acta. 608 (2015) 30–39.
[154] K.A. Iyer, G.T. Schueneman, J.M. Torkelson, Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: Superior dispersion leading to synergistic property enhancements, Polymer (Guildf). 56 (2015) 464–475.
[155] K. Suzuki, H. Okumura, K. Kitagawa, S. Sato, A.N. Nakagaito, H. Yano, Development of continuous process enabling nanofibrillation of pulp and melt compounding, Cellulose. 20 (2013) 201–210.
[156] K. Suzuki, A. Sato, H. Okumura, T. Hashimoto, A.N. Nakagaito, H. Yano, Novel high-strength, micro fibrillated cellulose-reinforced polypropylene composites using a cationic polymer as compatibilizer, Cellulose. 21 (2014) 507–518.
[157] V. Khoshkava, M.R. Kamal, Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites, Powder Technol. 261 (2014) 288–298.
[158] V. Khoshkava, M.R. Kamal, Effect of cellulose nanocrystals (cnc) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites, ACS Appl. Mater. Interfaces. 6 (2014) 8146–8157.
[159] W. Huanhuan, L. Qian, H. Zhiqian, L. Yuanmei, F. Shenyuan, Preparation and characterization of hdpe/nano-cellulose fiber composites, Plast. Sci. Technol. 21 (2014) 23–41.
[160] H. Yano, H. Omura, Y. Honma, H. Okumura, H. Sano, F. Nakatsubo, Designing cellulose nanofiber surface for high density polyethylene reinforcement, Cellulose. 25 (2018) 3351–3362.
[161] N. Đorđević, A.D. Marinković, P. Živković, D. V Kovačević, S. Dimitrijević, V. Kokol, P.S. Uskoković, Improving the packaging performance of low-density polyethylene with PCL/nanocellulose/copper(II)oxide barrier layer, Sci. Sinter. 50 (2002) 149–161.
[162] J. Sapkota, J.C. Natterodt, A. Shirole, E.J. Foster, C. Weder, Fabrication and Properties of Polyethylene/Cellulose Nanocrystal Composites, Macromol. Mater. Eng. 302 (2017) 1600300.
[163] M.V.G. Zimmermann, M.P. da Silva, A.J. Zattera, R.M. Campomanes Santana, Effect of nanocellulose fibers and acetylated nanocellulose fibers on properties of poly(ethylene-co-vinyl acetate) foams, J. Appl. Polym. Sci. 134 (2017).
[164] M. Martínez-Sanz, A. Lopez-Rubio, J.M. Lagaron, Nanocomposites of ethylene vinyl alcohol copolymer with thermally resistant cellulose nanowhiskers by melt compounding (I): Morphology and thermal properties, J. Appl. Polym. Sci. 128 (2013) 2666–2678.
[165] S. Huan, L. Bai, G. Liu, W. Cheng, G. Han, Electrospun nanofibrous composites of polystyrene and cellulose nanocrystals: manufacture and characterization, RSC Adv. 5 (2015) 50756–50766.
[166] O.J. Rojas, G.A. Montero, Y. Habibi, Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers, J. Appl. Polym. Sci. 113 (2009) 927–935.
[167] S. Fujisawa, T. Ikeuchi, M. Takeuchi, T. Saito, A. Isogai, Superior Reinforcement Effect of TEMPO-Oxidized Cellulose Nanofibrils in Polystyrene Matrix: Optical, Thermal, and Mechanical Studies, Biomacromolecules. 13 (2012) 2188–2194.
[168] G. Kadry, A.E.F. El-Hakim, Effect of nanocellulose on the biodegradation, morphology and mechanical properties of polyvinylchloride/ nanocellulose nanocomposites, Res. J. Pharm. Biol. Chem. Sci. 6 (2015) 659–666.
[169] R. Sheltami, H. Kargarzadeh, I. Abdullah, Effects of Silane Surface Treatment of Cellulose Nanocrystals on the Tensile Properties of Cellulose-Polyvinyl Chloride Nanocomposite, Sains Malaysiana. 44 (2015) 801–810.
[170] Y. Yin, X. Tian, X. Jiang, H. Wang, W. Gao, Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate, Carbohydr. Polym. 142 (2016) 206–212.
[171] H. Dong, Y.R. Sliozberg, J.F. Snyder, J. Steele, T.L. Chantawansri, J.A. Orlicki, S.D. Walck, R.S. Reiner, A.W. Rudie, Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils, ACS Appl. Mater. Interfaces. 7 (2015) 25464–25472.
[172] F. Fahma, N. Hori, T. Iwata, A. Takemura, The morphology and properties of poly(methyl methacrylate)-cellulose nanocomposites prepared by immersion precipitation method, J. Appl. Polym. Sci. 128 (2012) 1–6.
[173] S. Fujisawa, Y. Okita, T. Saito, E. Togawa, A. Isogai, Formation of N-acylureas on the surface of TEMPO-oxidized cellulose nanofibril with carbodiimide in DMF, Cellulose. 18 (2011) 1191–1199.
[174] S.S. Nair, J. Zhu, Y. Deng, A.J. Ragauskas, High performance green barriers based on nanocellulose, Sustain. Chem. Process. 2 (2014) 23.
[175] E. Mascheroni, R. Rampazzo, M.A. Ortenzi, G. Piva, S. Bonetti, L. Piergiovanni, Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials, Cellulose. 23 (2016) 779–793.
[176] H. Yousefian, D. Rodrigue, Effect of nanocrystalline cellulose on morphological, thermal, and mechanical properties of Nylon 6 composites, Polym. Compos. 37 (2016) 1473–1479.
[177] S. Kashani Rahimi, J.U. Otaigbe, Polyamide 6 nanocomposites incorporating cellulose nanocrystals prepared by In situ ring-opening polymerization: Viscoelasticity, creep behavior, and melt rheological properties, Polym. Eng. Sci. 56 (2016) 1045–1060.
[178] J.-A. Lee, M.-J. Yoon, E.-S. Lee, D.-Y. Lim, K.-Y. Kim, Preparation and characterization of cellulose nanofibers (CNFs) from microcrystalline cellulose (MCC) and CNF/polyamide 6 composites, Macromol. Res. 22 (2014) 738–745.
[179] D.M. Panaitescu, A.N. Frone, C. Nicolae, Micro- and nano-mechanical characterization of polyamide 11 and its composites containing cellulose nanofibers, Eur. Polym. J. 49 (2013) 3857–3866.
[180] S. Panthapulakkal, M. Sain, Preparation and characterization of cellulose nanofibril films from wood fibre and their thermoplastic polycarbonate composites, Int. J. Polym. Sci. 2012 (2012) 1–6.
[181] W. Xu, Z. Qin, H. Yu, Y. Liu, N. Liu, Z. Zhou, L. Chen, Cellulose nanocrystals as organic nanofillers for transparent polycarbonate films, J. Nanoparticle Res. 15 (2013) 1562.
[182] M. Mariano, N. El Kissi, A. Dufresne, Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process, Eur. Polym. J. 69 (2015) 208–223.
[183] C. Gómez H., A. Serpa, J. Velásquez-Cock, P. Gañán, C. Castro, L. Vélez, R. Zuluaga, Vegetable nanocellulose in food science: A review, Food Hydrocoll. 57 (2016) 178–186.
[184] K. Oksman, A.P. Mathew, D. Bondeson, I. Kvien, Manufacturing process of cellulose whiskers/polylactic acid nanocomposites, Compos. Sci. Technol. 66 (2006) 2776–2784.
[185] M.P. Arrieta, E. Fortunati, F. Dominici, E. Rayón, J. López, J.M. Kenny, Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties, Carbohydr. Polym. 107 (2014) 16–24.
[186] E. Fortunati, M. Peltzer, I. Armentano, L. Torre, A. Jiménez, J.M. Kenny, Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites, Carbohydr. Polym. 90 (2012) 948–956.
[187] M. Jonoobi, J. Harun, A.P. Mathew, K. Oksman, Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion, Compos. Sci. Technol. 70 (2010) 1742–1747.
[188] H. Fukuzumi, T. Saito, S. Iwamoto, Y. Kumamoto, T. Ohdaira, R. Suzuki, A. Isogai, Pore size determination of tempo-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy, Biomacromolecules. 12 (2011) 4057–4062.
[189] A. Pei, Q. Zhou, L.A. Berglund, Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) – Crystallization and mechanical property effects, Compos. Sci. Technol. 70 (2010) 815–821.
[190] A. Dufresne, M.R. Vignon, Improvement of starch film performances using cellulose microfibrils, Macromolecules. 31 (1998) 2693–2696.
[191] A. Dufresne, D. Dupeyre, M.R. Vignon, Cellulose microfibrils from potato tuber cells: Processing and characterization of starch-cellulose microfibril composites, J. Appl. Polym. Sci. 76 (2000) 2080–2092.;2-U.
[192] M.D. Sanchez-Garcia, E. Gimenez, J.M. Lagaron, Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers, Carbohydr. Polym. 71 (2008) 235–244.
[193] H.M.C. Azeredo, Fundamentos de estabilidade de alimentos, 2nd ed., Embrapa, Brazília, 2012.
[194] M.N. Anglès, A. Dufresne, Plasticized starch/tunicin whiskers nanocomposites. 1. structural analysis, Macromolecules. 33 (2000) 8344–8353.
[195] J.B.A. da Silva, F. V. Pereira, J.I. Druzian, Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals, J. Food Sci. 77 (2012) N14–N19.
[196] N. Follain, S. Belbekhouche, J. Bras, G. Siqueira, S. Marais, A. Dufresne, Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals, J. Memb. Sci. 427 (2013) 218–229.
[197] A. Saxena, A.J. Ragauskas, Water transmission barrier properties of biodegradable films based on cellulosic whiskers and xylan, Carbohydr. Polym. 78 (2009) 357–360.
[198] P. Dhar, U. Bhardwaj, A. Kumar, V. Katiyar, Poly (3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: Barrier and migration studies, Polym. Eng. Sci. 55 (2015) 2388–2395.
[199] M. Abdollahi, M. Alboofetileh, M. Rezaei, R. Behrooz, Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers, Food Hydrocoll. 32 (2013) 416–424.
[200] F. Fahma, Sugiarto, T.C. Sunarti, S.M. Indriyani, N. Lisdayana, Thermoplastic cassava starch-PVA composite films with cellulose nanofibers from oil palm empty fruit bunches as reinforcement agent, Int. J. Polym. Sci. 2017 (2017) 1–5.
[201] R.A. Khan, S. Salmieri, D. Dussault, J. Uribe-Calderon, M.R. Kamal, A. Safrany, M. Lacroix, Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films, J. Agric. Food Chem. 58 (2010) 7878–7885.
[202] H.M.C. Azeredo, L.H.C. Mattoso, R.J. Avena-Bustillos, G.C. Filho, M.L. Munford, D. Wood, T.H. McHugh, Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content, J. Food Sci. 75 (2010) N1–N7.
[203] M. Pereda, G. Amica, I. Rácz, N.E. Marcovich, Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers, J. Food Eng. 103 (2011) 76–83.
[204] M. Abdollahi, M. Alboofetileh, R. Behrooz, M. Rezaei, R. Miraki, Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles, Int. J. Biol. Macromol. 54 (2013) 166–173.