Interfacial Layer/Overlayer Effects in Photoelectrochemical Water Splitting

$30.00

Interfacial Layer/Overlayer Effects in Photoelectrochemical Water Splitting

Rohit Shrivastav, Gurpreet Kaur, Divya, Vibha R Satsangi and Sahab Dass

Aiming to gain increments in conversion efficiency, several new and innovative thoughts have been embedded in recent years to the ongoing research on photoelectrochemical splitting of water. In this context, photoelectrodes with nanoheterostructred configurations, evolved through overlayer/interfacial layer of different semiconductors, hold high promise. The approach facilitates simultaneous use of more than one low-cost and earth-abundant material in the photoelectrode design. It has emerged as an effective strategy not only to widen wavelength-range for light-absorption but also to reduce recombination losses by faster separation and swift migration of photogenerated electrons/holes. This chapter presents this specific aspect of hydrogen generation by photoelectrochemical water splitting.

Keywords
Photoelectrochemical Water Splitting, Renewable Hydrogen, Semiconductor Photoelectrode/Photocatalyst, Nanoheterostuctures, Interfacial-Layering/Over-Layering

Published online 3/5/2020, 33 pages

Citation: Rohit Shrivastav, Gurpreet Kaur, Divya, Vibha R Satsangi and Sahab Dass, Interfacial Layer/Overlayer Effects in Photoelectrochemical Water Splitting, Materials Research Foundations, Vol. 71, pp 58-90, 2020

DOI: https://doi.org/10.21741/9781644900734-3

Part of the book on Photoelectrochemical Water Splitting

References
[1] B. Kumari, S. Sharma, N. Singh, A. Verma, V.R. Satsangi, S. Dass, R. Shrivastav, ZnO thin films, surface- embedded with biologically derived Ag/Au nanoparticles, for efficient photoelectrochemical splitting of water, Int. J. Hydrogen Energy 39 (2014) 18216-18229. https://doi.org/10.1016/j.ijhydene.2014.09.025
[2] V. Sharma, M. Dixit, V.R. Satsangi, S. Dass, S. Pal, R. Shrivastav, Photoelectrochemical splitting of water with nanocrystalline Zn1-xMnxO thin films: First-principle DFT computations supporting the systematic experimental endeavour, Int. J. Hydrogen Energy 39 (2014) 3637-3648. https://doi.org/10.1016/j.ijhydene.2013.12.150
[3] A. Verma, A. Srivastav, A. Banerjee, D. Sharma, S. Sharma, U.B. Singh, V.R. Satsangi, R. Shrivastav, D.K. Avasthi, S. Dass, Plasmonic layer enhanced photoelectrochemical response of Fe2O3 photoanodes, J. Power Sources 315 (2016) 152-160. https://doi.org/10.1016/j.jpowsour.2016.03.004
[4] D. Sharma, S. Upadhyay, V.R. Satsangi, R. Shrivastav, U.V. Waghmare, S. Dass, Ni-doped Cu2O thin films for solar-hydrogen generation: Experiments & first-principles analysis, Adv. Sci. Lett. 22 (2016) 780-784. https://doi.org/10.1166/asl.2016.6920
[5] S. Choudhary, A. Solanki, D. Sharma, N. Singh, S. Upadhyay, R. Shrivastav, V.R. Satsangi, S. Dass, Photoelectrochemical water splitting using bilayered ZnO/SrTiO3 photoelectrodes, Int. J. Modern Phys. 22 (2013) 545-551. https://doi.org/10.1142/S2010194513010647
[6] S. Choudhary, A. Solanki, S. Upadhyay, N. Singh, V.R. Satsangi, R. Shrivastav, S. Dass, Nanostructured CuO/SrTiO3 bilayered thin films for photoelectrochemical water splitting, J. Solid State Electrochem. 17 (2013) 2531-2538. https://doi.org/10.1007/s10008-013-2139-7
[7] A. Ikram, S. Sahai, S. Rai, S. Dass, R. Shrivastav, V.R. Satsangi, Improved charge transportation at PbS QDs/TiO2 interface for efficient PEC hydrogen generation, Phys. Chem. Chem. Phys. 18 (2016) 15815-15821. https://doi.org/10.1039/C6CP00854B
[8] A.G. Tamirat, J. Rick, A.A. Dubale, W.N. Sub, B.J. Hwang, Using hematite for photoelectrochemical water splitting: a review of current progress and challenges, Nanoscale Horizon 1 (2016) 243-267. https://doi.org/10.1039/C5NH00098J
[9] P. Kanhere, Z. Chen, A review on visible light active perovskite-based photocatalysts, Molecules 19 (2014) 19995-20022. https://doi.org/10.3390/molecules191219995
[10] P. Sharma, P. Kumar, A. Solanki, R. Shrivastav, S. Dass, V.R. Satsangi, Photoelectrochemical performance of bilayered Fe-TiO2/Zn-Fe2O3 thin films for solar generation of hydrogen, J. Solid State Electrochem. 16 (2012) 1305-1312. https://doi.org/10.1007/s10008-011-1552-z
[11] B.Y. Cheng, J.S. Yang, H. W. Cho, J.J. Wu, Fabrication of efficient BiVO4/TiO2 heterojunction photoanode for photoelectrochemical water oxidation, ACS Appl. Mater. Interfaces 8 (2016) 20032-20039. https://doi.org/10.1021/acsami.6b05489
[12] H. Dong, Q. Liu, Y. He, Preparation of nanoporous BiVO4/TiO2/Ti film through electrodeposition for photoelectrochemical water splitting, R. Soc. open sci. 5(9) 180728 (1-10).
[13] J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A. L. Briseno, P. Yang, TiO2/BiVO4 nanowire heterostructure photoanodes based on Type II band alignment, ACS Cent. Sci. 2 (2016) 80-88. https://doi.org/10.1021/acscentsci.5b00402
[14] J. Su, L. Guo, N. Bao, C. A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrocehmical water splitting, Nano Lett. 11 (2011) 1928–1933. https://doi.org/10.1021/nl2000743
[15] M.G. Mali, H. Yoon, M. W. Kim, M. T. Swihart, S.S. Al-Deyab, S. S. Yoon, Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting, Appl. Phys. Lett. 106 (2015) 151603 (1-5). https://doi.org/10.1063/1.4918583
[16] L. Yan, W. Zhao, Z. Liu, 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting, Dalton Trans. 45 (2016) 11346-11352. https://doi.org/10.1039/C6DT02027E
[17] M. Long, W. Cai, H. Kisch, Visible light induced photoelectrochemical properties of n-BiVO4, and n-BiVO4/p-Co3O4, J. Phys. Chem. C 112 (2008) 548-554. https://doi.org/10.1021/jp075605x
[18] T. Soltani, A. Tayyebi, B. K. Lee, BiFeO3/BiVO4 p-n heterojunction for efficient and stable photocatalytic and photoelectrochemical water splitting under visible light irradiation, Catal. Today (2018) 1-32. https://doi.org/10.1021/jp075605x
[19] Y. Chen, M. Yang, J. Du, G. Ke, X. Zhong, Y. Zhou, F. Dong, L. Bian, H. He, MoO3/BiVO4 heterojunction film with oxygen vacancies for efficient and stable photoelectrochemical water oxidation, J. Mater. Sci. 54 (2019) 671-682. https://doi.org/10.1007/s10853-018-2863-6
[20] U. Shaislamov, K. Krishnamoorthy, S. J. Kim, A. Abidov, B. Allabergenov, S. Kim, S. Choi, R. Suresh, W. M. Ahmed, H. J. Lee, Highly stable hierarchical p-CuO/ZnO nanorod/nanobranch photoelectrode for efficient solar energy conversion, Int. J. Hydrogen Energy 41 (2016) 2253-2262. https://doi.org/10.1016/j.ijhydene.2015.10.146
[21] Q. Zhang, D. Xu, X. Zhou, K. Zhang, Solar hydrogen generation from water splitting using ZnO/CuO hetero nanostructures, Energy Procedia 61 (2014) 345-348. https://doi.org/10.1016/j.egypro.2014.11.1121
[22] J. Kwon, H. Cho, J. Jung, H. Lee, S. Hong, J. Yeo, S. Han, S. H. Ko, ZnO/CuO/M (M = Ag, Au) hierarchical nanostructure by successive photoreduction process for solar hydrogen generation, Nanomaterials 8 (2018) 323 (1-8). https://doi.org/10.3390/nano8050323
[23] A. Kargar, Y. Zing, S. J. Kim, C.T. Riley, X. Pan, D. Wang, ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation, ACS Nano 7 (2013) 11112-11120. https://doi.org/10.1021/nn404838n
[24] S.S. Wilson, J. P. Bosco, Y. Tolstova, D.O. Scanion, G.W. Watson, H.A. Atwater, Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu2O heterojunction solar cells, Energy Environ. Sci. 7 (2014) 3606-3610. https://doi.org/10.1039/C4EE01956C
[25] F. Wu, F. Cao, Q. L, L. Li. Enhancing photoelectrochemical activity with three-dimensional p-CuO/n-ZnO junction photocathodes, Sci. China Mater. 59(10) (2016) 825-832. https://doi.org/10.1007/s40843-016-5054-6
[26] S. Siol, J. C. Hellmann, S.D. Tilley, M. Graetzel, J. Morasch, J. Deuermeier, W. Jaegermann, A. Klein, Band alignment engineering at Cu2O/ZnO interfaces, ACS Appl. Mater. Interfaces 8 (2016) 21824-21831. https://doi.org/10.1021/acsami.6b07325
[27] M. Izaki, T. Shinagawa, K.T. Mizuno, Y. Ida, M. Inaba, A. Tasaka, Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device, J. Phys. D: Appl. Phys. 40 (2007) 3326-3329. https://doi.org/10.1088/0022-3727/40/11/010
[28] E.L. Tsege, S.K. Cho, L. T. Tufa, V.V. Tran, J. Lee, H.K. Kim, Y.H. Hwang, Scalable and inexpensive strategy to fabricate CuO/ZnO nanowire heterojunction for efficient photoinduced water splitting, J. Mater. Sci. 53 (2017) 2725-2734. https://doi.org/10.1007/s10853-017-1711-4
[29] C. Liu, F. Meng, L. Zhang, D. Zhang, S. Wei, K. Qi, J. Fan, H. Zhang, X. Cui, CuO/ZnO heterojunction nanoarrays for enhanced photoelectrochemical water Oxidation, Appl. Surf. Sci. 469 (2019) 276-282. https://doi.org/10.1016/j.apsusc.2018.11.054
[30] G. Dong, B. Du, L. Liu, W. Zhang, Y. Liang, H. Shi, W. Wang, Synthesis and their enhanced photoelectrochemical performance of ZnO nanoparticle-loaded CuO dandelion heterostructures under solar light, Appl. Surf. Sci. 399 (2016) 86-94. https://doi.org/10.1016/j.apsusc.2016.12.024
[31] S. Zhang, X.B. Cao, J. Wu, L. W. Zhu, L. Gu, Preparation of hierarchical CuO@TiO2 nanowire film and its application in photoelectrochemical water splitting, Trans. Nanoferrous Met. Soc. China 26 (2016) 2094-2101. https://doi.org/10.1016/S1003-6326(16)64324-8
[32] T.S. Atabaev, D.H. Lee, N.H. Hong, Fabrication of TiO2/CuO photoelectrode with enhanced solar water splitting activity, Functional Mater. Lett. 10 (2017) 1750084 (1-4). https://doi.org/10.1142/S1793604717500849
[33] Z. Li, J. Liu, D. Wang, Y. Gao, J. Shen, Cu2O/Cu/TiO2 nanotube Ohmic heterojunction arrays with enhanced photocatalytic hydrogen production activity, Int. J. Hydrogen Energy 37 (2012) 6431-6437. https://doi.org/10.1016/j.ijhydene.2012.01.075
[34] G.K. Mor, O. K. Varghese, R.H.T. Wilke, S. Sharma, K. Shankar, T.J. Latempa, K.S. Choi, C.A. Grimes, p-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation, Nano Lett. 8 (2008) 1906-1911. https://doi.org/10.1021/nl080572y
[35] W. Siripala, A. Ivanoskaya, T.F. Jaramillo, S.H. Baeck, E.W. McFarland, A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis, Solar Ener. Mater. Solar Cells 77 (2003) 229-237. https://doi.org/10.1016/S0927-0248(02)00343-4
[36] M.G. Mendez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J.L. Rodriguez-Lopez, H. Remita, Surface modification of TiO2 with Ag nanoparticles and CuO nanoclusters fopr application in photocatalysis, J. Phys. Chem. C 120 (2016) 5143-5154. https://doi.org/10.1021/acs.jpcc.5b10703
[37] S.J.A. Moniz, J. Tang, Charge transfer and photocatalytic activity in CuO/TiO2 nanoparticle heterojunctions synthesized through a rapid, one-pot, microwave solvothermal route, ChemCatChem. 7 (2015) 1659-1667. https://doi.org/10.1002/cctc.201500315
[38] D. Sharma, S. Upadhyay, R. Shrivastav, V.R. Satsangi, U. V. Waghmare, S. Dass, Nanostructured BaTiO3/Cu2O heterojunction with improved photoelectrochemical activity for H2 evolution: Experimental and first-principles analysis, Appl. Catal. B: Environ. 189 (2016) 75-85. https://doi.org/10.1016/j.apcatb.2016.02.037
[39] P. Samarasekara, Characterization of low cost p-Cu2O/n-CuO junction, GESJ Physics 2 (4) (2010) 3-8.
[40] A. Verma, A. Srivastava, S. Sharma, P. Badami, V.R. Satsangi, R. Srivastava, A.M. Kannan, D.K.C. Awasthi, S. Dass, MWCNTs and Cu2O sensitized Ti-Fe2O3 photoanode for improved water splitting, Int. J. Hydrogen Energy 43 (2018) 6049-6059. https://doi.org/10.1016/j.ijhydene.2018.01.204
[41] J. Juodkazyte, B. Sabeka, I. Savickaja, V. Pakstas, A. Naujokaitis, A. Griguceviciene, Study on charge transfer processes in thin-film heterojunction between cuprous oxide and hematite, Mater. Sci. Semiconductor Processing 80 (2018) 56-62. https://doi.org/10.1016/j.mssp.2018.02.020
[42] D. Sharma, S. Upadhyay, A. Verma, V.R. Satsangi, R. Shrivastav, S. Dass, Nanostructured Ti-Fe2O3/Cu2O heterojunction photoelectrode for efficient hydrogen production, Thin Solid Films 574 (2015) 125-131. https://doi.org/10.1016/j.tsf.2014.12.003
[43] D. Sharma, S. Upadhyay, V.R. Satsangi, R. Shrivastav, U.V. Waghmare, S. Dass, Improved photoelectrochemical water splitting performance of Cu2O/SrTiO3 heterojunction photoelectrode, J. Phys. Chem. C 118 (2014) 25320-25329. https://doi.org/10.1021/jp507039n
[44] D. Sharma, A. Verma, V.R. Satsangi, R. Shrivastav, S. Dass, Nanostructured SrTiO3 thin films sensitized by Cu2O for photoelectrochemical hydrogen generation, Int. J. Hydrogen Energy 39 (2014) 4189-4197. https://doi.org/10.1016/j.ijhydene.2013.12.201
[45] X. Cheng, J. Ding, Y. Wu, H. Liu, G. Dawson, The photocathodic properties of α-Fe2O3 wrapped CuFeO2 layer on ITO glass for water splitting, Chem. Phys. 513 (2018) 241-245. https://doi.org/10.1016/j.chemphys.2018.08.009
[46] R. Rajendran, Z. Yakoob, M. A. M. Teridi, M.S. A. Rahman, K. Sopian, Preparation of nanostructured p-NiO/n-Fe2O3 heterojunction and study of their enhanced photoelectrochemical water splitting performance, Mater. Lett. 133 (2014) 123-126. https://doi.org/10.1016/j.matlet.2014.06.157
[47] A.K. Singh, D. Sarkar, A facile approach for preparing densely-packed p-NiO/n-Fe2O3 heterojunction nanowires for photoelectrochemical water splitting, Nanoscale 10 (2018) 13130-13139. https://doi.org/10.1039/C8NR02508H
[48] Y.W. Phuan, M.N. Chong, J.D. Ocon, E.S. Chan, A novel ternary nanostructured carbonaceous-metal-semiconductor eRGO/NiO/α-Fe2O3 heterojunction photoanode with enhanced charge transfer properties for photoelctrochemical water splitting, Solar Ener. Mater, Solar Cells 169 (2017) 236-244. https://doi.org/10.1016/j.solmat.2017.05.028
[49] Y.W. Phuan, M.N. Chong, T. Zhu, E.S. Chan, J.D. Ocon, Employing electrochemical reduced graphene oxide as a co-catalyst for synergistically improving the photoelctrochemical performance of nanostructured hematite thin films, J. Taiwan Inst. Chem. Engineers 71 (2017) 510-517. https://doi.org/10.1016/j.jtice.2016.12.017
[50] S.K. Mohapatra, S. Banerjee, M. Misra, Synthesis of Fe2O3/TiO2 nanorod-nanotube arrays by filling TiO2 nanotubes with Fe, Nanotechnology 19 (2008) 315601 (1-7). https://doi.org/10.1088/0957-4484/19/31/315601
[51] M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu, Y. Wang, Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures, ACS Nano 4 (2010) 681-688. https://doi.org/10.1021/nn901119a
[52] C. Chen, H. Bai, Z. Du, M. Li, X. Yan, J. Jiang, W. Fan, W. Shi, Hydrothermal synthesis of Fe2O3/ZnO heterojunction photoanode for photoelctrochemical water splitting, Functional Mater. Lett. 8 (2015) 1550058 (1-5). https://doi.org/10.1142/S1793604715500587
[53] F. Bouhjar, B. Mari, B. Bessais, Hydrothermal fabrication and characterization of ZnO/Fe2O3 heterojunction devices for hydrogen production, J. Anal. Pharm. Res. 7 (2018) 315-321. https://doi.org/10.15406/japlr.2018.07.00246
[54] C. Miao, S. Ji, G. Xu, G. Liu, L. Zhang, C. Ye, Micro-nano-structured Fe2O3:Ti/ZnFe2O4 heterojunction films for water oxidation, ACS Appl. Mater. Interfaces 4 (2012) 4428-4433. https://doi.org/10.1021/am3011466
[55] M.G. Ahmed, T.A. Kandiel, A.Y. Ahmed, I. Kretschmer, F. Rashwan, D. Bahnemann, Enhanced photoelctrochemical water oxidation on nanostructured hematite photoanodes via p-CaFe2O4/n-Fe2O3 heterojunction formation, J. Phys. Chem. C 119 (2015) 5864-5871. https://doi.org/10.1021/jp512804p
[56] Y. Kawai, K. Negai, T. Abe, A visible-light-induced photoelectrochemical water-splitting system featuring an organo-phtocathode along with a tungsten oxide photoanode, RSC Adv. 7 (2017) 34694-34698. https://doi.org/10.1039/C7RA05272C
[57] A. Muller, I. Kondofersky, A. Folger, D. Fattakhova-Rohlfing, T. Bein, C. Scheu, Dual absorber Fe2O3/WO3 host-guest architectures for improved charge generation and transfer in photoelctrochemical applications, Mater. Res. Express 4 (2017) 016409 (1-9). https://doi.org/10.1088/2053-1591/aa570f
[58] P. Wu, Z. Liu, D. Chen, M. Zhou, J. Wei, Flake-like NiO/WO3 p-n heterojunction photocathode for photoelectrochemical water splitting, Appl. Surf. Sci. 440 (2018) 1101-1106. https://doi.org/10.1016/j.apsusc.2018.01.292
[59] K.C. Leonard, K.M. Nam, H.C. Lee, S.H. Kang, H.S. Park, A. J. Bard, ZnWO4/WO3 composite for improving photoelectrochemical water oxidation, J. Phys. Chem. C 117 (2013) 15901-15910. https://doi.org/10.1021/jp403506q
[60] S.F. Anis, B.. Lalia, G. Palmisano, R. Hashaikeh, Photoelectrochemical activity of electrospun WO3/NiWO4 nanofibers under visible light irradiation, J. Mater. Sci. 53 (2018) 2208-2220. https://doi.org/10.1007/s10853-017-1633-1
[61] H. Zhang, W. Tian, Y. Li, H. Sun, M.O. Tade, S. Wang, Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectron-chemical oxidation of water, J. Mater. Chem. A 6 (2018) 6111-6121. https://doi.org/10.1039/C8TA90082E
[62] A. Martinez-Garcia, V.K. Vendra, S. Sunkara, P. Haldankar, J. Jasinski, M.K. Sunkara, Tungesten oxide-coated copper oxide nanowire arrays for enhanced activity and durability with photoelectrochemical water splitting, J. Mater. Chem. A 1 (2013) 15235-15241. https://doi.org/10.1039/c3ta13912c
[63] B. Weng, C.R. Grice, J. Ge, T. Poudel, X. Deng, Y. Yan, Barium bismuth niobate double perovskite/tungsten oxide nanosheet photoandode for high performance photoelectrochemical water splitting, Adv. Energy Mater. 8(10) (2017) 1-6. https://doi.org/10.1002/aenm.201701655
[64] H. Kim, J. Kim, W. Kim, W. Choi, Enhanced photocatalytic and photelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer, J. Phys. Chem. C 115 (2011) 9797-9805. https://doi.org/10.1021/jp1122823
[65] J. Zhang, Z. Liu, Z. Liu, Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting, ACS Appl. Mater. Interfaces 8 (2016) 9684-9691. https://doi.org/10.1021/acsami.6b00429
[66] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38. https://doi.org/10.1038/238037a0
[67] M.M. Momeni, Y. Ghayeb, Visible light-driven photoelectrochemical water splitting on ZnO-TiO2 heterogenous nanotube photoanodes, J. Appl. Electrochem. 45 (2015) 557-566. https://doi.org/10.1007/s10800-015-0836-x
[68] J. Jhang, J. H. Bang, C. Tang, P.V. Kamat, Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance, ACS Nano 4 (2010) 387-395. https://doi.org/10.1021/nn901087c
[69] R. Dholam, N. Patel, A. Santini, A. Miotello, Efficient indium tin oxide/Cr-doped TiO2 multilayer thin films for H2 production by photocatalytic water-splitting, Int. J. Hydrogen Energy 35 (2010) 9581-9590. https://doi.org/10.1016/j.ijhydene.2010.06.097
[70] H. Fakhouri, F.A. Khonsari, A.K. Jaiswal, J. Pulpytel, Enhanced visible light photoactivity and charge separation in TiO2/TiN bilayer thin films, Appl. Catal. A 492 (2015) 83-92. https://doi.org/10.1016/j.apcata.2014.12.030
[71] Q.C. Xu, D.V. Wellia, Y.H. Ng, R. Amal, T.T.Y. Tan, Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances, J. Phys. Chem. C 115 (2011) 7419-7428. https://doi.org/10.1021/jp1090137
[72] Y. Lin, S. Zhou, X. Liu, S. SHeehan, D. Wang, TiO2/TiSi2 heterostructures for high-efficiency photoelectrochemical H2O splitting, J. Am. Chem. Soc. 131 (2009) 2772-2773. https://doi.org/10.1021/ja808426h
[73] A. Li, Z. Wang, H. Yin, S. Wang, P. Yan, B. Huang, X. Wang, R. Li, X. Zong, H. Han, C. Li, Understanding the anatase-rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting, Chem. Sci. 7 (2016) 6076-6082. https://doi.org/10.1039/C6SC01611A
[74] S. Rai, A. Ikram, S. Sahai, S. Dass, R. Shrivastav, V. R. Satsangi, CNT based photoelectrodes for PEC generation of hydrogen: A review, Int. J. Hydrogen Energy 42 (2016) 3994-4006. https://doi.org/10.1016/j.ijhydene.2016.10.024
[75] Y.H. Ng, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting, J. Phys. Chem. Lett. 1 (2010) 2607–2612. https://doi.org/10.1021/jz100978u
[76] J. Hou, C. Yang, H. Cheng, S. Jiao, O. Takeda, H. Zhu, High-performance p-Cu2O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelctrochemical water splitting, Energy Environ. Sci. 7 (2014) 3758-3768. https://doi.org/10.1039/C4EE02403F
[77] Z. Zhang, R. Dua, L. Zhang, H. Zhu, H. Zhang, P. Wang, Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction, ACS Nano 7 (2013) 1709-1717. https://doi.org/10.1021/nn3057092
[78] W. Shi, X. Zhang, S. Li, B. Zhang, M. Wang, Y. Shen, Carbon coated Cu2O nanowires for photoelectrochemical water splitting with enhanced activity, Appl. Surf. Sci. 358 (2015) 404-411. https://doi.org/10.1016/j.apsusc.2015.08.223
[79] Q. Wang, T. Hisatomi, Y. Suzuki, Z. Pan, J. Seo, M. Katayama, T. Minegishi, H. Nishiyama, T. Takata, K. Seki, A. Kudo, T. Yamada, K. Domen, Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure, J. Am. Chem. Soc. 139 (2017) 1675-1683. https://doi.org/10.1021/jacs.6b12164
[80] D. Chaudhary, S. Singh, V.D. Vankar, N. Khare, ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrocemical water splitting, Photochem. Photobiol. 351 (2017) 154-161. https://doi.org/10.1016/j.jphotochem.2017.10.018
[81] W.D. Zhang, L.C. Jiang, J.S. Ye, Photoelectrochemical study on charge transfer properties of ZnO nanowires promoted by carbon nanotubes, J. Phys. Chem. C 113 (2009) 16247-16253. https://doi.org/10.1021/jp905500n
[82] Y.K. Kim, H. Park, Light-harvesting multi-walled carbon nanotubes and CdS hybrids: Application to photocatalytic hydrogen production from water, Energy Environ. Sci. 4 (2011) 685-694. https://doi.org/10.1039/C0EE00330A
[83] D. Chaudhary, N. Khare, V.D. Vankar, Ag nanoparticles loaded TiO2/MWCNT ternary nanocomposite: A visible-light-driven photocatalyst with enhanced photocatalytic performance and stability, Ceram. Int. 42 (2016) 15861-15867. https://doi.org/10.1016/j.ceramint.2016.07.056
[84] K. Ouyang, S. Xie, X.O. Ma, Photocatalytic activity of TiO2 supported on multi-walled carbon nanotubes under simulated solar irradiation, Ceram. Int. 39 (2013) 7531-7536. https://doi.org/10.1016/j.ceramint.2013.03.004
[85] D. Chaudhary, S. Singh, V.D. Vankar, N. Khare, Ag/TiO2/CNT photoanode for efficient photolelectrochemical water splitting under visible light irradiation, Int. J. Hydrogen Energy 42 (2017) 7826-7835. https://doi.org/10.1016/j.ijhydene.2016.12.036
[86] S. Rai, A. Ikram, S. Sahai, S. Dass, R. Shrivastav, V.R. Satsangi, Photoactivity of MWCNTs modified α-Fe2O3 photoelectrode towards efficient solar water splitting, Renewable Energy 83 (2015) 447-454. https://doi.org/10.1016/j.renene.2015.04.053
[87] H. Li, W. Dong, J. Xi, G. Du, Z. Ji, 3D flowerlike TiO2/GO and TiO2/MoS2 heterostructures with enhanced photoelectrochemical water splitting, J. Mater. Sci. 53 (2018) 7609–7620. https://doi.org/10.1007/s10853-018-2051-8
[88] X. Wang, J. Xie, C.M. Li, Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light, J. Mater. Chem. A 3 (2015) 1235–1242. https://doi.org/10.1039/C4TA05846A
[89] J. Lin, P. Hu, Y. Zhang, M. Fan, Z. He, C.K. Ngaw, J.S.C. Loo, D. Liao, T.T.Y. Tan, Understanding the photoelectrochemical properties of a reduced oxide-WO3 heterojunction photoanode for efficient solar-light-driven overall water splitting, RSC Adv. 3 (2013) 9330–9336. https://doi.org/10.1039/c3ra40550h
[90] C. Lin, Y. Xiao, L. Zhang, Y. Li, J. J. Delaunay, H. Zhu, Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode, Sust. Ener. Fuels. 2 (2018) 663-672. https://doi.org/10.1039/C7SE00504K
[91] S. Rai, A. Ikram, S. Sahai, S. Dass, R. Shrivastav, V.R. Satsangi, Morphological, optical and photoelectrochemical properties of Fe2O3-GNP composite thin films, RSC Adv. 4 (2014) 17671-17679. https://doi.org/10.1039/c3ra46840b
[92] S. Wojtyla, K. Szmit, T. Baran, Type II heterostructures: The way towards improved photoelectrochemical activity of graphitic carbon nitride, J. Inorg. Organomet. Polym. 28 (2018) 492–499. https://doi.org/10.1007/s10904-017-0733-3
[93] J.S. Kim, J.W. Oh, S.I. Woo, Improvement of the photocatalytic hydrogen production rate of g-C3N4 following the elimination of defects on the surface, Catal. Today 293 (2017) 8-14. https://doi.org/10.1016/j.cattod.2016.11.018
[94] M. Shao, Y. Shao, J. Chai, Y. Qu, M. Yang, Z. Wang, M. Yang, W.F. Ip, C.T. Kwok, X. Shi, Z. Lu, S. Wang, X. Wang, H. Pan, Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production, J. Mater. Chem. A 5 (2017) 16748-16756. https://doi.org/10.1039/C7TA04122E
[95] G. Dong, Y. Zhang, Q. Pan, J. Qiu, J. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties, Photochem. Photobiol. C 20 (2014) 33-50. https://doi.org/10.1016/j.jphotochemrev.2014.04.002
[96] A. Xiaoqiang, H. Chengzhi, L. Huachun, L. Huijuan, Q. Jiuhui, Strongly coupled metal oxide/reassembled carbon nitride/Co-Pi heterostructures for efficient photoelectrochemical water splitting, ACS Appl. Mater. Interfaces 10 (2018) 6424–6432. https://doi.org/10.1021/acsami.8b01070
[97] H. Yang, Z. Fan, P.D. Alexander, L. Jikai, F. Pingyun, Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation, Adv. Mater. 26 (2014) 5043–5049. https://doi.org/10.1002/adma.201401032
[98] Q. Li, F. Shan, B. Sun, Y. Song, F. Wang, J. Ji, Photo-assisted electrocatalysis of CdS-MoS2 hybrid for hydrogen evolution reaction: Morphology-dependent photoelectroactivity of p-n junction photocathode under bias potential, Int. J. Hydrogen Energy 42 (2017) 5549-5559. https://doi.org/10.1016/j.ijhydene.2016.05.081
[99] L. Yao, W. Wang, Y. Liang, J. Fu, H. Shi, Plasmon-enhanced visible light photoelectrochemical and photocatalytic activity of gold nanoparticle-decorated hierarchical TiO2/Bi2WO6 nanorod arrays, Appl. Surf. Sci. 469 (2019) 829-840. https://doi.org/10.1016/j.apsusc.2018.11.031
[100] R.B. Wei, P.Y. Kuang, H. Cheng, Y.B. Chen, J.Y. Long, M.Y. Zhang, Z.Q. Liu, Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays, ACS Sustainable Chem. Eng. 5 (2017) 4249-4257. https://doi.org/10.1021/acssuschemeng.7b00242