Selection of Materials and Cell Design for Photoelectrochemical Decomposition of Water


Selection of Materials and Cell Design for Photoelectrochemical Decomposition of Water

G. Keerthiga

The next commercial source of renewable energy is expected to be hydrogen. Design of intelligent innovative materials and its cell design focused on developments in photoelectrochemical (PEC) efficiency. Proper selection of materials hopes to pave the way for encompassing commercialization in the PEC water decomposition. Similarly, influence on the choice of cell design for the photoelectrochemical water decomposition will guide scientist for validating their results obtained in a single cell. This chapter is aimed to enlighten researchers on large scale reaping of hydrogen from ingeniously designed cells.

Cell Design, Material Design, Types of Photoelectrochemical System, Heterojunction Catalyst

Published online 3/5/2020, 15 pages

Citation: G. Keerthiga, Selection of Materials and Cell Design for Photoelectrochemical Decomposition of Water, Materials Research Foundations, Vol. 71, pp 43-57, 2020


Part of the book on Photoelectrochemical Water Splitting

[1] B. Viswanathan, Photo-electrochemical processes-Principles and possibilities, eprints at NCCR. (Accessed on 15, March, 2019).
[2] S. Cho, J. W. Jang, K.H. Lee, J. S. Lee, Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes, Appl. Mater. 010703 (2014) 2-17.
[3] T. Jafari, E. Moharrer, A. S. Amin, R. Miao, W. Song, S. L. Sui, Photocatalytic water splitting-the untamed dream: Review of recent advances, Mol. 21 (2016) 900-929.
[4] C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting – materials and challenges, Chem. Soc. Rev. 46 (2017) 4645-4660.
[5] R. Fan, S. Cheng, G. Huang, Y. Wang, Y. Zhang, S. Vanka, G. A. Botton, Z. Mi, M. Shen, Unassisted solar water splitting with 9.8% efficiency and over 100 h stability based on Si solar cells and photoelectrodes catalyzed by bifunctional Ni–Mo/Ni, J. Mater. Chem. 7 (2019) 2200-2209.
[6] Z. Chen, Experimental considerations, in Z. Chen, H. N. Dinh, E. Miller (Eds), Photoelectrochemical Water Splitting, Standards, Experimental Methods, and Protocols, Springer-Verlag New York, 2013, pp.17-44.
[7],Last accessed on 15th March, 2019.
[8] W. A. Smith, Photoelectrochemical Cell Design, Efficiency, Definitions, Standards, and Protocols, in Gimenez, J. Bisquert (eds.) Photoelectrochemical Solar Fuel Production, Springer International Publishing Switzerland, (2016) 163-197.
[9] H. W. Seo, J.S. Kim, Hydrogen Production by Photoelectrochemical Water Splitting, Appl. Sci. Converg. Technol. 27(4) (2018) 61-64.
[10] B. S. Kalanoor, H. Seo, S. S. Kalanur, Recent developments in photoelectrochemical water-splitting using WO3/BiVO4 heterojunction photoanode: A review, Mater. Sci. Energy Technol. 1 (2018) 49–62.
[11] J. Joy, J. Mathew, S.C. George, Nanomaterials for photoelectrochemical water splitting review, Int. J. Hydrogen Energy 43 (2018) 4804-4817.
[12] T. Puangpetch, T. Sreethawong, S. Yoshikawa, S. Chavadej, Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts. J. Mol. Catal. A. Chem. 312 (2009) 97-106.
[13] X. Li, S. Guo, C. Kan, J. Zhu, T. Tong, S. Ke. Au Multimer@MoS2 hybrid structures for efficient photo catalytical hydrogen production via strongly plasmonic coupling effect. Nano Energy. 30 (2016) 549-558.
[14] S. Y. Tee, K. Y. Win, W. S. Teo, L.D. Koh, S. Liu, C. P. Teng, M. Y. Han, Recent progress in energy-driven water splitting, Adv. Sci. 4 (2017) 1600337-1600351.
[15] Y. Gao, Y. Li, G. Yang, S. Li, N. Xiao, B. Xu, S. Liu, P. Qiu, S. Hao, L. Ge, Fe2TiO5 as an Efficient co-catalyst to Improve the Photoelectrochemical Water Splitting Performance of BiVO4, ACS Appl. Mater. Interfaces 10 (46) (2018) 39713-39722.
[16] M. Shao, Y. Shao, S. Ding, R. Tong, X. Zhong, L. Yao, W. F. Ip, B. Xu, X.Q. Shi, Yi-Y. Sun, X. Wang, H. Pan, Carbonized MoS2: Super-active co-catalyst for high-efficient water splitting on CdS, ACS Sustainable Chem. Eng. 7(4) (2019) 4220-4229.
[17] A. Rauf, M. Ming, S. Kim, Md. S. A.S. Shah, C.H. Chung, J. H. Park, P. J. Yoo, Mediator and Co-catalysts-free direct Z-scheme composites of Bi2WO6-Cu3P for solar-water splitting, Nanoscale 10 (2017) 3026-3036.
[18] C.F. Du, Q. Liang, R. Dangol, J. Zhao, H. Ren, S. Madhavi, Q. Yan, Layered trichalcogenido phosphate: A new catalyst family for water splitting, Nano Micro. lett. 10(4) (2018) 67-71.
[19] X. Zhang, X. Wang, D. Wang, J. Ye, Conformal BiVO4 layer/WO3 nanoplate-array heterojunction photoanode modified with cobalt phosphate cocatalyst for significantly enhanced photoelectrochemical performances ACS Appl. Mater. Interfaces 11(6) (2019) 5623-5631.
[20] L. Pei, H. Wang, X. Wang, Z. Xu, S. Yan, Z. Zou, Nanostructured TaON/Ta3N5 as highly efficient type-II heterojunction photoanode for photoelectrochemical water splitting, Dalton Trans. 47 (2018) 8949-8955.
[21] W. Jiang, Y. Jiang, J. Tong, Q. Zhang, S. Li, H. Tong, L. Xia, Efficient photoelectrochemical water oxidation using a TiO2 nanosphere-decorated BiVO4 heterojunction photoanode, RSC Adv. 8 (2018) 41439-41444.
[22] J. Cohen, K. Kim, P. King, M. Seibert, K. Schulten, Finding gas diffusion pathways in proteins: Application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Struct. 13 (2005) 1321–1329.
[23] K.P. Sokol, W. E. Robinson, J. Warnan, N. Kornienko, M. M. Nowaczyk, A. Ruff, J.Z. Zhang, E. Reisner, Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase, Nat. Energy 3 (2018) 944-951.
[24] J. Yoon, S. Bae, E. Shim, H. Joo, Pyrococcus furiosus-immobilized anodized tubular titania cathode in a hydrogen production system. J. Power Sources 189 (2009) 296–301.
[25] G. Kim, Ebenezer T. Igunnu George, Z. Chen, A sunlight assisted dual purpose photoelectrochemical cell for low voltage removal of heavy metals and organic pollutants in wastewater, Chem. Engg. J. 244 (2014) 411-412.
[26] D. H. Nam, J. Zhang, V. Andrei, N. Kornienko, N. Heidary, A. Wagner, K. Nakanishi, K. Sokol, B. Slater, I. Zebger, S. Hofmann, J. Fontecilla-Camps, C. B. Park, E. Reisner, Solar water splitting with a hydrogenase integrated in photoelectrochemical tandem cells, Angew. Chem. Int. Ed. 57 (2018) 10595-10599.
[27] M. Frites, W. B. Ingler Jr., S.U.M. Khan, A single chip standalone water splitting photoelectrochemical cell, J. Tech. Innovation. Renewable Energy 314 (2014) 6-11.
[28] W. J. Chang, K. H. Lee, H. Ha, K. Jin, G. Kim, S.T. Hwang, H.M. Lee, S.W. Ahn, W.Yoon, H. Seo, J. S. Hong, Y. K. Go, J. I. Ha, K. T. Nam, Design Principle and Loss Engineering for Photovoltaic−Electrolysis Cell System, PV EC 2017, ACS Omega, 2 (2017) 1009−1018.
[29] S.Y. Reece, J. A. Hamel, K. Sung, T.D. Jarvi, A. J. Esswein, J.J. H. Pijpers, D.G. Nocera, Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts, Sci. 334 (2011) 645-648.