Transition Metal Chalcogenides for Photoelectrochemical Water Splitting


Transition Metal Chalcogenides for Photoelectrochemical Water Splitting

M.B. Costa, M. Medina, M.A.S. Andrade Jr., D. Coelho, L.H. Mascaro

Metal transition chalcogenide materials for photoelectrochemical water splitting have been assessed in this chapter. The structure and electrical properties of binary chalcogenides and the recent advances on chalcopyrite photocathodes are discussed, including the highest photoactive materials for this reaction, which are the copper-based chalcopyrite (CuInS2 and CuInGa(S,Se)2) and the kesterite (Cu2ZnSn(S,Se)2). Moreover, a brief review on silver-based chalcogenides as promising materials for photoelectrochemical water splitting application is presented.

Transition Metal, Binary Chalcogenides, Chalcopyrite, Kesterite, Water Splitting

Published online 3/5/2020, 42 pages

Citation: M.B. Costa, M. Medina, M.A.S. Andrade Jr., D. Coelho, L.H. Mascaro, Transition Metal Chalcogenides for Photoelectrochemical Water Splitting, Materials Research Foundations, Vol. 71, pp 1-42, 2020


Part of the book on Photoelectrochemical Water Splitting

[1] W.B. Jensen, A Note on the Term “Chalcogen”, J. Chem. Educ. 74 (1997) 1063–1064.
[2] IUPAC, Nomenclature of Inorganic Chemistry, RSC Publishing, 2005
[3] D. Shriver, M. Weller, T. Overton, J. Rourke, F. Armstrong, Inorganic Chemistry, 6th ed., W.H. Freeman & Company, New York, 2008
[4] A. Welch, L. Baranowski, P. Zawadzki, S. Lany, C. Wolden, A. Zakutayev, CuSbSe2 photovoltaic devices with 3% efficiency, Appl. Phys. Express. 8 (2015) 1–5
[5] F. Jellinek, Transition metal chalcogenides. relationship between chemical composition, structure and physical properties crystal, React. Solids 5 (1988) 323–339
[6] O. Stroyuk, Solar Light Harvesting with Nanocrystalline Semiconductors, Springer International Publishing, Cham, 2018.
[7] A. Fujishia, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972).
[8] H. Tributsch, Electrochemical solar cells based on layer-type transition metal compounds: Performance of electrode material, Sol. Energy Mater. 1 (1979) 257–269.
[9] H. Tributsch, Layer-type transition metal dichalcogenides – a new class of electrodes for electrochemical solar cells, Berichte Der Bunsengesellschaft Für Phys. Chemie. 81 (1977) 361–369.
[10] K. Ohashi, K. Uosaki, J.O. Bockris, Cathodes for photodriven hydrogen generators: ZnTe and CdTe, Int. J. Energy Res. 1 (1977) 25–30.
[11] G.K. Ahluwalia, ed., Applications of Chalcogenides: S, Se, and Te, 1st ed., Springer International Publishing, Cham, 2017.
[12] M. Bouroushian, Electrochemistry of the Chalcogens, in: Electrochem. Met. Chalcogenides, 1st ed., Springer-Verlag Berlin Heidelberg, Berlin, 2010.
[13] D. Aldakov, A. Lefrançois, P. Reiss, Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications, J. Mater. Chem. C 1 (2013) 3756.
[14] M. Chhowalla, H.S. Shin, G. Eda, L. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Publ. Gr. 5 (2013) 263–275.
[15] J. Ding, L. Wen, H. Li, Y. Zhang, Structure and electronic properties of graphene on ferroelectric LiNbO3 surface, Phys. Lett. A. 381 (2017) 1749–1752.
[16] X. Congxin, L. Jingbo, Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides, J. Semicond. 37 (2016).
[17] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Publ. Gr. 7 (2012) 699–712.
[18] J.Y. Lee, J. Shin, G. Lee, C. Lee, Two-dimensional semiconductor optoelectronics based on van der waals heterostructures, Nanomaterials 6 (2016) 1–18.
[19] W. Jaegermann, H. Tributsch, Interfacial properties of semiconducting transition metal chalcogenides, Prog. Surf. Sci. 29 (1988) 1–167.
[20] T. Heine, Transition metal chalcogenides: Ultrathin inorganic materials with tunable electronic properties, Acc. Chem. Res. 48 (2015) 65–72.
[21] A. V. Kolobov, J. Tominaga, Two-dimensional transition-metal dichalcogenides, 1st ed., Springer International Publishing, Cham, 2016.
[22] M. Pumera, Z. Sofer, A. Ambrosia, Layered transition metal dichalcogenides for electrochemical energy generation and storage, J. Mater. Chem. A 2 (2014).
[23] I.J. Ferrer, M.D. Maciá, V. Carcelén, J.R. Ares, C. Sánchez, On the photoelectrochemical properties of TiS3 films, Energy Procedia 22 (2012) 48–52.
[24] M. Barawi, E. Flores, I.J. Ferrer, J.R. Ares, C. Sánchez, Titanium Trisulphide (TiS3) nanoribbons for easy Hydrogen photogeneration under visible light, J. Mater. Chem. A. 3 (2015).
[25] A. Zwick, M.A. Renucci, A. Kjekshus, Raman scattering in the IVB transition-metal trichalcogenides: ZrS3, ZrSe3, ZrTe3 and HfSe3, J. Phys. C Solid State Phys. 13 (1980) 5603–5614.
[26] E. Flores, J.R. Ares, C. Sánchez, I.J. Ferrer, Ternary transition titanium-niobium trisulfide as photoanode for assisted water splitting, Catal. Today. 321-322 (2019) 107-112.
[27] J. Rijnsdorp, F. Jellinek, The crystal structure of niobium trisulfide, NbS3, J. Solid State Chem. 25 (1978) 325–328.
[28] H. Tributsch, Photoelectrochemistry of layer-type zirconium disulfide, J. Electrochem. Soc. 128 (1981) 1261.
[29] S.G. Patel, T.H. Patel, M.K. Agarwal, Photoelectrochemical study of zirconium dichalcogenides, in: world renew. Energy Congr. VI, Elsevier, (2000) 958–1961.
[30] F. Meng, J. Li, S.K. Cushing, M. Zhi, N. Wu, Solar hydrogen generation by nanoscale p–n junction of p -type molybdenum disulfide/ n -type nitrogen-doped reduced graphene oxide, J. Am. Chem. Soc. 135 (2013) 10286–10289.
[31] Z. Yin, B. Chen, M. Bosman, X. Cao, J. Chen, B. Zheng, H. Zhang, Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting, Small 10 (2014) 3537–3543.
[32] Z. He, W. Que, Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction, Appl. Mater. Today 3 (2016) 23–56.
[33] H. Wang, C. Li, P. Fang, Z. Zhang, J.Z. Zhang, Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures, Chem Soc Rev. 47 (2018) 6101.
[34] X.D. Li, S.Q. Wu, Z.Z. Zhu, Band gap control and transformation of monolayer-MoS2-based hetero-bilayers, J. Mater. Chem. C 3 (2015) 9403.
[35] S. Min, G. Lu, Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets―the role of graphene, J. Phys. Chem. C. 116 (2012) 25415–25424.
[36] J. Xiao, Y. Zhang, H. Chen, N. Xu, S. Deng, Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode, Nano-Micro Lett. 10 (2018) 60.
[37] R. Tenne, A. Wold, Passivation of recombination centers in n ‐WSe2 yields high efficiency (>14%) photoelectrochemical cell, Appl. Phys. Lett. 47 (1985) 707–709.
[38] A. Kumar, P.K. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors, Eur. Phys. J. B 85 (2012) 186.
[39] X. Yu, M.S. Prévot, N. Guijarro, K. Sivula, Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production, Nat. Commun. 6 (2015) 7596.
[40] H. Zhou, C. Wang, J.C. Shaw, R. Cheng, Y. Chen, X. Huang, Y. Liu, N.O. Weiss, Z. Lin, Y. Huang, X. Duan, Large area growth and electrical properties of p-Type WSe2 atomic layers, Nano Lett. 15 (2015) 709–713.
[41] J.J. Devadasan, C. Sanjeeviraja, M. Jayachandran, Electrosynthesis and characterisation of n-WSe2 thin films, Mater. Chem. Phys. 77 (2003) 397–401.
[42] X. Yu, N. Guijarro, M. Johnson, K. Sivula, Defect mitigation of solution-processed 2D WSe2 nanoflakes for solar-to-hydrogen conversion, Nano Lett. 18 (2018) 215–222.
[43] W. Chen, Y. Kawazoe, X. Shi, H. Pan, Two-dimensional pentagonal CrX (X = S, Se or Te) monolayers: antiferromagnetic semiconductors for spintronics and photocatalysts, Phys. Chem. Chem. Phys. 20 (2018) 18348–18354.
[44] S.C. Riha, A.A. Koegel, X. Meng, I.S. Kim, Y. Cao, M.J. Pellin, J.W. Elam, A.B.F. Martinson, Atomic layer deposition of MnS: Phase control and electrochemical applications, ACS Appl. Mater. Interfaces. 8 (2016) 2774–2780.
[45] C.D. Lokhande, A. Ennaoui, P.S. Patil, M. Giersig, M. Muller, K. Diesner, H. Tributsch, Process and characterisation of chemical bath deposited manganese sulphide (MnS) thin films, Thin Solid Films 330 (1998) 70–75.
[46] M. Dan, Q. Zhang, S. Yu, A. Prakash, Y. Lin, Y. Zhou, Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S, Appl. Catal. B Environ. 217 (2017) 530–539.
[47] X. Chen, J. Zhang, J. Zeng, Y. Shi, S. Lin, G. Huang, H. Wang, Z. Kong, J. Xi, Z. Ji, MnS coupled with ultrathin MoS2 nanolayers as heterojunction photocatalyst for high photocatalytic and photoelectrochemical activities, J. Alloys Compd. 771 (2019) 364–372.
[48] X. Fang, L. Cui, T. Pu, J. Song, X. Zhang, Core-shell CdS@MnS nanorods as highly efficient photocatalysts for visible light driven hydrogen evolution, Appl. Surf. Sci. 457 (2018) 863–869.
[49] H. Liu, B. Xu, J. Yin, F. Miao, C. Duan, X.G. Wan, Highly efficient and ultrastable visible-light photocatalytic water splitting over ReS2, Phys. Chem. Chem. Phys. 18 (2016) 14222–14227.
[50] Y.-L. Li, Y. Li, C. Tang, Strain engineering and photocatalytic application of single-layer ReS2, Int. J. Hydrogen Energy. 42 (2017) 161–167.
[51] S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D.F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F.M. Peeters, J. Wu, Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling, Nat. Commun. 5 (2014) 3252.
[52] Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, X. Xu, Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications, Nanoscale. 10 (2018) 3547–3555.
[53] H. Zhao, Z. Dai, X. Xu, J. Pan, J. Hu, Integrating semiconducting catalyst of ReS2 nanosheets into p-silicon photocathode for enhanced solar water reduction, ACS Appl. Mater. Interfaces 10 (2018) 23074–23080.
[54] X. Xu, H. Zhao, R. Wang, Z. Zhang, X. Dong, J. Pan, J. Hu, H. Zeng, Identification of few-layer ReS2 as photo-electro integrated catalyst for hydrogen evolution, Nano Energy 48 (2018) 337–344.
[55] Y. Jiao, L. Zhou, F. Ma, G. Gao, L. Kou, J. Bell, S. Sanvito, A. Du, Predicting single-layer technetium dichalcogenides (TcX2 , X = S, Se) with promising applications in photovoltaics and photocatalysis, ACS Appl. Mater. Interfaces 8 (2016) 5385–5392.
[56] D. Jasion, J.M. Barforoush, Q. Qiao, Y. Zhu, S. Ren, K.C. Leonard, Low-dimensional hyperthin FeS2 nanostructures for efficient and stable hydrogen evolution electrocatalysis, ACS Catal. 5 (2015) 6653–6657.
[57] J.-Y. Zhao, J.-M. Zhang, Modulating the bandgap of the FeS2 by O and Se doping, J. Phys. Chem. C. 121 (2017) 19334–19340.
[58] M. Cabán-Acevedo, M.S. Faber, Y. Tan, R.J. Hamers, S. Jin, Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires, Nano Lett. 12 (2012) 1977–1982.
[59] Y. Xin, Z. Li, W. Wu, B. Fu, Z. Zhang, Pyrite FeS2 sensitized TiO2 Nanotube photoanode for boosting near-infrared light photoelectrochemical water splitting, ACS Sustain. Chem. Eng. 4 (2016) 6659–6667.
[60] C. Guo, X. Tong, X. Guo, Solvothermal synthesis of FeS2 nanoparticles for photoelectrochemical hydrogen generation in neutral water, Mater. Lett. 161 (2015) 220–223.
[61] R. Bhosale, S. Kelkar, G. Parte, R. Fernandes, D. Kothari, S. Ogale, NiS1.97: A new efficient water oxidation catalyst for photoelectrochemical hydrogen generation, ACS Appl. Mater. Interfaces. 7 (2015) 20053–20060.
[62] M. Jourshabani, Z. Shariatinia, G. Achari, C.H. Langford, A. Badiei, Facile synthesis of NiS2 nanoparticles ingrained in a sulfur-doped carbon nitride framework with enhanced visible light photocatalytic activity: Two functional roles of thiourea, J. Mater. Chem. A 6 (2018) 13448–13466.
[63] D. Saraf, S. Chakraborty, A. Kshirsagar, R. Ahuja, In pursuit of bifunctional catalytic activity in PdS2 pseudo-monolayer through reaction coordinate mapping, Nano Energy 49 (2018) 283–289.
[64] F. Grønvold, E. Røst, B. Aurivillius, N.A. Eliasson, B. Thorell, On the sulfides, selenides, and tellurides of palladium., Acta Chem. Scand. 10 (1956) 1620–1634.
[65] Y. Wang, Y. Li, Z. Chen, Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS2 monolayer, J. Mater. Chem. C 3 (2015) 9603–9608.
[66] R. Peng, Y. Ma, B. Huang, Y. Dai, Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light, J. Mater. Chem. A 7 (2019) 603–610.
[67] H.L. Zhuang, R.G. Hennig, Computational search for single-layer transition-metal dichalcogenide photocatalysts, J. Phys. Chem. C. 117 (2013) 20440–20445.
[68] Q. Xu, B. Huang, Y. Zhao, Y. Yan, R. Noufi, S.-H. Wei, Crystal and electronic structures of CuxS solar cell absorbers, Appl. Phys. Lett. 100 (2012) 061906.
[69] M. Li, R. Zhao, Y. Su, Z. Yang, Y. Zhang, Carbon quantum dots decorated Cu2S nanowire arrays for enhanced photoelectrochemical performance, Nanoscale 8 (2016) 8559–8567.
[70] S.C. Riha, S. Jin, S. V. Baryshev, E. Thimsen, G.P. Wiederrecht, A.B.F. Martinson, Stabilizing Cu2S for photovoltaics one atomic layer at a time, ACS Appl. Mater. Interfaces 5 (2013) 10302–10309.
[71] S. Yang, X. Wen, W. Zhang, S. Yang, Photoelectrochemistry of pure and core/sheath nanowire arrays of Cu2S directly grown on copper electrodes, J. Electrochem. Soc. 152 (2005) G220.
[72] K. Ren, P. Yin, Y. Zhou, X. Cao, C. Dong, L. Cui, H. Liu, X. Du, Localized defects on copper sulfide surface for enhanced plasmon resonance and water splitting, Small 13 (2017) 1700867.
[73] D. Ghosh, A. Ghosh, M.Y. Ali, S. Bhattacharyya, Photoactive core–shell nanorods as bifunctional electrodes for boosting the performance of quantum dot sensitized solar cells and photoelectrochemical cells, Chem. Mater. 30 (2018) 6071–6081.
[74] Z. Li, Z. Zhang, Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting, Nano Res. 11 (2018) 1530–1540.
[75] Y.-X. Yu, L. Pan, M.-K. Son, M.T. Mayer, W.-D. Zhang, A. Hagfeldt, J. Luo, M. Grätzel, Solution-processed Cu2S photocathodes for photoelectrochemical water splitting, ACS Energy Lett. 3 (2018) 760–766.
[76] S.I. Sadovnikov, A.I. Gusev, A.A. Rempel, Artificial silver sulfide Ag2S: Crystal structure and particle size in deposited powders, Superlattices Microstruct. 83 (2015) 35–47.
[77] V.M. Huxter, T. Mirkovic, P.S. Nair, G.D. Scholes, Demonstration of bulk semiconductor optical properties in processable Ag2S and EuS nanocrystalline systems, Adv. Mater. 20 (2008) 2439–2443.
[78] B. Wang, Z. Liu, J. Han, T. Hong, J. Zhang, Y. Li, T. Cui, Hierarchical graphene/CdS/Ag2S sandwiched nanofilms for photoelectrochemical water splitting, Electrochim. Acta 176 (2015) 334–343.
[79] R. Xie, J. Su, L. Guo, Ag2S/CdS nanorod-array heterojunctions for efficient photoelectrochemical water splitting, Int. J. Nanotechnol. 10 (2013) 1115.
[80] A. Cabot, J. Liu, J. Arbiol, A. Genç, X. Yu, Z. Luo, M. Ibáñez, G. Zhang, Y. Zhang, A. Shavel, Cu2ZnSnS4 –Ag2S nanoscale p–n heterostructures as sensitizers for photoelectrochemical water splitting , Langmuir 31 (2015) 10555–10561.
[81] G.J. Lee, H.C. Chen, J.J. Wu, (In, Cu) Co-doped ZnS nanoparticles for photoelectrochemical hydrogen production, Int. J. Hydrogen Energy 44 (2018) 110–117.
[82] G. Heidari, M. Rabani, B. Ramezanzadeh, Application of CuS–ZnS PN junction for photoelectrochemical water splitting, Int. J. Hydrogen Energy. 42 (2017) 9545–9552.
[83] M.A. Hassan, J.H. Kang, M.A. Johar, J.S. Ha, S.W. Ryu, High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications, Acta Mater. 146 (2018) 171–175.
[84] F. Kurnia, Y.H. Ng, R. Amal, N. Valanoor, J.N. Hart, Defect engineering of ZnS thin films for photoelectrochemical water-splitting under visible light, Sol. Energy Mater. Sol. Cells 153 (2016) 179–185.
[85] Y.J. Jang, J. Lee, J. Lee, J.S. Lee, Solar hydrogen production from zinc telluride photocathode modifi ed with carbon and molybdenum sulfide, ACS Appl. Mater. Interfaces 8 (2016) 7748-7755.
[86] Y. Ma, Y. Liu, Y. Bian, A. Zhu, Y. Yang, J. Pan, Controlling shape anisotropy of hexagonal CdS for highly stable and efficient photocatalytic H2evolution and photoelectrochemical water splitting, J. Colloid Interface Sci. 518 (2018) 140–148.
[87] M. Zirak, M. Zhao, O. Moradlou, M. Samadi, N. Sarikhani, Q. Wang, H.L. Zhang, A.Z. Moshfegh, Controlled engineering of WS2 nanosheets-CdS nanoparticle heterojunction with enhanced photoelectrochemical activity, Sol. Energy Mater. Sol. Cells 141 (2015) 260–269.
[88] C.W. Lai, K.S. Lau, P.M. Chou, CdSe/TiO2 nanotubes for enhanced photoelectrochemical activity under solar illumination: Influence of soaking time in CdSe bath solution, Chem. Phys. Lett. 714 (2019) 6–10.
[89] Y. Zhong, Y. Shao, F. Ma, Y. Wu, B. Huang, X. Hao, Band-gap-matched CdSe QD/WS2 nanosheet composite: Size-controlled photocatalyst for high-efficiency water splitting, Nano Energy 31 (2017) 84–89.
[90] A. Ikram, S. Sahai, S. Rai, S. Dass, R. Shrivastav, V.R. Satsangi, Synergistic effect of CdSe quantum dots on photoelectrochemical response of electrodeposited α-Fe2O3 films, J. Power Sources 267 (2014) 664–672.
[91] J. Xiong, J. Xie, P. Yang, X. Liang, C.M. Li, Significantly improve photoelectrochemical performance of Ti:Fe2O3 with CdSe modification and surface oxidation, Int. J. Hydrogen Energy 43 (2018) 14130–14139.
[92] Y. Xie, S.H. Yoo, C. Chen, S.O. Cho, Ag2S quantum dots-sensitized TiO2 nanotube array photoelectrodes, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 177 (2012) 106–111.
[93] J. Gan, T. Zhai, X. Lu, S. Xie, Y. Mao, Y. Tong, Facile preparation and photoelectrochemical properties of CdSe/TiO2 NTAs, Mater. Res. Bull. 47 (2012) 580–585.
[94] Z. Liu, X. Xie, Q. Xu, S. Guo, N. Li, Y. Chen, Y. Su, Electrochemical synthesis of ZnO/CdTe core-shell nanotube arrays for enhanced photoelectrochemical properties, Electrochim. Acta 98 (2013) 268–273.
[95] S.F. Hu, R.S. Liu, W.S. Chang, C.L. Yeh, N. Chouhan, J.H. Huang, C.W. Tsai, K.H. Chen, Array of CdSe QD-sensitized ZnO nanorods serves as photoanode for water splitting, J. Electrochem. Soc. 157 (2010) B1430.
[96] H.M. Chen, C.K. Chen, Y. Chang, C. Tsai, R. Liu, S. Hu, W. Chang, K. Chen, Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes : True efficiency for water splitting, Angew. Chem. Int. Ed. 49 (2010) 5966–5969.
[97] W. Wu, Y. Qiu, B. Shan, K. Feng, Y. Zhang, H. Nan, Improved photocatalytic efficiency and stability of CdS/ZnO shell/core nanoarrays with high coverage and enhanced interface combination, Int. J. Hydrogen Energy 42 (2016) 848–857.
[98] S. Sahai, A. Ikram, S. Rai, S. Dass, R. Shrivastav, V.R. Satsangi, CdSe quantum dots sensitized nanoporous hematite for photoelectrochemical generation of hydrogen, Int. J. Hydrogen Energy 39 (2014) 11860–11866.
[99] M. Guo, L. Wang, Y. Xia, W. Huang, Z. Li, Fabrication of nano-CdSe thin films from gas/liquid interface reactions and self-assembly for photoelectrochemical hydrogen production, Int. J. Hydrogen Energy 41 (2016) 2278–2284.
[100] S.K. Saraswat, D.D. Rodene, R.B. Gupta, Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light, Renew. Sustain. Energy Rev. 89 (2018) 228–248.
[101] P. Gao, J. Liu, S. Lee, T. Zhang, D.D. Sun, High quality graphene oxide-CdS-Pt nanocomposites for efficient photocatalytic hydrogen evolution, J. Mater. Chem. 22 (2012) 2292–2298.
[102] M. Sathish, B. Viswanathan, R.P. Viswanath, Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting, Int. J. Hydrogen Energy 31 (2006) 891–898.
[103] J. Yu, Y. Yu, B. Cheng, Enhanced visible-light photocatalytic H2-production performance of multi-armed CdS nanorods, RSC Adv. 2 (2012) 11829-11835.
[104] Q. Li, F. Shan, B. Sun, Y. Song, F. Wang, J. Ji, Photo-assisted electrocatalysis of CdS/MoS2 hybrid for hydrogen evolution reaction: Morphology-dependent photoelectroactivity of p-n junction photocathode under bias potential, Int. J. Hydrogen Energy 42 (2016) 5549–5559.
[105] Y. Zang, J. Lei, Q. Hao, H. Ju, CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation, Biosens. Bioelectron. 77 (2016) 557–564.
[106] J. Ji, L. Guo, Q. Li, F. Wang, Z. Li, J. Liu, Y. Jia, A bifunctional catalyst for hydrogen evolution reaction: The interactive influences between CdS and MoS2 on photoelectrochemical activity, Int. J. Hydrogen Energy 40 (2015) 3813–3821.
[107] N.G.P.S. Anjana, P.K.V. Pillai, Chemical bath deposition and characterization of CdSe thin films for optoelectronic applications, (2010) 6653–6656.
[108] X. Chen, W. Shangguan, Hydrogen production from water splitting on CdS-based photocatalysts using solar light, Front. Energy. 7 (2013) 111–118.
[109] G.S. Li, D.Q. Zhang, J.C. Yu, A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2, Environ. Sci. Technol. 43 (2009) 7079–7085.
[110] W. Wang, F. Li, D. Zhang, D.Y.C.L. Leung, G. Li, Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays, Appl. Surf. Sci. 362 (2016) 490–497. 10.1016/j.apsusc.2015.11.228
[111] S. Ikeda, T. Nakamura, S.M. Lee, T. Yagi, T. Harada, T. Minegishi, M. Matsumura, Photoreduction of water by using modified CuInS2 electrodes, ChemSusChem. 4 (2011) 262–268.
[112] N. Guijarro, M.S. Prevot, X. Yu, X.A. Jeanbourquin, P. Bornoz, W. Bouree, M. Johnson, F. Le Formal, K. Sivula, A bottom-up approach toward all-solution-processed high-efficiency Cu(In,Ga)S2 photocathodes for solar water splitting, Adv. Energy Mater. 6 (2016) 1–13.
[113] Z. Liu, X. Lu, D. Chen, Photoelectrochemical water splitting of CuInS2 photocathode collaborative modified with separated catalysts based on efficient photogenerated electron-hole separation, ACS Sustain. Chem. Eng. 6 (2018) 10289–10294.
[114] B. Marsen, S. Dorn, B. Cole, R.E. Rocheleau, E.L. Miller, Copper chalcopyrite film photocathodes for direct solar-powered water splitting, MRS Proc. 974 (2006) 905–974. 10.1557/PROC-0974-CC09-05
[115] D. Yokoyama, T. Minegishi, K. Maeda, M. Katayama, J. Kubota, A. Yamada, M. Konagai, K. Domen, Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film, Electrochem. Commun. 12 (2010) 851–853.
[116] M.G. Mali, H. Yoon, B.N. Joshi, H. Park, S.S. Al-Deyab, D.C. Lim, S. Ahn, C. Nervi, S.S. Yoon, Enhanced photoelectrochemical solar water splitting using a platinum-decorated CIGS/CdS/ZnO photocathode, ACS Appl. Mater. Interfaces 7 (2015) 21619–21625.
[117] S.J. Park, O.-S. Joo, S.Y. Chae, C. Jeong, Y.J. Hwang, C.-W. Kim, S.G. Han, H. Jung, B.K. Min, Enhanced photocurrents with ZnS passivated Cu(In,Ga)(Se,S)2 photocathodes synthesized using a nonvacuum process for solar water splitting , J. Am. Chem. Soc. 138 (2016) 15673–15681.
[118] B. Kim, G.-S. Park, S.Y. Chae, M.K. Kim, H.-S. Oh, Y.J. Hwang, W. Kim, B.K. Min, A highly efficient Cu(In,Ga)(S,Se)2 photocathode without a hetero-materials overlayer for solar-hydrogen production, Sci. Rep. 8 (2018) 5182.
[119] M. Moriya, T. Minegishi, H. Kumagai, M. Katayama, J. Kubota, K. Domen, Stable hydrogen evolution from CdS-Modified CuGaSe2 photoelectrode under visible-light irradiation, J. Am. Chem. Soc. 135 (2013) 3733–3735.
[120] J. Kim, T. Minegishi, J. Kobota, K. Domen, Investigation of Cu-deficient copper gallium selenide thin film as a photocathode for photoelectrochemical water splitting, Jpn. J. Appl. Phys. 51 (2011) 15802.
[121] L. Zhang, T. Minegishi, J. Kubota, K. Domen, Hydrogen evolution from water using AgxCu1−xGaSe2 photocathodes under visible light, Phys. Chem. Chem. Phys. 16 (2014) 6167–6174.
[122] M. Liu, J. Su, Y. Chen, S. Shen, X. Feng, Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes, Nanophotonics 5 (2016) 524–547.
[123] A. Fairbrother, E. García-Hemme, V. Izquierdo-Roca, X. Fontané, F.A. Pulgarín-Agudelo, O. Vigil-Galán, A. Pérez-Rodríguez, E. Saucedo, Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells, J. Am. Chem. Soc. 134 (2012) 8018–8021.
[124] D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama, J. Kubota, H. Katagiri, K. Domen, H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light, Appl. Phys. Expres. 3 (2010) 101202.
[125] L. Rovelli, S.D. Tilley, K. Sivula, Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction, ACS Appl. Mater. Interfaces 5 (2013) 8018–8024.
[126] Y.F. Tay, H. Kaneko, S.Y. Chiam, S. Lie, Q. Zheng, B. Wu, S.S. Hadke, Z. Su, P.S. Bassi, D. Bishop, T.C. Sum, T. Minegishi, J. Barber, K. Domen, L.H. Wong, Solution-processed Cd-substituted CZTS photocathode for efficient solar hydrogen evolution from neutral water, Joule. 2 (2018) 537–548.
[127] M. Suryawanshi, S.W. Shin, U. Ghorpade, D. Song, C.W. Hong, S.S. Han, J. Heo, S.H. Kang, J.H. Kim, A facile and green synthesis of colloidal Cu2ZnSnS4 nanocrystals and their application in highly efficient solar water splitting, J. Mater. Chem. A 5 (2017) 4695–4709.
[128] D. Huang, C. Persson, Z. Ju, M. Dou, C. Yao, J. Guo, Investigation on AgGaSe2 for water splitting from first-principles calculations, EPL 105 (2014) 37007.
[129] C.H. Wang, K.W. Cheng, C.J. Tseng, Photoelectrochemical properties of AgInS2 thin films prepared using electrodeposition, Sol. Energy Mater. Sol. Cells. 95 (2011) 453–461.
[130] C.J. Tseng, C.H. Wang, K.W. Cheng, Photoelectrochemical performance of gallium-doped AgInS2 photoelectrodes prepared by electrodeposition process, Sol. Energy Mater. Sol. Cells 96 (2012) 33–42.