Characterization and Tests of Different Mach-Zehnder Silicon Photonic Modulator Configurations

Characterization and Tests of Different Mach-Zehnder Silicon Photonic Modulator Configurations

Davide Badoni, Vincenzo Bonaiuto, Mauro Casalboni, Fabio De Matteis, Giovanni Di Giuseppe, Luca Frontini, Roberto Gunnella, Valentino Liberali, Andreas Mai, Giovanni Paoluzzi, Paolo Prosposito, Andrea Salamon, Gaetano Salina, Fausto Sargeni, Sigurd Schrader, Alberto Stabile, Patrick Steglich

Abstract. We designed and produced an integrated silicon photonic circuit, in a single chip with IHP SG25H4_EPIC 0.25 µm technology. A Mach-Zehnder interferometer with an alternative shape for better integration, together with a standard-shape Mach-Zehnder interferometer have been realized. In this work, preliminary results of comparative performance measurements between the two Mach-Zehnder interferometer are shown.

Keywords
CMOS, Mach-Zehnder, VLSI

Published online 2/25/2020, 5 pages

Citation: Davide Badoni, Vincenzo Bonaiuto, Mauro Casalboni, Fabio De Matteis, Giovanni Di Giuseppe, Luca Frontini, Roberto Gunnella, Valentino Liberali, Andreas Mai, Giovanni Paoluzzi, Paolo Prosposito, Andrea Salamon, Gaetano Salina, Fausto Sargeni, Sigurd Schrader, Alberto Stabile, Patrick Steglich, Characterization and Tests of Different Mach-Zehnder Silicon Photonic Modulator Configurations, Materials Research Proceedings, Vol. 16, pp 1-5, 2020

DOI: https://doi.org/10.21741/9781644900710-1

Part of the book on Photonics and Photoactive Materials

References
[1] P. Steglich and F. De Matteis, “Introductory Chapter: Fiber Optics” In Fiber optics Ed. P. Steglich, IntechOpen, (2019) ISBN: 978-1-83881-156-3. https://doi.org/10.5772/intechopen.74877
[2] R. Russo et al., Toward optical and superconducting circuit integration, Supercond. Sci. Tech., 17(5), S456-S459 (2004) 45. https://doi.org/10.1088/0953-2048/17/5/074
[3] P. Steglich et al., Hybrid-Waveguide Ring Resonator for Biochemical Sensing, IEEE Sensors J., 17(15), 4781-4790 (2017). https://doi.org/10.1109/JSEN.2017.2710318
[4] F. Bonaccorso et al, Graphene photonics and optoelectronics, Nat Photonics 4, 611–622 (2010). https://doi.org/56 10.1038/nphoton.2010.186
[5] G. Alimonti, et al., Use of silicon photonics wavelength multiplexing techniques for fast parallel readout in high energy physics, Nuclear Inst. and Methods in Physics Research: A, 936, 601 (2019). https://doi.org/10.1016/j.nima.2018.09.088
[6] P. Prosposito et al, UV-nanoimprinting lithography of Bragg Gratings on hybrid sol-gel based channel waveguides, Solid 47 State Sci. 12, 1886-1889 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.03.014
[7] R. A. Soref and B.R. Bennett, Electrooptical effects in silicon, IEEE J Quantum Elect QE-23 (1), 123, (1987). https://doi.org/1 10.1109/JQE.1987.1073206
[8] G.T. Reed and E.J.Png, Silicon optical modulators, Mater.Today, 8(1), 40-50 (2005). https://doi.org/10.1016/S1369-7021(04)00678-9
[9] E. Cortina Gil et al., The beam and detector of the NA62 experiment at CERN, JINST 12 P05025 (2017).