Fabrication of Silicon Carbide Nanostructures and Related Devices


Fabrication of Silicon Carbide Nanostructures and Related Devices

M. Bosi, K. Rogdakis, K. Zekentes

SiC nanostructures combine the physical properties of bulk SiC with that induced by the reduction of their spatial dimensionality and thus can be considered as a new material offering concrete advantages for various applications. The main effort on SiC nanocrystals (0D) is dedicated towards light emission and reinforcing agent applications. A large variety of methods were employed for SiC nanocrystal fabrication. SiC nanowires (1D) have been investigated for various applications (reinforcing agent, various types of sensors, transistors, field emitters). Both bottom and top down approaches have been used with concrete advantages and disadvantages for each approach. The fabrication methods of SiC nanocrystals and nanowires are described in a comprehensive way. The main effort has been dedicated for both structures on cubic polytype material as it is the more stable at low growth (< 1900 ºC) temperature. Applications and device technology are also included in the present review. Keywords
Nanocrystal, Nanowire, Nanotube, Nanopillar, NanoFET, Catalyst, Bottom Up Process, Core/Shell Heterostructure, Luminescence, Photoluminescence, Nanoelectromechanical Systems (NEMS), NWFET

Published online 2/15/2020, 43 pages

Citation: M. Bosi, K. Rogdakis, K. Zekentes, Fabrication of Silicon Carbide Nanostructures and Related Devices, Materials Research Foundations, Vol. 69, pp 233-275, 2020

DOI: https://doi.org/10.21741/9781644900673-5

Part of the book on Advancing Silicon Carbide Electronics Technology II

[1] Special Issue on Silicon Carbide Devices and Technology, IEEE Trans. Electron Dev. 55 (2008) 1795-2065. https://doi.org/10.1109/TED.2008.926685
[2] R. Yakimova, R.M. Petoral, G.R. Yazdi, C. Vahlberg, A. Lloyd Spetz, and K. Uvdal, Surface functionalization and biomedical applications based on SiC, J. Phys. D: Appl. Phys. 40 (2007) 6435–6442. https://doi.org/10.1088/0022-3727/40/20/S20
[3] S.E. Saddow, C.L. Frewin, C. Coletti, N. Schettini, E. Weeber, A. Oliveros, and M. Jarosezski, Single-crystal silicon carbide: A biocompatible and hemocompatible semiconductor for advanced bio-medical applications, Mater. Sci. Forum, 679–680 (2011) 824–830. https://doi.org/10.4028/www.scientific.net/MSF.679-680.824
[4] C. Coletti, M.J. Jaroszeski, A. Pallaoro, M. Hoff, S. Iannotta, and S.E. Saddow, Biocompatibility and wettability of crystalline SiC and Si surfaces. In 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 2007; pp. 5849–5852.17. https://doi.org/10.1109/IEMBS.2007.4353678
[5] T. Kimoto, A. Itoh and H. Matsunami, Step‐Controlled Epitaxial Growth of High‐Quality SiC Layers, Phys. Status Solidi b 202 (1997) 247–62. https://doi.org/10.1002/1521-3951(199707)202:1<247::AID-PSSB247>3.0.CO;2-Q
[6] L. E. Brus, P. F. Szajowski, W.L. Wilson, T. D. Harris, S. Schupler and P.H. Citrin, Electronic spectroscopy and photophysics of Si nanocrystal: relationship to bulk c-Si and porous Si, J. Am. Chem. Soc., 117 (1995) 2915. https://doi.org/10.1021/ja00115a025
[7] Jiyang Fan Paul K. Chu, Silicon Carbide Nanostructures Fabrication, Structure, and Properties, Springer (2014) 9.
[8] R. Wu, K. Zhou, C. Y. Yue, J. Wei, Y. Pan, Recent progress in synthesis, properties and potential applications of SiC nanomaterials, Progress in Materials Science 72, (2015) 1-60. https://doi.org/10.1016/j.pmatsci.2015.01.003
[9] K. Zekentes, K. Rogdakis, SiC nanowires: Material and devices, J. Phys. D. Appl. Phys. 44 (2011) 133001. https://doi.org/10.1016/0022-0248(95)00330-4
[10] K. Zekentes, V. Papaioannou, B. Pecz and J. Stoemenos, Early stages of growth of β-SiC on Si by MBE, J. Cryst. Growth, 157 (1995) 392-399. https://doi.org/10.1016/0022-0248(95)00330-4
[11] J. Yang, X. Wang, G. Zhai, N. Cue, and X. Wang, J. Cryst. Growth, 224, (2001) 83. https://doi.org/10.1016/S0022-0248(01)00749-7
[12] V. Palermo, A. Parisini, D. Jones, Silicon carbide nanocrystals growth on Si(100) and Si (111) from a chemisorbed methanol layer, Surface Science, 600 (2006) 1140–1146. https://doi.org/10.1016/j.susc.2005.12.048
[13] V. Cimalla, J. Pezoldt, Th. Stauden, Ch. Förster, and O. Ambacher, A. A. Schmidt, K. Zekentes, Linear alignment of SiC dots on silicon substrates, J. Vac. Sci. Technol. B. Letters, B22 (2004) L20-L23 and V. Cimalla, J. Pezoldt, Th. Stauden, A.A. Schmidt, K. Zekentes, and O. Ambacher, Lateral alignment of SiC dots on Si, Phys. Stat. Sol. 1(2004) 337-340. https://doi.org/10.1002/pssc.200303951
[14] C.M. Hollabaugh, D. E. Hull, L. R. Newkirk, J. J. Petrovic, R.F.-plasma system for the production of ultrafine ultrapure silicon carbide powder, J Mater Sci, 18 (1983) 3190–3194. https://doi.org/10.1007/BF00544142
[15] S. Klein, M. Winterer, H. Hahn, Reduced-pressure chemical vapor synthesis of nanocrystalline silicon carbide powders. Chem. Vap. Deposition 4 (1998) 143–149. https://doi.org/10.1002/(SICI)1521-3862(199807)04:04<143::AID-CVDE143>3.0.CO;2-Z
[16] F. Huisken, B. Kohn, R. Alexandrescu, S. Cojocaru, A. Crunteanu, G. Ledoux and C. Reynaud, Silicon carbide nanoparticles produced by CO2 laser pyrolysis of SiH4/C2H2 gas mixtures in a flow reactor, J. Nanopart. Res., 1 (1999) 293–303. https://doi.org/10.1023/A:1010081206959
[17] F. Lomello, G. Bonnefont, Y. Leconte, N. Herlin-Boime and G. Fantozzi, Processing of nano-SiC ceramics: densification by SPS and mechanical characterization, J. Eur. Ceram. Soc. 32 (2012)633–41. https://doi.org/10.1016/j.jeurceramsoc.2011.10.006
[18] S. Askari, A. U. Haq, M. Macias-Montero, I. Levchenko, F. Yu, W. Zhou, K. Ostrikov, P. Maguire, V. Svrcek and D. Mariotti, Nanoscale 8 (2016) 17141-17149. https://doi.org/10.1039/C6NR03702J
[19] X.L. Wu, J.Y. Fan, T. Qiu, X. Yang, G.G. Siu and P. K. Chu, Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. Phys. Rev. Lett. 94 (2005) 026102. https://doi.org/10.1103/PhysRevLett.94.026102
[20] J. Zhu, Z. Liu, X. L. Wu, L. L. Xu, W. C. Zhang, P. K. Chu, Luminescent small-diameter 3C-SiC nanocrystals fabricated via a simple chemical etching method, Nanotechnology 18 (2007) 365603–5. https://doi.org/10.1088/0957-4484/18/36/365603
[21] V. G Pol, S. V. Pol and A. Gedanken, Novel synthesis of high surface area silicon carbide by RAPET (reactions under autogenic pressure at elevated temperature) of organosilanes, Chem. Mater. 17 (2005) 1797–1802. https://doi.org/10.1021/cm048032z
[22] A-H. Lu, W. Schmidt, W. Kiefer, F. Schüth, High surface area mesoporous SiC synthesized via nanocasting and carbothermal reduction process, J Mater Sci 40 (2005) 5091–5093. https://doi.org/10.1007/s10853-005-1115-8
[23] E. J. Henderson and J. G. C. Veinot, From phenylsiloxane polymer composition to size-controlled silicon carbide nanocrystals. J. Am. Chem. Soc. 131 (2009)809–15. https://doi.org/10.1021/ja807701y
[24] S. Yang, W. Cai, H. Zeng and X. Xu, Ultra-fine b-SiC quantum dots fabricated by laser ablation in reactive liquid at room temperature and their violet emission, J. Mater. Chem. 19 (2009) 7119–7123. https://doi.org/10.1039/b909800c
[25] Y. Zakharko, D. Rioux, S. Patskovsky, V. Lysenko, O. Marty, J. M. Bluet and M. Meunier, Direct synthesis of luminescent SiC quantum dots in water by laser ablation, Phys. Status Solidi-R 5 (2011) 292–294. https://doi.org/10.1002/pssr.201105284
[26] Z-G. Yang and L. L. Shaw, Synthesis of nanocrystalline SiC at ambient temperature through high energy reaction milling. Nanostruct. Mater 7 (1996) 873–886. https://doi.org/10.1016/S0965-9773(96)00058-X
[27] M. Dasog, L. F. Smith, T. K. Purkait and J. G. C. Veinot, Low temperature synthesis of silicon carbide nanomaterials using a solid-state method. Chem. Commun. 49 (2013) 7004–7006. https://doi.org/10.1039/c3cc43625j
[28] A. M. Rossi, T. E. Murphy and V. Reipa, Ultraviolet photoluminescence from 6H silicon carbide nanoparticles. Appl. Phys. Lett. 92 (2008) 253112. https://doi.org/10.1063/1.2950084
[29] J. Fan, H. Li, J. Wang, M. Xiao, Fabrication and photoluminescence of SiC quantum dots stemming from 3C, 6H, and 4H polytypes of bulk SiC, Appl. Phys. Lett. 101 (2012) 131906. https://doi.org/10.1063/1.4755778
[30] C.H. Wang, Y. H. Chang, M. Y. Yen, C. W. Peng, C. Y. Lee, H. T. Chiu, Synthesis of silicon carbide nanostructures via a simplified Yajima process-reaction at the vapor-liquid interface, Adv. Mater. 17 (2005) 419–422. https://doi.org/10.1002/adma.200400939
[31] G. Shen, D. Chen, K. Tang, Y. Qian, S. Zhang, Silicon carbide hollow nanospheres, nanowires and coaxial nanowires, Chem. Phys. Lett. 375 (2003) 177–184. https://doi.org/10.1016/S0009-2614(03)00877-7
[32] P. Li, L. Xu and Y. Qian, Selective synthesis of 3C-SiC hollow nanospheres and nanowires, Cryst. Growth, 8 (2008) 2431–2436. https://doi.org/10.1021/cg800008f
[33] Z. Liu, L. Ci, N. Y. Jin-Phillipp and M. Rühle, Vapor-solid reaction for silicon carbide hollow spherical nanocrystals, J. Phys. Chem. C 111 (2007) 12517–12521. https://doi.org/10.1021/jp073012g
[34] Y. Zhang, E. W. Shi, Z. Z. Chen, X. B. Li and B. Xiao, Large-scale fabrication of silicon carbide hollow spheres. J. Mater. Chem. 16 (2006) 4141–5. https://doi.org/10.1039/b610168b
[35] A. Kassiba, W. Bednarski, A. Pud, N. Errien, M. Makowska-Janusik, L. Laskowski, et al., Hybrid core–shell nanocomposites based on silicon carbide nanoparticles functionalized by conducting polyaniline: electron paramagnetic resonance investigations, J. Phys. Chem. C 111 (2007) 11544–51. https://doi.org/10.1021/jp070966y
[36] A. Peled and J. P. Lellouche, Preparation of a novel functional SiC at polythiophene nanocomposite of a core–shell morphology. J. Mater. Chem. 22 (2012)2069–73. https://doi.org/10.1039/C2JM14506E
[37] L. Z. Cao, H. Jiang, H. Song, Z. M. Li and G. Q. Miao, Thermal CVD synthesis and photoluminescence of SiC/SiO2 core–shell structure nanoparticles. J. Alloy Compd. 489 (2010) 562–5. https://doi.org/10.1016/j.jallcom.2009.09.109
[38] J. Y. Fan, H. X. Li, Q. J. Wang, D. J. Dai and P. K. Chu, UV-blue photoluminescence from close-packed SiC nanocrystal film, Appl. Phys. Lett. 98 (2011) 08913–3. https://doi.org/10.1063/1.3556657
[39] J. Botsoa, J. M. Bluet, V. Lysenko, L. Sfaxi, Y. Zakharko, O. Marty and G. Guillot, Luminescence mechanisms in 6H-SiC nanocrystals. Phys. Rev. B 80 (2009) 155317. https://doi.org/10.1103/PhysRevB.80.155317
[40] J. Fan, H. Li, J. Jiang, L. K.Y. So, Y. W. Lam and P. K. Chu 3C-SiC nanocrystals as fluorescent biological labels, Small 4 (2008) 1058–1062. https://doi.org/10.1002/smll.200800080
[41] H. Mimura, T. Matsumoto and Y. Kanemitsu, Blue electroluminescence from porous silicon carbide, Appl. Phys. Lett. 65 (1994) 3350–3352. https://doi.org/10.1063/1.112388
[42] B. Xiao, X. L. Wu, W. Xu and P. K. Chu, Tunable electroluminescence from polymer- passivated 3C-SiC quantum dot thin films, Appl. Phys. Lett. 101 (2012) 123110. https://doi.org/10.1063/1.4753995
[43] J. Botsoa, V. Lysenko, A. Géloën, O. Marty, J. M. Bluet and G. Guillot, Application of 3C-SiC quantum dots for living cell imaging, Appl. Phys. Lett. 92 (2008) 173902–3. https://doi.org/10.1063/1.2919731
[44] Y. Zakharko, T. Serdiuk, T. Nychyporuk, A. Géloën, M. Lemiti and V. Lysenko, Plasmon-enhanced photoluminescence of SiC quantum dots for cell imaging application, Plasmonics 7 (2012) 725–32. https://doi.org/10.1007/s11468-012-9364-2
[45] D. Beke, Z. Szekrenyes, D. Palfi, G. Rona, I. Balogh, P. A. Maak, et al., Silicon carbide quantum dots for bioimaging, J. Mater. Res. 28 (2013)205–9. https://doi.org/10.1557/jmr.2012.296
[46] H. Ferkel and B. L. Mordike, Magnesium strengthened by SiC nanoparticles, Mat. Sci. Eng. A 298 (2001) 193–199. https://doi.org/10.1016/S0921-5093(00)01283-1
[47] J. Zhao, L. C. Stearns, M. P. Harmer, H. M. Chan and G. A. Miller, Mechanical behavior of alumina-silicon carbide ‘‘nanocomposites’’, J. Am. Ceram. Soc. 76 (1993) 503–510. https://doi.org/10.1111/j.1151-2916.1993.tb03814.x
[48] A. F. Zimmerman, D. G. Clark, K. T. Aust and U. Erb, Pulse electrodeposition of Ni-SiC nanocomposite, Mater. Lett. 52 (2002) 85–90. https://doi.org/10.1016/S0167-577X(01)00371-8
[49] N. Chisholm, H. Mahfuz, V. K. Rangari, A. Ashfaq and S. Jeelani, Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites, Compos. Struct. 67 (2005) 115–124. https://doi.org/10.1016/j.compstruct.2004.01.010
[50] N. J. Yang, H. Zhang, R. Hoffmann, W. Smirnov, J. Hees, X. Jiang, et al., Nanocrystalline 3C-SiC electrode for biosensing applications, Anal. Chem. 83 (2011) 5827–30. https://doi.org/10.1021/ac201315q
[51] E. H. Williams, J. A. Schreifels, M. V. Rao, A. V. Davydov, V. P. Oleshko, N. J. Lin, et al., Selective streptavidin bioconjugation on silicon and silicon carbide nanowires for biosensor applications, J. Mater. Res. 28 (2013) 68–77. https://doi.org/10.1557/jmr.2012.283
[52] X. F. Liu, M. Antonietti and C. Giordano, Manipulation of phase and microstructure at nanoscale for SiC in molten salt synthesis, Chem. Mater. 25 (2013) 2021–7. https://doi.org/10.1021/cm303727g
[53] H. L. Zhu, Y. J. Bai, R. Liu, N. Lun, Y. X. Qi, F. D. Han, et al., In-situ synthesis of one-dimensional MWCNT/SiC porous nanocomposites with excellent microwave absorption properties, J. Mater. Chem. 21 (2011)13581–7. https://doi.org/10.1039/c1jm11747e
[54] S. Xie, G. Jin, S. Meng, Y. W. Wang, Y. Qin, X. Y. Guo, Microwave absorption properties of in situ grown CNTs/SiC composites, J. Alloy. Compd. 520 (2012) 295–300. https://doi.org/10.1016/j.jallcom.2012.01.050
[55] R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett. 4 (1964) 89. https://doi.org/10.1063/1.1753975
[56] S.A. Fortuna, X. Li, Metal-catalyzed semiconductor nanowires: a review on the control of growth directions, Semicond. Sci. Technol. 25 (2010) 24005. https://doi.org/10.1088/0268-1242/25/2/024005
[57] J.M. Redwing, X. Miao, X. Li, Vapor-Liquid-Solid Growth of Semiconductor Nanowires, in: Handb. Cryst. Growth, Elsevier, (2015) 399–439. https://doi.org/10.1016/B978-0-444-63304-0.00009-3
[58] Z.J. Li, W.P. Ren, A.L. Meng, Morphology-dependent field emission characteristics of SiC nanowires, Appl. Phys. Lett. 97 (2010) 263117. https://doi.org/10.1063/1.3533813
[59] G.W. Ho, A.S.W. Wong, D.-J. Kang, M.E. Welland, Three-dimensional crystalline SiC nanowire flowers, Nanotechnology. 15 (2004) 996–999. https://doi.org/10.1088/0957-4484/15/8/023
[60] Guozhen Shen, Yoshio Bando and D. Golberg, Self-Assembled Hierarchical Single-Crystalline β-SiC, Nanoarchitectures, 7 (2007) 35-38. https://doi.org/10.1021/cg060224e
[61] J. Chen, Q. Shi, L. Gao, H. Zhu, Large-scale synthesis of ultralong single-crystalline SiC nanowires, Phys. Status Solidi. 207 (2010) 2483–2486. https://doi.org/10.1002/pssa.201026288
[62] M. Negri, S.C. Dhanabalan, G. Attolini, P. Lagonegro, M. Campanini, M. Bosi, F. Fabbri and G. Salviati, Tuning the radial structure of core–shell silicon carbide nanowires, Cryst. Eng. Comm. 17 (2015) 1258–1263. https://doi.org/10.1039/C4CE01381F
[63] J.M. Redwing, X. Miao, X. Li, Vapor-Liquid-Solid Growth of Semiconductor Nanowires, in: Handb. Cryst. Growth, Elsevier, (2015) 399–439. https://doi.org/10.1016/B978-0-444-63304-0.00009-3
[64] G. Attolini, F. Rossi, M. Bosi, B.E. Watts, G. Salviati, Synthesis and characterization of 3C–SiC nanowires, J. Non. Cryst. Solids, 354 (2008) 5227–5229. https://doi.org/10.1016/j.jnoncrysol.2008.05.064
[65] G.A. Bootsma, W.F. Knippenberg and G. Verspui, Growth of SiC whiskers in the system SiO2-C-H2nucleated by iron, J. Cryst. Growth. 11 (1971) 297–309. https://doi.org/10.1016/0022-0248(71)90100-X
[66] X. Zhou, H.. Lai, H. Peng, F.C.. Au, L. Liao, N. Wang, I. Bello, C. Lee, S. Lee, Thin β-SiC nanorods and their field emission properties, Chem. Phys. Lett. 318 (2000) 58–62. https://doi.org/10.1016/S0009-2614(99)01398-6
[67] B.E. Watts, G. Attolini, F. Rossi, M. Bosi, G. Salviati, F. Mancarella, M. Ferri, A. Roncaglia, A. Poggi, β-SiC NWs grown on patterned and MEMS silicon substrates, Mater. Sci. Forum. 679–680 (2011) 508–511. https://doi.org/10.4028/www.scientific.net/MSF.679-680.508
[68] S. Zhu, N. Huang, L. Xu, Y. Zhang, H. Liu, H. Sun, Y. Leng, Biocompatibility of pure iron: In vitro assessment of degradation kinetics and cytotoxicity on endothelial cells, Mater. Sci. Eng. C. 29 (2009) 1589–1592. https://doi.org/10.1016/j.msec.2008.12.019
[69] M. Assad, N. Lemieux, C.H. Rivard, L.H. Yahia, Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: Genotoxicity and atomic absorption evaluation, Biomed. Mater. Eng. 9 (1999) 1–12.
[70] P. Lagonegro, M. Bosi, G. Attolini, M. Negri, S.C. Dhanabalan, F. Rossi, F. Boschi, P.P. Lupo, T. Besagni, G. Salviati, SiC NWs Grown on Silicon Substrate Using Fe as Catalyst, Mater. Sci. Forum. 806 (2014) 39–42. https://doi.org/10.4028/www.scientific.net/MSF.806.39
[71] G. Attolini, F. Rossi, M. Negri, S.C. Dhanabalan, M. Bosi, F. Boschi, P. Lagonegro, P. Lupo, G. Salviati, Growth of SiC NWs by vapor phase technique using Fe as catalyst, Mater. Lett. 124 (2014). https://doi.org/10.1016/j.matlet.2014.03.061
[72] H.-J. Choi, H.-K. Seong, J.-C. Lee, Y.-M. Sung, Growth and modulation of silicon carbide nanowires, J. Cryst. Growth. 269 (2004) 472–478. https://doi.org/10.1016/j.jcrysgro.2004.05.094
[73] J.-S. Hyun, S.-H. Nam, B.-C. Kang, J.-H. Boo, Growth of 3C-SiC nanowires on nickel coated Si(100) substrate using dichloromethylvinylsilane and diethylmethylsilane by MOCVD method, Phys. Status Solidi. 6 (2009) 810–812. https://doi.org/10.1002/pssc.200880621
[74] B. PARK, Y. RYU, K. YONG, Growth and characterization of silicon carbide nanowires, Surf. Rev. Lett. 11 (2004) 373–378. https://doi.org/10.1142/S0218625X04006311
[75] J. Chen, Q. Shi, L. Xin, Y. Liu, R. Liu, X. Zhu, A simple catalyst-free route for large-scale synthesis of SiC nanowires, J. Alloys Compd. 509 (2011) 6844–6847. https://doi.org/10.1016/j.jallcom.2011.03.131
[76] A. Meng, Z. Li, J. Zhang, L. Gao, H. Li, Synthesis and Raman scattering of β-SiC/SiO2 core–shell nanowires, J. Cryst. Growth. 308 (2007) 263–268. https://doi.org/10.1016/j.jcrysgro.2007.08.022
[77] G. Attolini, F. Rossi, F. Fabbri, M. Bosi, B.E. Watts, G. Salviati, A new growth method for the synthesis of 3C-SiC nanowires, Mater. Lett. 63 (2009). https://doi.org/10.1016/j.matlet.2009.09.012
[78] G. Li, X. Li, Z. Chen, J. Wang, H. Wang, R. Che, Large Areas of Centimeters-Long SiC Nanowires Synthesized by Pyrolysis of a Polymer Precursor by a CVD Route, J. Phys. Chem. C. 113 (2009) 17655–17660. https://doi.org/10.1021/jp904277f
[79] H. Dai, E. W. Wong, Y. Z. Lu, S. Fan and C. M. Lieber, Synthesis and characterization of carbide nanorods, Nature 375 (1995) 769–772. https://doi.org/10.1038/375769a0
[80] L. Tsakalakos, J. Fronheiser, L. Rowland, M. Rahmane, M. Larsen, Y. Gao, SiC Nanowires by Silicon Carburization, MRS Proc. 963 (2006) 963-Q11-3. https://doi.org/10.1557/PROC-0963-Q11-03
[81] M. Ollivier, L. Latu-Romain, M. Martin, S. David, A. Mantoux, E. Bano, V. Souliere, G. Ferro and T. Baron, Si–SiC core–shell nanowires, J. Cryst. Growth 363 (2013) 158–63. https://doi.org/10.1016/j.jcrysgro.2012.10.039
[82] L. Latu-Romain, M. Ollivier, V. Thiney, O. Chaix-Pluchery and M . Martin, Silicon carbide nanotubes growth: an original approach, J. Phys. D: Appl. Phys. 46 (2013) 092001. https://doi.org/10.1088/0022-3727/46/9/092001
[83] L Latu-Romain and M Ollivier, Silicon carbide based one-dimensional nanostructure growth: towards electronics and biology perspectives, J. Phys. D: Appl. Phys. 47 (2014) 203001. https://doi.org/10.1088/0022-3727/47/20/203001
[84] A. H. Reader, A. H. van Ommen, P. J. W. Weijs, R. A. M. Wolters and D. J. Oostra, Transition metal silicides in silicon technology, Rep. Prog. Phys. 56 (1993)1397. https://doi.org/10.1088/0034-4885/56/11/002
[85] W. Tan, P. Hunley and I. S. Omer, Properties of silicon carbide nanotubes formed via reaction of SiO powder with SWCNTs and MWCNTs, Proc. IEEE Southeastcon 2009, Technical Proc. (Atlanta, GA, 5–8 March) pp 230–5. https://doi.org/10.1109/SECON.2009.5174082
[86] Y. H. Mo, M. D. Shajahan, Y. S. Lee, Y. B. Hahn and K. S. Nahm, Structural transformation of carbon nanotubes to silicon carbide nanorods or microcrystals by the reaction with different silicon sources in rf induced CVD reactor, Synth. Met. 140 (2004) 309–15. https://doi.org/10.1016/S0379-6779(03)00381-3
[87] E. Munoz, A. B. Dalton, S. Collins, A. A. Zakhidov, R. H. Baughman, W. L. Zhou, J. He, C. J. O’Connor, B. McCarthy and W. J. Blau, Synthesis of SiC nanorods from sheets of single-walled carbon nanotubes, Chem. Phys. Lett. 359 (2002) 397–402. https://doi.org/10.1016/S0009-2614(02)00745-5
[88] H. Liu, G. A. Cheng, C. Liang and R. Zheng, Fabrication of silicon carbide nanowires/carbon nanotubes heterojunction arrays by high-flux Si ion implantation, Nanotechnology 19 (2008) 245606. https://doi.org/10.1088/0957-4484/19/24/245606
[89] K. L. Wallis, J. K. Patyk, and T. W. Zerda, Reaction kinetics of nanostructured silicon carbide, J. Phys.: Condens. Matter 20 (2008) 325216. https://doi.org/10.1088/0953-8984/20/32/325216
[90] C-H. Pham, N. Keller, G. Ehret and M. J. Ledoux, The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential, J. Catal. 200 (2001) 400–10. https://doi.org/10.1006/jcat.2001.3216
[91] J. M. Nhut, R. Vieira, L. Pesant, J. P. Tessonnier, N. Keller, G. Ehret, C. H. Pham and M. J. Ledoux, Synthesis and catalytic uses of carbon and silicon carbide nanostructures, Catal. Today 76 (2002) 11–32. https://doi.org/10.1016/S0920-5861(02)00206-7
[92] X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee and B. K. Teo, Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes, J. Am. Chem. Soc. 124 (2002) 14464–71. https://doi.org/10.1021/ja0273997
[93] S. Nishino, Production of large-area single-crystal wafers of cubic SiC for semiconductor devices, Appl. Phys. Lett. 42 (1983) 460. https://doi.org/10.1063/1.93970
[94] A. R. Beaber, S. L. Girshick and W. W. Gerberich, Dislocation plasticity and phase transformations in Si–C core–shell nanotowers, Int. J. Fract. 171 (2011) 177–83. https://doi.org/10.1007/s10704-010-9566-6
[95] J. P. Alper, M. Vincent, C. Carraro and R. Maboudian, Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor, Appl. Phys. Lett. 100 (2012)163901. https://doi.org/10.1063/1.4704187
[96] L. Fradetal, V. Stambouli, E. Bano, B. Pelissier, J. H. Choi, M. Ollivier, L. Latu-Romain, T. Boudou and I. Pignot-Paintrand, Bio-functionalization of Silicon Carbide nanostructures for SiC nanowire-based sensors realization, J. Nanosci. Nanotechnol, 14 (2014)3391–7. https://doi.org/10.1166/jnn.2014.8223
[97] K. Zekentes, V. Papaioannou, B. Pecz and J. Stoemenos, Early stages of growth of β-SiC on Si by MBE, J. Cryst. Growth 157(1995) 392-399. https://doi.org/10.1016/0022-0248(95)00330-4
[98] K.C. Kim, C. Il Park, J. Il Roh, K.S. Nahm, Y.H. Seo, Formation mechanism of interfacial voids in the growth of SiC films on Si substrates, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 19 (2001) 2636. https://doi.org/10.1116/1.1399321
[99] L. Latu-Romain, M. Ollivier, A. Mantoux, G. Auvert, O. Chaix-Pluchery, E. Sarigiannidou, E. Bano, B. Pelissier, C. Roukoss, H. Roussel, F. Dhalluin, B. Salem, N. Jegenyes, G. Ferro, D. Chaussende, T. Baron, From Si nanowire to SiC nanotube, J. Nanopart. Res. 13 (2011) 5425–33. https://doi.org/10.1007/s11051-011-0530-9
[100] X. L. Feng, M. H. Matheny, C. A. Zorman, M. Mehregany and M. L. Roukes, Low Voltage Nanoelectromechanical Switches Based on Silicon Carbide Nanowires, Nano Lett. 10 (2010) 2891. https://doi.org/10.1021/nl1009734
[101] A. Kathalingam, M. R. Kim, Y. S. Chae, S.Sudhakar, T. Mahalingam and J. K. Rhee, Appl. Surf. Sci. 257 (2011) 3850. https://doi.org/10.1016/j.apsusc.2010.11.053
[102] J. H. Choi, L. Latu-Romain, E. Bano, F. Dhalluin, T. Chevolleau and T. Baron, Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching, J. Phys. D: Appl. Phys. 45 (2012) 235204. https://doi.org/10.1088/0022-3727/45/23/235204
[103] J. Choi, SiC Nanowires: from growth to related devices, PhD dissertation, Grenoble INP, France, (2013)
[104] L. Hiller, T. Stauden, R. M. Kemper, J. K. N. Lindner, D. J. As and J. Pezoldt, ECR-Etching of Submicron and Nanometer Sized 3C-SiC (100) Mesa Structures, Materials Science Forum, 717-720 (2012) 901-904. https://doi.org/10.4028/www.scientific.net/MSF.717-720.901
[105] L. Hiller, T. Stauden, R. M. Kemper, J. K. N. Lindner, D. J. As and J. Pezoldt, Hydrogen Effects in ECR-Etching of 3C-SiC(100) Mesa Structures, Materials Science Forum, 778-780 (2014) 730-733. https://doi.org/10.4028/www.scientific.net/MSF.778-780.730
[106] M. S. Kang, J.H. Lee, W. Bahng, N. K. Kim and S. M. Koo, Top-Down Fabrication of 4H–SiC Nano-Channel Field Effect Transistors, J. Nanosci. Nanotechnol. 14 (2014) 7821-7823. https://doi.org/10.1166/jnn.2014.9387
[107] M. S. Kang, S. Yu and S. M. Koo, Elevated Temperature Operation of 4H-SiC Nanoribbon Field Effect Transistors, J. Nanosci. Nanotechnol. 15 (2015) 7551-7554. https://doi.org/10.1166/jnn.2015.11166
[108] M. Cottat, A. Stavrinidis, C. Gourgon, C. Petit-Etienne, M. Androulidaki, E. Bano, G. Konstantinidis, J. Boussey, K. Zekentes, 4H-SiC Nanowire arrays formation by nanoimprint lithography, plasma etching and sacrificial oxidation, Proc. WOCSDICE 2019, Cabourg, France.
[109] K. Zekentes, V. Veliadis, Plasma etching of SiC, chapter in the present book.
[110] C. O. Jang, T. H. Kim, S. Y. Lee, D. J. Kim and S. K. Lee, Low-resistance ohmic contacts to SiC nanowires and their applications to field-effect transistors, Nanotechnology, 19 (2008) 345203. https://doi.org/10.1088/0957-4484/19/34/345203
[111] K. Rogdakis, Experimental and theoretical study of 3C-Silicon Carbide Nanowire Field Effect Transistors, PhD dissertation, Univ. of Crete-Grenoble INP, (2010).
[112] J. Eriksson, F. Roccaforte, F. Giannazzo, R. Lo Nigro, V. Raineri, J. Lorenzzi, and G. Ferro, Improved Ni/3C-SiC contacts by effective contact area and conductivity increases at the nanoscale, Appl. Phys. Lett., 94(2009)112104-3. https://doi.org/10.1063/1.3099901
[113] S. Baklouti, C. Pagnoux, T. Chartier, J. F. Baumard, Processing of aqueous a-Al2O3, a- SiO2 and a-SiC suspensions with polyelectrolytes, J. Eur. Ceram. Soc. 17 (1997) 1387–1392. https://doi.org/10.1016/S0955-2219(97)00010-1
[114] P. Tartaj, M. Reece, J. S. Moya, Electrokinetic behavior and stability of silicon carbide nanoparticulate dispersions, J. Am. Ceram. Soc. 81 (1998) 389–394. https://doi.org/10.1111/j.1151-2916.1998.tb02345.x
[115] B.P. Singh, J. Jena, L. Besra and S. Bhattacharjee, Dispersion of nano-silicon carbide (SiC) powder in aqueous suspensions, J. Nanopart. Res. 9 (2007) 797–806. https://doi.org/10.1007/s11051-006-9121-6
[116] J. Che, X. Wang, Y. Xiao, X.Wu, L. Zhou and W. Yuan, Effect of inorganic-organic composite coating on the dispersion of silicon carbide nanoparticles in non-aqueous medium, Nanotechnology 18 (2007) 135706. https://doi.org/10.1088/0957-4484/18/13/135706
[117] V. Médout-Marère, A. El. Ghzaoui, C. Charnay, J. M. Douillard, G. Chauveteau and S. Partyka, Surface heterogeneity of passively oxidized silicon carbide particles: hydrophobic- hydrophilic partition, J. Colloid. Interf. Sci. 223 (2000) 205–214. https://doi.org/10.1006/jcis.1999.6625
[118] M. Iijima and H. Kamiya, Surface modification of silicon carbide nanoparticles by azo radical initiators, J. Phys. Chem. C 112 (2008) 11786–11790. https://doi.org/10.1021/jp709608p
[119] L. Fradetal, E. Bano, G. Attolini, F. Rossi, and V. Stambouli, A silicon carbide nanowire field effect transistor for DNA detection, Nanotechnology 27 (2016) 235501. https://doi.org/10.1088/0957-4484/27/23/235501
[120] E. W. Wong, P. E. Sheehan and C. M. Lieber, Science 277 (1997) 1971. https://doi.org/10.1126/science.277.5334.1971
[121] X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, Y. Guo, J. Yuan, Z. L. Wanget, Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism, Nano Lett., 7 (2007) 452–7. https://doi.org/10.1021/nl0627689
[122] Y. F. Zhang, X. D. Han, K. Zheng, Z. Zhang, X. N. Zhang, J. Y. Fu, Y. Ji Y. Hao X. Guo Z. L. Wang, Direct observation of super-plasticity of beta-SiC nanowires at low temperature, Adv, Funct. Mater. 17 (2007) 3435–40. https://doi.org/10.1002/adfm.200700162
[123] W. Nhuapeng, W. Thamjaree, S. Kumfu, P. Singjai, T. Tunkasiri, Fabrication and mechanical properties of silicon carbide nanowires/epoxy resin composites, Curr. Appl. Phys. 8 (2008) 295–9. https://doi.org/10.1016/j.cap.2007.10.074
[124] S. Meng, G. G. Jin, Y. Y. Wang and X. Y. Guo, Tailoring and application of SiC nanowires in composites, Mater Sci. Eng. A 527 (2010) 5761–5. https://doi.org/10.1016/j.msea.2010.05.045
[125] M. Pozueloa, W. H. Kao and J. M. Yang, High-resolution TEM characterization of SiC nanowires as reinforcements in a nanocrystalline Mg-matrix, Mater. Charact. 77 (2013) 81–8. https://doi.org/10.1016/j.matchar.2013.01.003
[126] W. Yang, H. Araki, C. C. Tang, S. Thaveethavorn, A. Kohyama, T. Noda., Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites, Adv. Mater. 17 (2005) 1519–23. https://doi.org/10.1002/adma.200500104
[127] W. Yang, H. Araki, S. Thaveethavorn, H. Suzuki, T. Noda, Process and mechanical properties of in situ silicon carbide nanowire-reinforced chemical vapor infiltrated silicon carbide/silicon carbide composite, J. Am. Ceram. Soc. 87 (2004) 1720–5. https://doi.org/10.1111/j.1551-2916.2004.01720.x
[128] Q. G. Fu, B. L.Jia, H. J. Li, K. Z. Li, Y. H. Chu, SiC nanowires reinforced MAS joint of SiC coated carbon/carbon composites to LAS glass ceramics, Mater. Sci. Eng. A 532 (2012) 255–9. https://doi.org/10.1016/j.msea.2011.10.088
[129] T. Barois, A. Ayari, P. Vincent, S. Perisanu, P. Poncharal and S. T. Purcell, Ultra low power consumption for self-oscillating nanoelectromechanical systems constructed by contacting two nanowires, Nano Lett. 13 (2013) 1451–6. https://doi.org/10.1021/nl304352w
[130] J. J. Niu and J. N.Wang, A novel self-cleaning coating with silicon carbide nanowires, J Phys Chem B 113 (2009) 2909–2912. https://doi.org/10.1021/jp808322e
[131] G. Kwak, M. Lee, K. Senthil and K. Yong, Wettability control and water droplet dynamics on SiC–SiO2 core–shell nanowires, Langmuir 26 (2010) 12273–7. https://doi.org/10.1021/la101234p
[132] H. Y. Wang, Y. Q. Wang, Q. F. Hu and X. J. Li, Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array, Sens. Actuator B – Chem. 166 (2012) 451–6. https://doi.org/10.1016/j.snb.2012.02.087
[133] F. M. Gao, J. J. Zheng, M. F. Wang, G. D. Wei, W. Y. Yang, Piezoresistance behaviors of p-type 6H-SiC nanowires, Chem. Commun. 47 (2011) 11993–5. https://doi.org/10.1039/c1cc14343c
[134] R. W. Shao, K. Zheng, Y. F. Zhang, Y. J. Li, Z. Zhang and X. D. Han, Piezoresistance behaviors of ultra-strained SiC nanowires, Appl. Phys. Lett. 101, (2012) 233109–4. https://doi.org/10.1063/1.4769217
[135] L Fradetal, E Bano, G Attolini, F Rossi, V Stambouli, A silicon carbide nanowire field effect transistor for DNA detection, Nanotechnology 27 (2016) 235501. https://doi.org/10.1088/0957-4484/27/23/235501
[136] K. Rogdakis, S. Y. Lee, M. Bescond, S. K. Lee, E. Bano and K. Zekentes, 3C-Silicon Carbide nanowire FET: An experimental and theoretical Approach, IEEE Trans. on Elec. Dev. 55 (2008) 1970. https://doi.org/10.1109/TED.2008.926667
[137] K. Rogdakis, M. Bescond, E. Bano and K. Zekentes, Theoretical comparison of 3C-SiC and Si nanowire FETs in ballistic and diffusive regimes, Nanotechnology 18 (2007) 475715 and in K. Rogdakis, M. Bescond, K. Zekentes and E. Bano, Mat. Sci. Forum. 600 (2009) 130133. https://doi.org/10.1088/0957-4484/18/47/475715
[138] K. Rogdakis, S. Poli, E. Bano, K. Zekentes and M. Pala, Phonon- and surface-roughness-limited mobility of gate-all-around 3C-SiC and Si nanowire FETs, Nanotechnology 20 (2009) 295202. https://doi.org/10.1088/0957-4484/20/29/295202
[139] H. K. Seong, H. J. Choi, S. K. Lee, J. I. Lee, D. J. Choi, Optical and electrical transport properties in silicon carbide nanowires, Appl. Phys. Lett. 85 (2004) 1256 and in H. K. Seong, H. J. Choi, S. K. Lee, J. I. Lee, D. J. Choi, Mater. Sci. Forum 527 (2006) 771-75. https://doi.org/10.1063/1.1781749
[140] W. M. Zhou, F. Fang, Z. Y. Hou, L. J. Yan, and Y. F. Zhang, Field-Effect Transistor Based on β-SiC Nanowire, IEEE Electron. Dev. Lett. 27 (2006) 463-65. https://doi.org/10.1109/LED.2006.874219
[141] K. Rogdakis, E. Bano, L. Montes, M. Bechelany, D, Cornu and K. Zekentes, Rectifying source and drain contacts for effective carrier transport modulation of extremely doped SiC nanowire FETs, IEEE Trans. on Nanotechnology, 10 (2011) 980-984. and in K. Rogdakis, E. Bano, L. Montes, M. Bechelany, D. Cornu and K. Zekentes, Mater. Sci. Forum 679 (2011) 613-616. https://doi.org/10.1109/TNANO.2010.2091147
[142] Y. Chen, X. Zhang, Q. Zhao, L. He, C. Huang, Z. Xie, P-type 3C-SiC nanowires and their optical and electrical transport properties, Chem. Comm., 47 (2011) 6398-6400. https://doi.org/10.1039/c1cc10863h
[143] Z. Dai, L. Zhang, C. Chen, B. Qian, D. Xu, H. Chen, L. Wei, Y. Zhang, Fabrication of SiC nanowire thin-film transistors using dielectrophoresis, J. Semicond. 33 (2012) 114001. https://doi.org/10.1088/1674-4926/33/11/114001
[144] J. Choi, E. Bano, A. Henry, G. Attolini and K. Zekentes, Comparison of bottom-up and top-down 3C-SiC NWFETs, Mat. Sci. Forum, 858, (2016) 1001-1005. https://doi.org/10.4028/www.scientific.net/MSF.858.1001
[145] E. Spanakis, J. Dialektos, E. Stratakis, V. Zorba, P. Tzanetakis and C. Fotakis, Phys. Status Solidi C 5 (2008) 3309–13. https://doi.org/10.1002/pssc.200779503
[146] R. B. Wu, K. Zhou, J. Wei, Y. Z. Huang, F. Su, J.J. Chen, L. Wang, Growth of tapered SiC nanowires on flexible carbon fabric: toward field emission applications, J. Phys. Chem. C 116 (2012) 12940–5. https://doi.org/10.1021/jp3028935
[147] T. H. Yang, C. H.Chen, A. Chatterjee, H. Y. Li, J. T. Lo, C. T. Wu, K. H. Chen and L. C. Chen, Chem. Phys. Lett. 379 (2003)155–61. https://doi.org/10.1016/j.cplett.2003.08.001
[148] Y. Ryu, Y. Tak, K. Yong, Direct growth of core–shell SiC–SiO2 nanowires and field emission characteristics, Nanotechnology 16 (2005) S370–4. https://doi.org/10.1088/0957-4484/16/7/009
[149] H. Cui, L. Gong, Y. Sun, G. Z. Yang, C. L. Liang, J. Chen, and C. X. Wang, Direct synthesis of novel SiC@Al2O3 core–shell epitaxial nanowires and field emission characteristics, Cryst. Eng. Comm. 13 (2011) 1416–21. https://doi.org/10.1039/C0CE00435A
[150] X.N. Zhang, Y. Q. Chen, Z. P. Xie and W. Y. Yang, Shape and doping enhanced field emission properties of quasialigned 3C-SiC nanowires, J. Phys. Chem. C 114 (2010) 8251–5. https://doi.org/10.1021/jp101067f
[151] G. Y. Li, X. D. Li, Z. D. Chen, J. Wang, H. Wang and R. C. Che,, J. Phys. Chem. C 113, 2009 17655–60. https://doi.org/10.1021/jp904277f
[152] W. Zhou, L. Yan, Y. Wang, Y. Zhang, SiC nanowires: a photocatalytic nanomaterial, Appl. Phys. Lett. 89 (2006) 013105. https://doi.org/10.1063/1.2219139
[153] J. P. Alper, M. S. Kim, M. Vincent, B. Hsia, V. Radmilovic, C. Carraro, R. Maboudian, Silicon carbide nanowires as highly robust electrodes for microsupercapacitors, J. Power. Sources 230 (2013) 298–302. https://doi.org/10.1016/j.jpowsour.2012.12.085
[154] S-C Chiu, H-C. Yu, Y-Y. Li, High electromagnetic wave absorption performance of silicon carbide nanowires in the Gigahertz range, J. Phys. Chem. C 114 (2010) 1947–1952. https://doi.org/10.1021/jp905127t