Plasma Etching of Silicon Carbide

K. Zekentes, J. Pezoldt, V. Veliadis

Plasma etching is the only microelectronics-industry-compatible way to etch SiC for the device pattern transfer process. After more than twenty years of SiC plasma etching technology development, there are still issues such as (i) the etch-rate dependence on plasma parameters, (ii) the surface roughness, (iii) the microtrenching, (iv) the lack of understanding of the very-deep-etching mechanisms, and (v) the not fully understood process optimization that is, in many aspects, based on an empirical approach. The present review deals with all aspects of SiC plasma etching with an emphasis on the above issues that are not well understood.

Dry Etching, Plasma Etching, Ion Etching, Sputtering, Chemical Etching, Plasma Chemistry, Gas Phase Chemistry, Etch Rate, Residue Free Etching, Micromasking, Microtrenching, Sidewall Slope, Mask Selectivity, Aspect Ratio Dependent Etching, Microloading

Published online 2/15/2020, 58 pages

Citation: K. Zekentes, J. Pezoldt, V. Veliadis, Plasma Etching of Silicon Carbide, Materials Research Foundations, Vol. 69, pp 175-232, 2020


Part of the book on Advancing Silicon Carbide Electronics Technology II

[1] S.J. Pearton, Dry Etching of SiC, in: R. Cheung (Ed.), Silicon Carbide Micro Electromechanical Systems for Harsh Environments, Imperial College Press, London, 2006, pp. 102-127.
[2] P.H Yih, A.J. Steckl, V. Saxena. A review of SiC Reactive Ion Etching in Fluorinated Plasmas, Phys. Stat. Sol. (b) 202 (1997) 605-642.<605::AID-PSSB605>3.0.CO;2-Y
[3] J.R. Flemish, Dry Etching of SiC, in: S.J. Pearton (Ed.), Processing of Wide Gap Semiconductors, William Andrew Pub, New York, (2000), pp. 151-177.
[4] G. M. Beheim, Deep Reactive Ion Etching for Bulk Micromachining of Silicon Carbide, in: M. Gad-el-Hak (Ed.), The MEMS Handbook, CRC Press, Boca Raton, (2002), pp. 21-1 – 21-12.
[5] K.P. Leerungnawarat. P. Lee, S.J. Pearton, F. Ren, S.N.G. Chu, Comparison of F2 plasma chemistries for deep etching of SiC, J. Electron. Mater. 30 (2001) 202-206.
[6] A. Miotello, L. Calliari, R. Kelly, N. Laidani, M. Bonelli, L. Guzman, Composition changes in Ar+ and e–bombarded SiC: An attempt to distinguisch ballistic and chemical guided effects, Nucl. Instr. Meth. Phys. Res. B 80-81 (1993) 931-937.
[7] J. Pezoldt, B. Stottko, G, Kupris, G. Ecke, Sputtering effects in hexagonal silicon carbide, Mater. Sci. Eng. B 29 (1995) 94-98.
[8] G. Ecke, R. Kosiba, J. Pezoldt H. Rößler, The influence of ion beam sputtering on the composition of the near-surface region of silicon carbide, Fresenius J. Anal Chem. 365 (1999) 195-198.
[9] J. Hong, R.J. Shul, L. Zhang, L. F. Lester, H. Choi, Y. B. Cho, Y. B. Hahn, D. C. Hays, K. B. Jung, ,1 S. J. Pearton, C.-M. Zetterling, M. Östling, Plasma Chemistries for High Density Plasma Etching of SiC, J. Electron. Mater. 28 (1999) 196-201, and in J.J Wang, E.S Lambers, S.J Pearton, M Ostling, C.-M Zetterling, J.M Grow, F Ren, R.J Shul, ICP etching of SiC, Solid-State Electron. 42 (1998) 2283-2288.
[10] F.A. Kahn, I. Adesida, High rate etching of SiC using inductively coupled plasma reactive ion etching in SF6-based gas mixtures, Appl. Phys. Lett. 75 (1999) 2268-2270.
[11] P. Chabert, Deep etching of silicon carbide for micromachining applications: Etch rates and etch mechanisms, J. Vac. Sci. Technol. B 19 (2001) 1339-1345.
[12] L. Jiang, R. Cheung, R. Brown, A. Mount, Inductively coupled plasma etching of SiC in SF6 /O2 and etch-induced surface chemical bonding modifications, J. Appl. Phys. 93 (2003) 1376-1383.
[13] H. Mikami, T. Hatayama, H. Yano, Y. Uraoka, T. Fuyuki, Role of Hydrogen in Dry Etching of Silicon Carbide Using Inductively and Capacitively Coupled Plasma, Jpn. J. Appl. Phys. 44 (2005) 3817–3821.
[14] G. Ecke, H. Rößler, V. Cimalla, J. Pezoldt, Interpretation of Auger depth profiles of thin SiC Layers on Si, Mikrochim. Acta 125 (1997) 219-222.
[15] M. Imaizumi, Y. Tarui, H. Sugimoto, J. Tanimura, T. Takami, T. Ozeki, Reactive Ion Etching in CF4 / O2 Gas Mixtures for Fabricating SiC Devices, Mater. Sci. Forum, 338-342 (2000) 1057-1060.
[16] E. Niemann, A Boos and D. Leidich, Chloride-based dry etching process in 6H-SiC, Inst. Phys. Conf. Ser. 137 (1994) 695-698.
[17] F.A. Khan, B. Roof, L. Zhou, I. Adesida, Etching of silicon carbide for device fabrication and through via-hole formation, J. Electron. Mater. 30 (2001) 212-219.
[18] L. Jiang, N O V Plank, M A Blauw, R Cheung, E van der Drift, Dry etching of SiC in inductively coupled Cl2/Ar plasma, J. Phys. D: Appl. Phys. 37 (2004) 1809–1814.
[19] H.-K. Sung, T. Qiang, Z. Yao, Y. Li, Q. Wu, H-K. Lee, B-D. Park, W-S. Lim, K H. Park, C. Wang, Vertical and bevel-structured SiC etching techniques incorporating different gas mixture plasmas for various microelectronic applications, Sci. Rep. 7 (2017) 3915.
[20] P. Leerungnawarat, D. C. Hays, H. Cho, S. J. Pearton, R. M. Strong, C. M. Zetterling, M. Ostling, Via-hole etching for SiC, J. Vac. Sci. Technol. B 17 (1999). 2050-2054.
[21] P.H. Yih, A.J. Steckl, Effects of Hydrogen Additive on obtaining Residue-Free Reactive Ion Etching of -SiC in Fluorinated Plasmas. J. Electrochem. Soc. 140 (1993) 1813-1824.
[22] J. Sugiura, W.J. Lu, K.C. Cadien, A.J. Steckl, Reactive ion etching of SiC thin films using fluorinated gases, J. Vac. Sci. Technol. B 4 (1986) 349-354.
[23] R. Wolf, R. Helbig, Reactive Ion Etching of 6H-SiC in SF6/O2 and CF4/O2 with N2 Additive for Devise Fabrication, J. Electrochem. Soc. 143 (1996) 1037-1042.
[24] L. Cao, B. Li, J. H. Zhao, Etching of SiC using inductively coupled plasma, J. Electrochem. Soc. 145 (1998) 3609–3612.
[25] J. R. Bonds, SiC Etch development in a LAM TCP 9400SE II System, MSc thesis, Mississippi State Uninversity, USA, 2002.
[26] B.P. Luther, J. Ruzyllo, D.L. Miller. Nearly isotropic etching of 6H-SiC in NF3 and O2 using a remote plasma, Appl. Phys.Lett. 63 (1993) 171-173.
[27] J. B. Casady, E. D. Luckowski, M. Bozack, D. Sheridan, R. W. Johnson, J. R. Williams, Etching of 6H-SiC and 4H-SiC using NF3 in a Reactive Ion Etching system, J. Electrochem. Soc. 143 (1996) 1750-1753 and in: J. B. Casady, E. D. Luckowski, M. Bozack, D. Sheridan, R. W. Johnson, J. R. Williams, Reactive Ion Etching of 6H-SiC using NF3, Inst. Phys. Conf. Ser. 142 (1996) 624-627.
[28] G. McDaniel, Comparison of dry etch chemistries for SiC. J. Vac. Sci. Technol. A 15 (1997) 885-889.
[29] J. Bonds, G. E. Carter, J. B. Casady, J. D. Scofield, Effect of electrode spacing on reactive ion etching of 4H-SiC, Mater. Res. Soc. Symp. Proc. 622 (2000) T8.8.1-T8.8.6.
[30] J.D. Scofield, P. Bletzinger, B.N. Ganguly. Oxygen-free dry etching of -SiC using dilute SF6: Ar in an asymmetric parallel plate 13.56 MHz discharge, Appl. Phys. Lett. 73 (1998) 76-78.
[31] J.D. Scofield, B.N. Ganguly, P. Bletzinger, Investigation of dilute SF6 discharges for application to SiC reactive ion etching, J. Vac. Technol. A 18 (2000) 2175-2184.
[32] N. Camara, K. Zekentes, Study of the reactive ion etching of 6H-SiC and 4H-SiC in SF6/Ar plasmas by optical emission spectroscopy and laser interferometry, Sol. St. Electron. 46 (2002) 1959-1963 and in: N. Camara, G. Constantinidis, K. Zekentes, Use of Laser Interferometry and Optical Emission Spectroscopy for Monitoring the Reactive Ion Etching of 6H – and 4H-SiC, Mater. Sci. Forum Vols. 433-436 (2003) 693-696.
[33] N. Camara, Ph.D. Thesis, 2006, INPG (Grenoble, France – Crete Univ., Heraklion, Greece)
[34] S. Rauf, P.L.G. VentzekIon, C. Abraham, G.A. Hebner, J.R. Woodworth, Charged species dynamics in an inductively coupled Ar/SF6 plasma discharge, J. Appl. Phys. 92 (2002) 6998-7007.
[35] M. S. Brown, J. D. Scofield, B. N. Ganguly, Emission, thermocouple, and electrical measurements in SF6/Ar/O2 SiC etching discharges, J. Appl. Phys. 94 (2003) 823-830.
[36] M. S. So, S. G. Lim, T. N. Jackson, Fast, smooth and anisotropic etching of SiC using SF6/Ar. J. Vac. Sci. Technol. B 17 (1999) 2055-2057.
[37] L. F. Voss, K. Ip, S. J. Pearton, R. J. Shul, M. E. Overberg, A. G. Baca, C. Sanchez, J. Stevens, M. Martinez, M. G. Armendariz, G. A. Wouters, SiC via fabrication for wide-band-gap high electron mobility transistor/microwave monolithic integrated circuit devices, J. Vac. Sci. Technol. B 26 (2008) 487-494.
[38] J. Xia, Study of plasma etching of silicon carbide, PhD dissertation, (2010), Nanyang University, China.
[39] H. Cho, K. P. Lee, P. Leerungnawarat, S. N. G. Chu, F. Ren, S. J. Pearton, C.-M. Zetterling, High density plasma via hole etching in SiC, J. Vac. Sci. Technol. A 19 (2001) 1878-1881.
[40] D. G. Senesky, A. P. Pisano, Aluminium nitride as a masking materialfor plasma etching of silicon carbide structures, Proc. IEEE 23rd Int Conf on MEMS, (2010) pp 352-355.
[41] F. A. Khan, I. Adesida, High rate etching of SiC using inductively coupled plasma reactive ion etching in SF6 – based gas mixtures, Appl. Phys. Lett. 75 (1999) 2268-2270.
[42] K. Vassilevski, N. Camara, A. Stavrinidis, Report on FORTH’s SiC RIE technology, unpublished.
[43] H. Vang, PhD Dissertation, (2006), INSA Lyon, France.
[44] D.W. Kim, H.Y. Lee, B.J. Park, H.S. Kim, Y.J. Sung, S.H. Chae, Y.W. Ko, G.Y. Yeom, High rate etching of 6H–SiC in SF6-based magnetically-enhanced inductively coupled plasmas, Thin Solid Films 447–448 (2004) 100–104.
[45] G. M. Beheim, L. J. Evans, Control of Trenching and Surface Roughness in Deep Reactive Ion Etched 4H and 6H SiC, Mater. Res. Soc. Symp. Proc. 911 (2006) 0911-B10-15.
[46] K. Robb, J. Hopkins, G. Nicholls, L. Lea, Plasma sources for high-rate etching of SiC, Solid State Technol. 48(5) (2005) 61-67.
[47] J. Biscarrat, PhD dissertation, (2015), Univ. Tours, France.
[48] Ju-Ai Ruan, Sam Roadman, Cathy Lee, Cary Sellers, Mike Regan, SiC Substrate Via Etch Process Optimization, Proc. CS MANTECH 2009 Conference and in, Ju-Ai Ruan, Sam Roadman, Wade Skelton, Low RF power SiC Substrate Via Etch, Proc. CS MANTECH 2010 Conference.
[49] Ding Ruixue, Yang Yintang, Han Ru, Microtrenching effect of SiC ICP etching in SF6/O2 plasma, J. Semiconductors 30 (2009), 016001-1 – 016001-3.
[50] H. Oda, P. Wood, H. Ogiya, S. Miyoshi, O. Tsuji, Optimizing the SiC Plasma Etching Process For Manufacturing Power Devices, Digest CS MANTECH, (May 2015), Scottsdale, Arizona, USA, p.126.
[51] M. Lazar, Technologie pour l’intégration de composants semiconducteurs à large bande interdite, HDR dissertation, Université Claude Bernard Lyon I , (2018)
[52] J. H. Choi, L. Latu-Romain, T. Baron, T. Chevolleau, E. Bano, Hexagonal faceted SiC nanopillars fabricated by inductively coupled SF6/O2 plasma method, Mater. Sci. Forum 717-720 (2012) 893-896.
[53] J. J. Wang, E.S. Lambers, S.J. Pearton, M. Ostling, C.M. Zetterling, J. M. Grow, F. Ren, R. J. Shul, J. Vac. Sci Technol. A 16 (1998) 2204-2209.
[54] N. Okamoto, Differential etching behavior between semi-insulating and n-doped 4H-SiC in high-density SF6/O2 inductively coupled plasma, J. Vac. Sci. Technol. A 27 (2009) 456-460.
[55] N. Okamoto, Elimination of pillar associated with micropipe of SiC in high-rate inductively coupled plasma etching, J. Vac. Sci. Technol. A 27 (2009) 295-300.
[56] Th. Stauden, F. Niebelschütz, K. Tonisch, V. Cimalla, G. Ecke, Ch. Haupt, J. Pezoldt, Isotropic etching of SiC, Mater. Sci. Forum 600-603 (2009) 651-654.
[57] F. Niebelschütz, Th. Stauden, K. Tonisch, J. Pezoldt, Temperature facilitated ECR-etching for isotropic SiC structuring, Mater. Sci. Forum 645-648 (2010) 849-852.
[58] S. Tanaka, K. Rajanna, T. Abe, M. Esashi, Deep reactive ion etching of silicon carbide, J. Vac. Sci. Technol. B 19 (2001) 2173-2176.
[59] K.M. Dowling, E.H. Ransom, D.G. Senesky, Profile Evolution of High Aspect Ratio Silicon Carbide Trenches by Inductive Coupled Plasma Etching, J. Microelectromech. Syst. 26 (2017) 135-142.
[60] M. Lazar, F. Enoch, F. Laariedh, D. Planson, P. Brosselard, Influence of the masking material and geometry on the 4H-SiC RIE etched surface state, Mater. Sci. Forum. 679-680 (2011) 477-480.
[61] M. Lazar, INSA Lyon, France (private communication).
[62] S. H. Kuah, P. C. Wood, Inductively coupled plasma etching of poly-SiC in SF6 chemistries, J. Vac. Sci. Technol. A 23 (2005) 947-952.
[63] G.R. Yazdi, K. Vassilevski, J.M. Córdoba, D. Gogova, I.P. Nikitina, M. Syväjärvi, M. Odén, N.G. Wright, R. Yakimova, Free standing AlN single crystal growth on pre-patterned 4H-SiC substrates, Mater. Sci. Forum 645-648 (2010) 1187-1190.
[64] G.R. Yazdi, K. Vassilevski, J.M. Córdoba, D. Gogova, I.P. Nikitina, M. Syväjärvi, M. Odén, N.G. Wright, R. Yakimova, Free standing AlN single crystal growth on pre-patterned 4H-SiC substrates, Mater. Sci. Forum 645-648 (2010) 187-1190.
[65] S. M. Koo, S.-K. Lee, C.M. Zetterling, M. Ostling, U. Forsberg, E. Janzén, Influence of the trenching effect on the characteristics of buried-gate SiC junction field effect transistors, Mater. Sci. Forum 389-393 (2002) 1235-1238.
[66] R.A. Gottscho, C.W. Jurgensen, D.J. Vitkavage, Microscopic uniformity in plasma etching, J. Vac. Sci. Technol. B 10 (1992) 2133-2147.
[67] I. W. Rangelow, P. Hudek, F. Shi, Bulk micromachining of Si by Lithography and Reactive ton Etching (LIRIE),Vacuum 46 (1995) 1361-1369.
[68] A.C. Westerheim, A.H. Labun, J.H. Dubash, J.C. Arnold, H.H. Sawin, V.Yu-Wang, Substrate bias effect in high-spect ratio SiO2 contact etching using an inductively coupled plasma reactor, J. Vac. Sci. Technol. A 13 (1995) 853-858.
[69] S.G. Ingram, The influence of substrate topography on ion bombardment in plasma etching, J. Appl. Phys. 68 (1990) 500-504.
[70] G. Memos, E. Lidorikis, G. Kokkoris, The interplay between surface charging and microscale roughness during plasma etching of polymeric substrates, J Appl Phys. 123 (2018) 073303-1 – 0733303-9.
[71] F. Gerodolle, J. Pelletier, Two-dimensional implications of a purely reactive model for plasma etching, IEEE Trans. Electon Dev. 38 (1991) 2025-2032.
[72] M. A. Vyvoda H. Lee, M. V. Malyshev F. P. Klemens, M. Cerullo, V. M. Donnelly, D. B. Graves, A. Kornblit, J. T. C. Lee, Effects of plasma conditions on the shapes of features etched in Cl2 and HBr plasmas. I. Bulk crystalline silicon etching, J. Vac. Sci. Technol. A 16 (1998) 3247-3258.
[73] A. Burtsev, Y.X. Li, H.W. Zeijl, C.I.M. Beenakker, An anisotropic U-shape SF6-based plasma silicon trench etching investigation, Microelectron. Eng. 40 (1998) 85-97.
[74] Y. Nakano, R. Nakamura, H. Sakairi, S. Mitani, T. Nakamura, 690 V, 1.00 mΩ cm2 4H-SiC double-trench MOSFETs, Mater. Sci. Forum 717–720 (2012) 1069–1072.
[75] H. Koketsu, T. Hatayama, H. Yano, T. Fuyuki, Clearance of 4H-SiC sub-trench in hot chlorine treatment, Mater. Sci. Forum 717–720 (2012) 881–884.
[76] J.R. Flemish, K. Xie, Profile and Morphology Control during Etching of SiC Using Electron Cyclotron Resonant Plasmas, J. Electrochem. Soc. 143 (1996), 2620-2623.
[77] F. Simescu, D. Coiffard, M. Lazar, P. Brosselard, D. Planson, Study in trench formation during SF6/O2 reactive ion etching of 4H-SiC. J. Optoelectron. Adv. Mater. 2 (2010) 766-769.
[78] K. W. Chu, C. T. Yen, P. Chung, C. Y. Lee, Tony Huang, C. F. Huang, An Improvement of Trench Profile of 4H-SiC Trench MOS Barrier Schottky (TMBS) Rectifier, Mater. Sci. Forum 740-742, (2013) 687-690.
[79] Han Ru, Yang Yin-Tang, Fan Xiao-Ya, Microtrenching geometry of 6H–SiC plasma etching, Vacuum 84 (2010) 400–404.
[80] C. Han, Y. Zhang, Q. Song, Y. Zhang, X. Tang, F. Yang, Y. Niu, An Improved ICP Etching for Mesa-Terminated 4H-SiC p-i-n Diodes, IEEE Trans. Electron Dev. 62 (2015) 1223-1229.
[81] B.P. Luther, J. Ruzyllo, D.L. Miller, Nearly isotropic etching of 6H-SiC in NF3 and O2 using a remote plasma, Appl. Phys.Lett. 63 (1993) 171-173.
[82] D.A. Zeze, R.D. Forrest, J.D. Carey, D.C. Cox, I.D. Robertson, B.L. Weiss, S.R.P. Silva, Reactive ion etching of quartz and Pyrex for microelectronic applications, J. Appl. Phys. 92 (2002) 3624-3629.
[83] S.-N. Son, S.J. Hong, Quantitative Evaluation Method for Etch Sidewall Profile of Through-Silicon Vias (TSVs), ETRI Journal 36 (2014) 617-624.
[84] X.M.H. Hang, X.L. Feng, M.K. Prakash, S. Kumar, C.A. Zorman, M. Mehregany, M.L. Fabrication of suspended nanomechanical structures from bulk 6H-SiC substrates, Mater. Sci. Forum 457-460 (2004) 1531-1534.
[85] J. Asmussen, Electron cyclotron resonance microwave discharges for etching and thin-film deposition, J. Vac. Sci. Technol. A 7 (1989) 883-893.
[86] F. Lanois, P. Lassagne, D. Planson, M. L. Locatelli, Angle etch control for silicon carbide power devices, Appl. Phys. Lett. 69 (1996) 236-238.
[87] T. Hiyoshi, T. Hori, J. Suda, T. Kimoto, Bevel Mesa Combined with Implanted Junction Termination Structure for 10 kV SiC PiN Diodes, Mater. Sci. Forum 600-603 (2009) 995-998.
[88] P. Godignon, SiC Materials and Technologies for Sensors Development, Mater. Sci. Forum 483-485 (2005) 1009-1014.
[89] H. Stieglauer, J. Noesser, G. Bödege, K. Drüeke, H. Blanck, D. Behammer, Evaluation of through wafer via holes in SiC substrates for GaN HEMT technology, Proc. CS MANTECH 2012 Conference, 2012.
[90] A. Suino, Y. Yamazaki, H. Nitta, K. Miura, H. Seto, R. Kanno, Y. Ijiima, H. Sato, S. Takeda, E. Toya, T. Ohtsuki, J. Phys. Chem. Solids 69 (2008) 311-314.
[91] J. Boussey, C. Gourgon, M. Cottat, E. Bano, K. Zekentes (unpublished).
[92] V. Veliadis, presentation in ECSCRM’16 Tutorial Day.
[93] T. Kimoto, J.A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications, John Wiley & Sons, Singapore, 2014, p. 211.
[94] Y. Li, Design, Fabrication and Process Developments of 4H-Silicon Carbide TIVJFET, Ph. D. Dissertation, Rutgers University, 2008 but the process is better described in M. Su, Power devices and integrated circuits based on 4H-SiC lateral JFETs, Ph. D. Dissertation, Rutgers University, 2010.
[95] X.L. Feng, M.H. Matheny, C.A. Zorman, M. Mehregany, M.L. Roukes, Low voltage nanoelectromechanical switches based on silicon carbide nanowires, Nano Lett. 10 (2010) 2891-2896.
[96] A. Kathalingam, M.R. Kim, Y.S. Chae, S. Sudhakar, T. Mahalingam, J.K. Rhee, Self assembled micro masking effect in the fabrication of SiC nanopillars by ICP-RIE etching, Appl. Surf. Sci. 257 (2011) 3850-3855.
[97] J.H. Choi, L. Latu-Romain, E. Bano, F. Dhalluin, T. Chevolleau, T. Baron, Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching, J. Phys. D: Appl. Phys. 45 (2012) 235204-1 – 235204-9 and in: Jihoon Choi, PhD Disseration (2013) Grenoble INP, France.
[98] L. Hiller, T. Stauden, R. M. Kemper, J. K. N. Lindner, D. J. As and J. Pezoldt, ECR-Etching of Submicron and Nanometer Sized 3C-SiC(100) Mesa Structures, Mater. Sci. Forum 717-720 (2012) 901-904.
[99] L. Hiller, T. Stauden, R.M. Kemper, J.K.N. Lindner, D.J. As, J. Pezoldt, Hydrogen Effects in ECR-Etching of 3C-SiC(100) Mesa Structures, Mater. Sci. Forum 778-780 (2014) 730-733.
[100] B. Li, L. Cao, J. Zhao, Evaluation of damage induced by inductively coupled plasma etching of 6H-SiC using Au Schottky barrier diodes, Appl. Phys. Lett. 73 (1998) 653-655.
[101] B.S. Kim, J.K. Jeong, M.Y. Um, H.J. Na, I.B. Song, H.J. Kim, Electrical Properties of 4H-SiC Thin Films Reactively Ion-Etched in SF6/O2 Plasma, Mater. Sci. Forum 389-393 (2002) 953-956.
[102] S.M. Koo, S. K. Lee, C. M. Zetterling, M. Ostling, Electrical characteristics of metal-oxide-semiconductor capacitors on plasma eth-damaged silicon carbide, Solid State Electron. 46 (2002) 1375-1380.
[103] E. Danielsson, S.K. Lee, C. M. Zetterling, M. Ostling, Inductively coupled plasma etch damage in 4H-SiC investigated by Schottky diode characterization, J. Electron. Mater. 30 (2001) 247-252.
[104] L. Lanni, B. G. Malm, M. Östling, C.M Zetterling, SiC etching and sacrificial oxidation effects on the performance of 4H-SiC BJTs, Mater. Sci. Forum 778-780 (2014) 1005-1008.
[105] N. Camara, A. Thuaire, E. Bano, K. Zekentes, Forward-bias degradation in 4H-SiC p+nn+ diodes: Influence of the mesa etching, Phys. Stat. Sol. (a) 202 (2005) 660-664.