Plant Fibre Based Biodegradable Green Composites


Plant Fibre Based Biodegradable Green Composites

M. Harikrishna Kumar, C. Moganapriya, R. Rajasekar, T. Mohanraj

Bio-composite are fabricated by reinforcing natural fiber into a biopolymer matrix. Bio-composite are manufactured using mechanical and melt mixing technique followed by hot pressing at elevated temperature. Fiber volume fraction is varied in the biopolymer matrix to find the optimum technical properties. Chemically treated natural fiber used as a reinforcing material in preparing bio-composite results in higher technical properties when compared to untreated fiber bio-composite. As weight percentage of fiber increases physic-mechanical property enhances. Physic-mechanical property reduces at particular weight percentage of natural fiber. The trend is observed due to the agglomeration of fiber in the bio-polymer matrix. The Bio-degradation study also proves that bio-composite prepared using natural fiber and biopolymer can be used as an alternative material for conventional thermoplastic composite.

Natural Fiber, Biopolymer, Bio-Composite, Biodegradable

Published online 2/15/2020, 25 pages

Citation: M. Harikrishna Kumar, C. Moganapriya, R. Rajasekar, T. Mohanraj, Plant Fibre Based Biodegradable Green Composites, Materials Research Foundations, Vol. 68, pp 60-84, 2020


Part of the book on Advanced Applications of Bio-degradable Green Composites

[1] P.K. Bajpai, I. Singh, J. Madaan, Development and characterization of PLA-based green composites: A review, J. Thermoplast. Compos. Mater. 27 (2014) 52-81.
[2] K. Oksman, M. Skrifvars, J.F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Compos Sci Tech. 63 (2003) 1317-1324.
[3] A. Mohanty, M.A. Khan, G. Hinrichsen, Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites, Compos Sci Tech. 60 (2000) 1115-1124.
[4] S. Mukhopadhyay, R. Fangueiro, Physical modification of natural fibers and thermoplastic films for composites—a review, J. Thermoplast. Compos. Mater. 22 (2009) 135-162.
[5] M. Tajvidi, A. Takemura, Thermal degradation of natural fiber-reinforced polypropylene composites, J. Thermoplast. Compos. Mater.23 (2010) 281-298.
[6] R. Rahman, M. Hasan, M. Huque, N. Islam, Physico-mechanical properties of maleic acid post treated jute fiber reinforced polypropylene composites, J. Thermoplast. Compos. Mater. 22 (2009) 365-381.
[7] M. Cocca, F. De Falco, G. Gentile, R. Avolio, M.E. Errico, E. Di Pace, M. Avella, Degradation of Biodegradable Plastic Buried in Sand, Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea, Springer, 2018, pp. 205-209.
[8] T.P. Haider, C. Völker, J. Kramm, K. Landfester, F.R. Wurm, Plastics of the future? The impact of biodegradable polymers on the environment and on society, Angew Chem Int Ed. 58 (2019) 50-62.
[9] A.L. Andrady, M.A. Neal, Applications and societal benefits of plastics, Phil Trans Biol Sci. 364 (2009) 1977-1984.
[10] R.C. Thompson, Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland, A.W. John, D. McGonigle, A.E. Russell, Lost at sea: where is all the plastic, Science. 304 (2004) 838-838.
[11] J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Plastic waste inputs from land into the ocean, Science. 347 (2015) 768-771.
[12] F. La Mantia, M. Morreale, Green composites: A brief review, Compos. Appl. Sci. Manuf. 42 (2011) 579-588.
[13] G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, M. Errico, Natural fiber eco-composites, Polymer compos. 28 (2007) 98-107.
[14] G. Koronis, A. Silva, M. Fontul, Green composites: A review of adequate materials for automotive applications, Compos B Eng. 44 (2013) 120-127.
[15] J. Mayer, Biodegradable materials: balancing degradability and performance, Trends Polym. Sci. 2 (1994) 227-235.
[16] H. Rozman, M. Lee, R. Kumar, A. Abusamah, Z.M. Ishak, The effect of chemical modification of rice husk with glycidyl methacrylate on the mechanical and physical properties of rice husk-polystyrene composites, J. Wood Chem. Tech. 20 (2000) 93-109.
[17] D.R. Carroll, R.B. Stone, A.M. Sirignano, R.M. Saindon, S.C. Gose, M.A. Friedman, Structural properties of recycled plastic/sawdust lumber decking planks, Resour Conservat Recycl. 31 (2001) 241-251.
[18] A. Herrmann, J. Nickel, U. Riedel, Construction materials based upon biologically renewable resources—from components to finished parts, Polym Degrad Stabil. 59 (1998) 251-261.
[19] C. Alves, A. Silva, L. Reis, M. Freitas, L. Rodrigues, D. Alves, Ecodesign of automotive components making use of natural jute fiber composites, J. Clean. Prod. 18 (2010) 313-327.
[20] N. Nair, V. Sekhar, K. Nampoothiri, A. Pandey, Biodegradation of biopolymers, Current Developments in Biotechnology and Bioengineering, Elsevier2017, pp. 739-755.
[21] R. Hu, J.-K. Lim, Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites, J Compos Mater. 41 (2007) 1655-1669.
[22] P. Wambua, J. Ivens, I. Verpoest, Natural fibres: can they replace glass in fibre reinforced plastics, Compos Sci Tech. 63 (2003) 1259-1264.
[23] M.S. Huda, L.T. Drzal, A.K. Mohanty, M. Misra, Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid)(PLA) composites: a comparative study, Compos Sci Tech. 66 (2006) 1813-1824.
[24] S. Ochi, Mechanical properties of kenaf fibers and kenaf/PLA composites, Mech Mater. 40 (2008) 446-452.
[25] D. Plackett, T.L. Andersen, W.B. Pedersen, L. Nielsen, Biodegradable composites based on L-polylactide and jute fibres, Compos Sci Tech. 63 (2003) 1287-1296.
[26] Y.F. Shih, C.C. Huang, Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites, J Polym Res. 18 (2011) 2335-2340.
[27] A. Yussuf, I. Massoumi, A. Hassan, Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties, J Polymer Environ. 18 (2010) 422-429.
[28] N. Graupner, A.S. Herrmann, J. Müssig, Natural and man-made cellulose fibre-reinforced poly (lactic acid)(PLA) composites: An overview about mechanical characteristics and application areas, Compos Appl Sci Manuf. 40 (2009) 810-821.
[29] A. Bourmaud, Y.-M. Corre, C. Baley, Fully biodegradable composites: Use of poly-(butylene-succinate) as a matrix and to plasticize l-poly-(lactide)-flax blends, Ind. Crop. Prod. 64 (2015) 251-257.
[30] Y. Feng, H. Shen, J. Qu, B. Liu, H. He, L. Han, Preparation and properties of PBS/sisal-fiber composites, Polymer Eng Sci. 51 (2011) 474-481.
[31] Y.H. Feng, Y.J. Li, B.P. Xu, D.W. Zhang, J.P. Qu, H.Z. He, Effect of fiber morphology on rheological properties of plant fiber reinforced poly (butylene succinate) composites, Compos B Eng. 44 (2013) 193-199.
[32] Z. Liang, P. Pan, B. Zhu, T. Dong, Y. Inoue, Mechanical and thermal properties of poly (butylene succinate)/plant fiber biodegradable composite, J Appl Polymer Sci. 115 (2010) 3559-3567.
[33] L. Liu, J. Yu, L. Cheng, X. Yang, Biodegradability of poly (butylene succinate)(PBS) composite reinforced with jute fibre, Polym Degrad Stabil. 94 (2009) 90-94.
[34] T.H. Nam, S. Ogihara, N.H. Tung, S. Kobayashi, Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites, Compos B Eng. 42 (2011) 1648-1656.
[35] M.A. Gunning, L.M. Geever, J.A. Killion, J.G. Lyons, C.L. Higginbotham, Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites, Polym Test. 32 (2013) 1603-1611.
[36] J.D.D. Melo, L.F.M. Carvalho, A. Medeiros, C. Souto, C. Paskocimas, A biodegradable composite material based on polyhydroxybutyrate (PHB) and carnauba fibers, Compos B Eng. 43 (2012) 2827-2835.
[37] M. Wróbel-Kwiatkowska, J. Zebrowski, M. Starzycki, J. Oszmiański, J. Szopa, Engineering of PHB synthesis causes improved elastic properties of flax fibers, Biotechnol Progr. 23 (2007) 269-277.
[38] T. Madera-Santana, M. Misra, L. Drzal, D. Robledo, Y. Freile-Pelegrin, Preparation and characterization of biodegradable agar/poly (butylene adipate-co-terephatalate) composites, Polymer Eng Sci. 49 (2009) 1117-1126.
[39] T. Yu, Y. Li, Influence of poly (butylenes adipate-co-terephthalate) on the properties of the biodegradable composites based on ramie/poly (lactic acid), Compos Appl Sci Manuf. 58 (2014) 24-29.
[40] V. Nagarajan, M. Misra, A.K. Mohanty, New engineered biocomposites from poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/poly (butylene adipate-co-terephthalate)(PBAT) blends and switchgrass: Fabrication and performance evaluation, Ind Crop Prod. 42 (2013) 461-468.
[41] A. de Campos, G.H. Tonoli, J.M. Marconcini, L.H. Mattoso, A. Klamczynski, K.S. Gregorski, D. Wood, T. Williams, B.S. Chiou, S.H. Imam, TPS/PCL composite reinforced with treated sisal fibers: Property, biodegradation and water-absorption, J Polymer Environ. 21 (2013) 1-7.
[42] H. Xu, L. Wang, C. Teng, M. Yu, Biodegradable composites: Ramie fibre reinforced PLLA-PCL composite prepared by in situ polymerization process, Polymer Bull. 61 (2008) 663-670.