Biodegradation of Green Polymer Composites: Laboratory Procedures and Standard Test Methods

$30.00

Biodegradation of Green Polymer Composites: Laboratory Procedures and Standard Test Methods

P. Rizzarelli, F. Degli Innocenti, G. Valenti, M. Rapisarda

Green composites have gained attention as promising alternatives to the traditional ones, mainly for their potential biodegradability. They are a combination of biodegradable polymers with natural fibres. Frequently, a compatibilization of polymeric matrix and fibre/filler for improved green composites is necessary. However, the treatments can prejudice the biodegradability of the final material. As a consequence, biodegradation tests have to been carried out. For this reason, this chapter provides an overview of both the standardization methods used to determine a degree of biodegradation in different environments and the laboratory procedures commonly adopted. Moreover, it summarizes studies in the literature, published between the beginning of 2009 and May 2019, concerning the assessment of biodegradability of green composites.

Keywords
Bioplastics, Biodegradation, Biocomposites, Standard Test Methods, Biodegradable Polymers

Published online 2/15/2020, 44 pages

Citation: P. Rizzarelli, F. Degli Innocenti, G. Valenti, M. Rapisarda, Biodegradation of Green Polymer Composites: Laboratory Procedures and Standard Test Methods, Materials Research Foundations, Vol. 68, pp 1-44, 2020

DOI: https://doi.org/10.21741/9781644900659-1

Part of the book on Advanced Applications of Bio-degradable Green Composites

References
[1] R. Nakamura, A.N. Netravali, Fully biodegradable “green” composites, in: T. Sabu, J. Kuruvilla, S.K. Malhotra, K. Goda, M.S. Sreekala (Eds.), Polymercomposites, Wiley-VCH Verlag GmbH & Co, 2014, pp. 431-460. https://doi.org/10.1002/9783527674220.ch12
[2] A.B. Nair, P. Sivasubramanian, P. Balakrishnan, K.A. Nair Ajith Kumar, M.S. Sreekala, Environmental effects, biodegradation, and life cycle analysis of fully biodegradable ‘‘green’’ composites, in: T. Sabu, J. Kuruvilla, S.K. Malhotra, K. Goda, M.S. Sreekala (Eds.), Polymercomposites, Wiley-VCH Verlag GmbH & Co, 2014, pp. 515-561. https://doi.org/10.1002/9783527674220.ch15
[3] K. Georgios, A. Silva, S Furtado, Applications of green composite materials, in: S. Kalia (Ed.), Biodegradable green composites, John Wiley & Sons, Inc., 2016, pp. 312-330. https://doi.org/10.1002/9781118911068.ch10
[4] F.P. La Mantia, M. Morreale, Green composites: A brief review, Compos. Part A Appl. Sci. Manuf. 42 (2011) 579-588. https://doi.org/10.1016/j.compositesa.2011.01.017
[5] A.K. Mohanty, S. Vivekanandhan, J.M Pin, M. Misra, Composites from renewable and sustainable resources: Challenges and innovations, Science. 362 (2018) 536-542. https://doi.org/10.1126/science.aat9072
[6] B.C. Mitra, Environment friendly composite materials: Biocomposites and green composites, Def. Sci. J. 64 (2014) 244-261. https://doi.org/10.14429/dsj.64.7323
[7] UNI EN 16575:2014, Bio-based products – Vocabulary.
[8] CEN/TR 16208:2011, Biobased products – Overview of standards.
[9] ISO 14021:2016, Environmental labels and declarations – Self-declared environmental claims (Type II environmental labelling).
[10] J. Yu, L.X.L. Chen, The greenhouse gas emissions and fossil energy requirement of bioplastics from cradle to gate of a biomass refinery, Environ. Sci. Technol. 42 (2008) 6961-6966. https://doi.org/10.1021/es7032235
[11] F.C. de Paula, C.B.C. de Paula, J. Contiero, Prospective biodegradable plastics from biomass conversion processes, in: Biofuels- State of development K. Biernat (Ed.), IntechOpen London, 2018, pp. 245-271. https://doi.org/10.5772/intechopen.75111
[12] K. M. Nampoothiri, N.R. Nair, R.P. Joh, An overview of the recent developments in polylactide (PLA) research, Bioresour. Technol. 101 (2010) 8493-8501. https://doi.org/10.1016/j.biortech.2010.05.092
[13] K. Hamada, M. Kaseemb, M. Ayyoobd, J. Joo, F. Deri, Polylactic acid blends: The future of green, light and tough, Prog. Polym. Sci. 85 (2018) 83-127. https://doi.org/10.1016/j.progpolymsci.2018.07.001
[14] T.R.K Reddy, H.J. Kim, J.W. Park, Renewable biocomposite properties and their applications, in: M. Poletto (Ed.), Composites from renewable and sustainable materials, InteTech, Croatia, 2016, pp. 177-197. https://doi.org/10.5772/65475
[15] R. Siakeng, M. Jawaid, H. Ariffin, S.M. Sapuan, M. Asim, N. Saba, Natural fiber reinforced polylactic acid composites: A Review, Polym. Compos. 40 (2019) 446-463. https://doi.org/10.1002/pc.24747
[16] P.K. Bajpai, I. Singh, J. Madaan, Development and characterization of PLA-based green composites: A review, J. Thermoplast. Compos. Mater. 27 (2014) 52-81. https://doi.org/10.1177/0892705712439571
[17] J. Sahari, S.M. Sapuan, Natural fibre reinforced biodegradable polymer composites, Rev. Adv. Mater. Sci. 30 (2011) 166-174.
[18] D.E. Perrin, J.P. English, Polycaprolactone, in: A.J. Domb, J. Kost, D.M. Wiseman (Eds.), Handbook of Biodegradable Polymers, HAP Australia, 1997, pp. 63-77.
[19] CEN/TR 15351:2006 Plastics – Guide for vocabulary in the field of degradable and biodegradable polymers and plastic items.
[20] S.K. Mary, P.K.S. Pillai, D.B. Amma, L.A. Pothen, S. Thomas, Aging and biodegradation of biocomposites, in: S. Thomas, D. Durand, C. Chassenieux, P. Jyotishkumar (Eds.), Handbook of biopolymer-based materials: from blends and composites to gels and complex network, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 777-799. https://doi.org/10.1002/9783527652457.ch26
[21] D. Jayanth, P.S. Kumar, G.C. Nayak, J.S. Kumar, S.K. Pal, R. Rajasekar, A Review on biodegradable polymeric materials striving towards the attainment of green environment, J. Polym. Environ. 26 (2018) 838-865. https://doi.org/10.1007/s10924-017-0985-6
[22] S. Jayavani, H. Deka, T.O. Varghese, S.K. Nayak, Recent development and future trends in coir fiber-reinforced green polymer composites: Review and evaluation, Polym. Compos. 37 (2016) 3296-3309. https://doi.org/10.1002/pc.23529
[23] R. Siakeng, M. Jawaid, H. Ariffin, S. M. Sapuan, M. Asim, N. Saba, Natural fiber reinforced polylactic acid composites: A review, Polym. Compos. 40 (2019) 446-463. https://doi.org/10.1002/pc.24747
[24] P. Tripathi, K. Yadav, Biodegradation of natural fiber and glass fiber polymer composite-A review, Int. Res. J. Eng. Tech. 4 (2017) 1224-1228.
[25] A. Valdés, A.C. Mellinas, M. Ramos, M.C. Garrigós, Alfonso Jiménez, Natural additives and agricultural wastes in biopolymer formulations for food packaging, Front. Chem. 2 (2014) 1-10. https://doi.org/10.3389/fchem.2014.00006
[26] G.M. Bohlmann, General characteristics, processability, industrial applications and market evolution of biodegradable polymers, in: C. Bastioli (Ed.), Handbook of Biodegradable Polymers, Rapra Tech. Ltd., Shawbury, UK, 2005, pp. 183-218.
[27] R.J. Müller, Biodegradability of polymers: Regulations and methods for testing, Biopolymers Online. 10 (2005) 365-391. https://doi.org/10.1002/3527600035.bpola012
[28] F. Degli Innocenti, Biodegradable and bio-based polymers for the environment, in F. Fava, P. Canepa (Eds.), Production of fuels, specialty chemicals and biobased products from agro-industrial wastes and surplus, INCA, Venice, 2007.
[29] J. Boivin, J.W. Costerton,Biodeterioration of materials, in: H.W. Rossmoore (Ed.), Biodeterioration and biodegradation 8, Elsevier Applied Science, 1991, pp. 53-62.
[30] A.A. Shah, F. Hasan, A. Hameed, S Ahmed, Biological degradation of plastics: A comprehensive review, Biotechnol. Adv. 26 (2008) 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005
[31] D.J. Kaplan, J.M. Mayer, D. Ball, J. McMassie, A.L. Allen, P. Stenhouse, Fundamentals of biodegradable polymers, in: C. Ching, D.L. Kaplan, E.L. Thomas (Eds.), Biodegradable polymers and packaging, Technomic Pub Co, Lancaster, 1993, pp. 1-42. https://doi.org/10.1016/0306-3747(93)90255-C
[32] S. Saponaro, E. Sezenna, F. DegliInnocenti, V. Mezzanotte, L. Bonomo, A screening model for fate and transport of biodegradable polyesters in soil, J. Environ. Manage. 88 (2008) 1078-1087. https://doi.org/10.1016/j.jenvman.2007.05.010
[33] P.W. Hill, J.F. Farrar, D.L. Jones, Decoupling of microbial glucose uptake and mineralization in soil, Soil Biol. Biochem. 40 (2008) 616-624. https://doi.org/10.1016/j.soilbio.2007.09.008
[34] E. Oburger, D.L. Jones, Substrate mineralization studies in the laboratory show different microbial C partitioning dynamics than in the field, Soil Biol. Biochem. 41 (2009) 1951-1956. https://doi.org/10.1016/j.soilbio.2009.06.020
[35] R.J. Müller, E. Marten, W.D. Deckwer, Structure-biodegradability relationship of polyesters, in: E. Chiellini, H. Gil, G. Braunegg, J. Burchert, P. Gatenholm, M. van der Zee (Eds.), Biorelated polymers – sustainable polymer science and technology, Springer – Verlag Berlin, 2001, pp. 303-311.
[36] P. Rizzarelli, C. Puglisi, G. Montaudo, Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polym. Degrad. Stab. 85 (2004) 855-863. https://doi.org/10.1016/j.polymdegradstab.2004.03.022
[37] M. Emadian, T.T. Onay, B. Demirel, Biodegradation of bioplastics in natural environments, Waste Manag. 59 (2017) 526-536. https://doi.org/10.1016/j.wasman.2016.10.006
[38] ASTM D5338:2015, Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions, incorporating thermophilic temperatures, ASTM International, West Conshohocken, PA, 2015
[39] ISO 14855-1:2005, Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions — Method by analysis of evolved carbon dioxide- Part 1: General method.
[40] ISO 14855-2:2018, Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions — Method by analysis of evolved carbon dioxide — Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test.
[41] G. Bellia, M. Tosin, G. Floridi, F. DegliInnocenti, Activated vermiculite, a solid bed for testing biodegradability under composting conditions, Polym. Degrad. Stab. 66 (1999) 65-79. https://doi.org/10.1016/S0141-3910(99)00053-1
[42] S. Guerrini, G. Borreani, H. Vooijs, Biodegradable materials in agriculture: case histories and perspectives, in: M. Malinconico (Ed.), Soil Degradable Bioplastics for a Sustainable Modern Agriculture, Springer Book, 2017, pp. 35-65. https://doi.org/10.1007/978-3-662-54130-2_3
[43] ISO 17556, Plastics—determination of the ultimate aerobic biodegradability in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved.
[44] ASTM D5988, Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in Soil, ASTM International, West Conshohocken, PA.
[45] D. Briassoulis, A. Mistriotis, Key parameters in testing biodegradation of bio-based materials in soil, Chemosphere. 207 (2018) 18-26. https://doi.org/10.1016/j.chemosphere.2018.05.024
[46] S. Chinaglia, M. Tosin, F. Degli Innocenti, Biodegradation rate of biodegradable plastics at molecular level, Polym. Degrad. Stab. 147 (2018) 237-244. https://doi.org/10.1016/j.polymdegradstab.2017.12.011
[47] M. Tosin, A. Pischedda, F. Degli Innocenti, Biodegradation kinetics in soil of a multi-constituent biodegradable plastic, Polym. Degrad. Stab. 166 (2019) 213-218. https://doi.org/10.1016/j.polymdegradstab.2019.05.034
[48] ISO 19679, Plastics- determination of aerobic biodegradation of non-floating plastic materials in a seawater/sediment interface — Method by analysis of evolved carbon dioxide.
[49] ISO 18830, Plastics — Determination of aerobic biodegradation of non-floating plastic materials in a seawater/sandy sediment interface — Method by measuring the oxygen demand in closed respirometer.
[50] ASTM D7991, Standard Test method for determining aerobic biodegradation of plastics buried in sandy marine sediment under controlled laboratory conditions, ASTM International, West Conshohocken, PA.
[51] F. DegliInnocenti, M. Tosin, C. Bastioli, Evaluation of the biodegradation of starch and cellulose under controlled composting conditions, J. Environ. Polym. Degrad. 6 (1998) 197-202. https://doi.org/10.1023/A:1021825715232
[52] V.K. Thakur, M.K. Thakur, Processing and characterization of natural cellulose fibers/thermoset polymer composites, Carbohydr. Polym. 109 (2014) 102-117. https://doi.org/10.1016/j.carbpol.2014.03.039
[53] S. Wang, A. Lu, L. Zhang, Recent advances in regenerated cellulose materials, Prog. Polym. Sci. 53 (2016) 169-206. https://doi.org/10.1016/j.progpolymsci.2015.07.003
[54] K.W. Tan, S.K. Heo, M.L. Foo, I.M.L Chew, C.K. Yoo, An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability, Sci. Total Environ. 650 (2019) 1309-1326. https://doi.org/10.1016/j.scitotenv.2018.08.402
[55] EN 13432:2000, Packaging – Requirements for packaging recoverable through composting and biodegradation – Test scheme and evaluation criteria for the final acceptance of packaging.
[56] Legislation 190, Official Journal of the European Communities. 44 (2001) 21-23.
[57] EN 14046, Packaging – Evaluation of the ultimate aerobic biodegradability of packaging materials under controlled composting conditions – Method by analysis of released carbon dioxide.
[58] EN 14045:2003, Packaging. Evaluation of the disintegration of packaging materials in practical oriented tests under defined composting conditions.
[59] ISO 18606:2013, Packaging and the environment – Organic recycling.
[60] ASTM D6400 Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities, ASTM International, West Conshohocken, PA.
[61] EN 17033:2018 Plastics – Biodegradable mulch films for use in agriculture and horticulture – Requirements and test methods.
[62] J.P. Eubeler, M. Bernhard, S. Zok, T.P. Knepper, Environmental biodegradation of synthetic polymers I. Test methodologies and procedures, Trends Anal. Chem. 28 (2009) 1057-1072. https://doi.org/10.1016/j.trac.2009.06.007
[63] P. Rizzarelli, S. Carroccio, Modern mass spectrometry in the characterization and degradation of biodegradable polymers, Anal. Chim. Acta. 808 (2014) 18-43. https://doi.org/10.1016/j.aca.2013.11.001
[64] P. Rizzarelli, S. Carroccio, Recent trends in the structural characterization and degradation of biodegradable polymers by modern mass spectrometry, in: C.C. Chu (Ed.), Biodegradable polymers volume 1: Advancement in biodegradation study and applications, NOVA Science Publisher Inc., 2015.
[65] K. Fukushima, D. Tabuani, C. Abbate, M. Arena, P. Rizzarelli, Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica, Eur. Polym. J. 47 (2011) 139-152. https://doi.org/10.1016/j.eurpolymj.2010.10.027
[66] P. Rizzarelli, M. Cirica, G. Pastorelli, C. Puglisi, G. Valenti, Aliphatic poly(ester amide)s from sebacic acid and aminoalcohols of different chain length: Synthesis, characterization and soil burial degradation, Polym. Degrad. Stab. 121 (2015) 90-99. https://doi.org/10.1016/j.polymdegradstab.2015.08.010
[67] E. Castro-Aguirre, R. Auras, S. Selke, M. Rubino, T. Marsh, Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions, Polym. Degrad. Stab. 137 (2017) 251-271. https://doi.org/10.1016/j.polymdegradstab.2017.01.017
[68] M. Siotto, L. Zoia, M. Tosin, F. DegliInnocenti, M. Orlandi, V. Mezzanotte, Monitoring biodegradation of poly(butylene sebacate) by gel permeation chromatography, 1H-NMR and 31P-NMR techniques, J. Environ. Manage. 116 (2013) 27-35. https://doi.org/10.1016/j.jenvman.2012.11.043
[69] V. Zhuikov, A. Bonartsev, D. Bagrov, A. Rusakov, A. Useinov, V. Myshkina, T. Mahina, K. Shaitan, G. Bonartseva, The changes in surface morphology and mechanical properties of poly(3-Hydroxybutyrate) and its copolymer films during in vitro degradation, Solid State Phenom. 258 (2017) 354-357. https://doi.org/10.4028/www.scientific.net/SSP.258.354
[70] H. Mittal, SB. Mishra, AK. Mishra, BS. Kaith, R. Jindal, Flocculation characteristics and biodegradation studies of gum ghatti based hydrogels, Int. J. Biol. Macromol. 58 (2013) 37-46. https://doi.org/10.1016/j.ijbiomac.2013.03.045
[71] W. Meier-Augenstein, Forensic isotope analysis, in: McGraw-Hill (Ed.), Yearbook of science & technology, McGraw-Hill, 2014, pp. 120
[72] Y. Suzuki, F. Akamatsu, R. Nakashita, T. Korenaga, A novel method to discriminate between pant- and petroleum-derived plastics by stable isotope analysis, Chem. Lett. 39 (2010) 998-999. https://doi.org/10.1246/cl.2010.998
[73] D. Berto, F. Rampazzo, C. Gion, S. Noventa, F. Ronchi, U. Traldi, G. Giorgi, A.M. Cicero, O. Giovanardi, Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS), Chemosphere. 176 (2017) 47-56. https://doi.org/10.1016/j.chemosphere.2017.02.090
[74] M.T. Zumstein, A. Schintlmeister, T.F. Nelson, R. Baumgartner, D. Woebken, M. Wagner, H.E. Kohler, K. McNeill, M. Sander, Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass, Science Advances. 4 (2018) 9024. https://doi.org/10.1126/sciadv.aas9024
[75] T. Ooya, Y. Sakata, H.W. Choi, T. Takeuchi, Reflectometric interference spectroscopy-based sensing for evaluating biodegradability of polymeric thin films, Acta Biomater. 38 (2016) 163-167. https://doi.org/10.1016/j.actbio.2016.04.022
[76] S. Muniyasamy, M.M. Reddy, M. Misra, A. Mohanty, Biodegradable green composites from bioethanol co-product and poly(butylene adipate-co-terephthalate), Ind. Crops Prod. 43 (2013) 812-819. https://doi.org/10.1016/j.indcrop.2012.08.031
[77] R. Pradhan, M. Misra, L. Erickson, A. Mohanty, Compostability and biodegradation study of PLA–wheat straw and PLA–soy straw based green composites in simulated composting bioreactor, Bioresour. Technol. 101 (2010) 8489-8491. https://doi.org/10.1016/j.biortech.2010.06.053
[78] M. Funabashi, F. Ninomiya, M. Kunioka, Biodegradability evaluation of polymers by ISO 14855-2, Int. J. Mol. Sci. 10 (2009) 3635-3654. https://doi.org/10.3390/ijms10083635
[79] P. Cinelli, M. Seggiani, N. Mallegni, V. Gigante, A. Lazzeri, Processability and degradability of PHA-Based composites in terrestrial environments, Int. J. Mol. Sci. 20 (2019) 284-297. https://doi.org/10.3390/ijms20020284
[80] E. Sun, G. Liao, Q. Zhang, P. Qu, G. Wu, Y. Xu, Cheng Yong, H. Huang, Green preparation of straw fiber reinforced hydrolyzed soy protein isolate/urea/formaldehyde composites for biocomposite flower pots application, Materials. 11 (2018)1695-1708. https://doi.org/10.3390/ma11091695
[81] L. Wei, S. Liang, A.G. McDonald, Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue, Ind. Crops Prod. 69 (2015) 91-103. https://doi.org/10.1016/j.indcrop.2015.02.011
[82] K.C. Batista, D.A.K. Silva, L.A.F. Coelho, S.H. Pezzin, A.P.T. Pezzin, Soil biodegradation of PHBV/peach palm particles biocomposites, J. Polym. Environ. 18 (2010) 346-354. https://doi.org/10.1007/s10924-010-0238-4
[83] S.N. Surip, W.N. Raihan, W. Jaafar, Comparison study of the bio-degradation property of polylactic acid (PLA) green composites reinforced by kenaffibers, Int. J. Tech. 6 (2018) 1205-1215. https://doi.org/10.14716/ijtech.v9i6.2357
[84] ASTM G160, Standard practice for evaluating microbial susceptibility of non metallic materials by laboratory soil burial, ASTM International, West Conshohocken, PA.
[85] ASTM D1435, Standard practice for outdoor weathering of plastics, ASTM International, West Conshohocken, PA.
[86] ASTM D5338-98, Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions, ASTM International, West Conshohocken, PA, 2003.
[87] ASTM D6868, Standard specification for labeling of end items that incorporate plastics and polymers as coatings or additives with paper and other substrates designed to be aerobically composted in municipal or industrial facilities, ASTM International, West Conshohocken, PA.
[88] F.V. Ferreira, L.S. Cividanes, R.F. Gouveia, L.M.F. Lona, An overview on properties and applications of Poly(butylene adipate-co-terephthalate)–PBAT based composites, Polym. Eng. Sci. 59(2019) 7-15. https://doi.org/10.1002/pen.24770
[89] ISO 20200, Plastics — Determination of the degree of disintegration of plastic materials under simulated composting conditions in a laboratory-scale test.
[90] E.L. Sánchez-Safont, J. González-Ausejo, J. Gámez-Pérez, J.M. Lagarón, L. Cabedo, Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/purified cellulose fiber composites by melt blending: characterization and degradation in composting conditions, J. Renew. Mater. 4 (2016) 123-132. https://doi.org/10.7569/JRM.2015.634127
[91] E. Lidón Sánchez-Safont, A. Arrillaga, J. Anakabe, J. Gamez-Perez, L. Cabedo, PHBV/TPU/cellulose compounds for compostable injection molded parts with improved thermal and mechanical performance, J. Appl. Polym. Sci. 136 (2019) 47257-47269. https://doi.org/10.1002/app.47257
[92] E.L. Sánchez-Safont, A. Arrillaga, J. Anakabe, L. Cabedo, J. Gamez-Perez, Toughness enhancement of PHBV/TPU/cellulose compounds with reactive additives for compostable injected parts in industrial applications, Int. J. Mol. Sci. 19 (2018) 2102-2121. https://doi.org/10.3390/ijms19072102
[93] C.S. Wu, Renewable resource-based composites of recycled natural fibers and maleatedpolylactide bioplastic: Characterization and biodegradability, Polym. Degrad. Stab. 94 (2009) 1076-1084. https://doi.org/10.1016/j.polymdegradstab.2009.04.002
[94] C.S. Wu, Characterization and biodegradability of polyester bioplastic-based green renewable composites from agricultural residues, Polym. Degrad. Stab. 97 (2012) 64-71.
[95] C.S. Wu, Preparation, characterization and biodegradability of crosslinked tea plant-fibre-reinforced polyhydroxyalkanoate composites, Polym. Degrad. Stab. 98 (2013) 1473-1480. https://doi.org/10.1016/j.polymdegradstab.2013.04.013
[96] C.S. Wu, H.T. Liao, The mechanical properties, biocompatibility and biodegradability of chestnut shell fibre and polyhydroxyalkanoate composites, Polym. Degrad. Stab. 99 (2014) 274-282. https://doi.org/10.1016/j.polymdegradstab.2013.10.019
[97] C.S. Wu, Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability, Polym. Degrad. Stab. 121 (2015) 51-59. https://doi.org/10.1016/j.polymdegradstab.2015.08.011
[98] C.S. Wu, H.T. Liao, Y.X. Cai, Characterisation, biodegradability and application of palm fibre reinforced polyhydroxyalkanoate composites, Polym. Degrad. Stab. 140(2017) 55-63. https://doi.org/10.1016/j.polymdegradstab.2017.04.016
[99] L. Joyyi, M.Z.A. Thirmizir, M.S. Salim, L. Han, P. Murugan, K. Kasuya, F.H.J. Maurer, M.I.Z. Arifin, K. Sudesh, Composite properties and biodegradation of biologically recovered P(3HB-co-3HHx) reinforced with short kenaffibers, Polym. Degrad. Stab. 137 (2017) 100-108. https://doi.org/10.1016/j.polymdegradstab.2017.01.004
[100] M.N. Prabhakar, J. Song, Fabrication and characterisation of starch/chitosan/flax fabric green flame-retardant composites, Int. J. Biol. Macromol. 119 (2018) 1335-1343. https://doi.org/10.1016/j.ijbiomac.2018.07.006
[101] T. Bayerl, M. Geith, A.A. Somashekar, D. Bhattacharyy, Influence of fibre architecture on the biodegradability of FLAX/PLA composites, Int. Biodeterior. Biodegradation 96 (2014) 18-25 https://doi.org/10.1016/j.ibiod.2014.08.005
[102] Z.N. Terzopoulou, G.Z. Papageorgiou, E. Papadopoulou, E. Athanassiadou, E. Alexopoulou, D.N. Bikiaris, Green composites prepared from aliphatic polyesters and bastfibers, Ind. Crops Prod. 68 (2015) 60-79. https://doi.org/10.1016/j.indcrop.2014.08.034
[103] M. Oliveira, C. Mota, A.S. Abreu, J.M. Nobrega, Development of a green material for horticulture, J. Polym. Eng. 35 (2014) 1-6. https://doi.org/10.1515/polyeng-2014-0262
[104] J.S. Won, J.E. Lee, D.Y. Jin, S.G. Lee, Mechanical properties and biodegradability of the kenaf/soy protein isolate-PVA biocomposites, Int. J. Polym. Sci. 2015 (2015) 1-11. https://doi.org/10.1155/2015/860617
[105] D. Hammiche, A. Boukerrou, B. Azzeddine, N. Guermazi, T. Budtova, Characterization of polylactic acid green composites and its biodegradation in a bacterial environment, Int. J. Polym. Anal. Ch. 24 (2019) 236-244. https://doi.org/10.1080/1023666X.2019.1567083
[106] M. Akonda, S. Alimuzzaman, D.U. Shah, A.N.M. Masudur Rahman, Physico-mechanical, thermal and biodegradation performance of random flax/polylactic acid and unidirectional flax/polylactic acid biocomposites, Fibers. 6 (2018) 98-116. https://doi.org/10.3390/fib6040098
[107] H. Ibrahim, S. Mehanny, L. Darwish, M. Farag, A comparative study on the mechanical and biodegradation characteristics of starch-based composites reinforced with different lignocellulosicfibers, J. Polym. Environ. 26 (2018) 2434-2447. https://doi.org/10.1007/s10924-017-1143-x
[108] J.R.N. de Macedo, D.J. dos Santos, D. dos Santos Rosa, Poly(lactic acid)–thermoplastic starch–cotton composites: Starch-compatibilizing effects and composite biodegradability, J. Appl. Polym. Sci. 136 (2019) 47490-47499. https://doi.org/10.1002/app.47490
[109] H.M. Nakhoda, Y. Dahman, Mechanical properties and biodegradability of porous polyurethanes reinforced with green nanofibers for applications in tissue engineering, Polym. Bull. 73 (2016) 2039-2055. https://doi.org/10.1007/s00289-015-1592-0
[110] Z.N. Terzopoulou, G.Z. Papageorgiou, E. Papadopoulou, E. Athanassiadou, M. Reinders, D.N. Bikiaris, Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives, Polym. Compos. 37 (2016) 407-421. https://doi.org/10.1002/pc.23194
[111] L. Xie, H. Xu, Z.P. Wang, X. J. Li, J.B. Chen, Z.J. Zhang, H.M. Yin, G.J. Zhong, J. Lei, Z.M. Li, Toward faster degradation for natural fiber reinforced poly(lactic acid) biocomposites by enhancing the hydrolysis-induced surface erosion, J. Polym. Res. 21(2014) 357-371. https://doi.org/10.1007/s10965-014-0357-z
[112] D.K. Debeli, Z. Qin, J. Guo, Study on the pre-treatment, physical and chemical properties of ramie fibers reinforced poly (lactic acid) (PLA) biocomposite, J. Nat. Fibers. 15 (2018) 596-610. https://doi.org/10.1080/15440478.2017.1349711
[113] H.L. Boudjema, H. Bendaikha, Composite materials derived from biodegradable starch polymer and atriplexhalimusfibers, e-Polymers. 15 (2015) 419-426. https://doi.org/10.1515/epoly-2015-0118
[114] M. Seggiani, P. Cinelli, N. Mallegni, E. Balestri, M. Puccini, S. Vitolo, C. Lardicci, A. Lazzeri, New bio-composites based on polyhydroxyalkanoates and Posidoniaoceanica fibres for applications in a marine environment, Materials. 10 (2017) 326-338. https://doi.org/10.3390/ma10040326
[115] H.A. Kratsch, J.A. Schrader, K.G. McCabe, G. Srinivasan, D. Grewell, W.R. Graves, Performance and biodegradation in soil of novel horticulture containers made from bioplastics and biocomposites, Horttechnology. 15 (2015) 119-131. https://doi.org/10.21273/HORTTECH.25.1.119
[116] C.S. Wu, Preparation and characterizations of polycaprolactone/green coconut fiber composites, J. Appl. Polym. Sci. 115 (2010) 948-956. https://doi.org/10.1002/app.30955
[117] C.S. Wu, Preparation and characterization of polyhydroxyalkanoate bioplastic-based green renewable composites from rice husk, J. Polym. Environ. 22 (2014) 384-392. https://doi.org/10.1007/s10924-014-0662-y
[118] C.S. Wu, Aliphatic polyester-based green renewable eco-composites from agricultural residues: Characterization and assessment of mechanical properties, J. Polym. Environ. 21(2013) 421-430. https://doi.org/10.1007/s10924-012-0515-5
[119] C.S. Wu, Enhanced interfacial adhesion and characterisation of recycled natural fibre-filled biodegradable green composites, J. Polym. Environ. 26 (2018) 2676-2685. https://doi.org/10.1007/s10924-017-1160-9
[120] C.S. Wu, Solar energy tube processing of lemon residues for use as fillers in polyester based green composites, Polym. Bull. 75 (2018) 5745-5761. https://doi.org/10.1007/s00289-018-2359-1
[121] M.N. Prabhakar, A.R. Shah, J. Song, Improved flame-retardant and tensile properties of thermoplastic starch/flax fabric green composites, Carbohydr. Polym. 168 (2017) 201-211. https://doi.org/10.1016/j.carbpol.2017.03.036
[122] M.N. Prabhakar, J. Song, Fabrication and characterisation of starch/chitosan/flax fabric green flame-retardant composites, Int. J. Biol. Macromol. 119 (2018) 1335-1343. https://doi.org/10.1016/j.ijbiomac.2018.07.006
[123] T. Bayerl, M. Geith, A.A. Somashekar, D. Bhattacharyy, Influence of fibre architecture on the biodegradability of FLAX/PLA composites, Int. Biodeterior. Biodegradation. 96 (2014) 18-25. https://doi.org/10.1016/j.ibiod.2014.08.005
[124] M.A Gunning, L.M Geever, J.A Killion, J.G Lyons, C.L Higginbotham, The effect of processing conditions for polylactic acid based fibre composites via twin-screw extrusion, J. Reinf. Plast. Compos. 33 (2014) 648-662. https://doi.org/10.1177/0731684413512225
[125] E. Abraham, P.A. Elbi, B. Deepa, P. Jyotishkukar, L.A. Pothen, S. Thomas, S.S. Narine, X-ray diffraction and biodegradation analysis of green nanocomposites of natural rubber/nanocellulose, Polym. Degrad. Stab. 97 (2012) 2378-2387. https://doi.org/10.1016/j.polymdegradstab.2012.07.028
[126] E. Abraham, M.S. Thomas, C. John, L.A. Pothen, O. Shoseyov, S. Thomas, Green nanocomposites of natural rubber/nanocellulose: Membrane transport, rheological and thermal degradation characterisations, Ind. Crops Prod. 51 (2013) 415-424. https://doi.org/10.1016/j.indcrop.2013.09.022
[127] Z. Yue-Hong, Z. Wu-Quan, G. Zhen-Hua, G. Ji-You, Effects of crosslinking on the mechanical properties and biodegradability of soybean protein-based composites, J. Appl. Polym. Sci. 132 (2015) 41387-41395. https://doi.org/10.1002/app.41387