Magnetic Nanomaterials for Electrocatalysis


Magnetic Nanomaterials for Electrocatalysis

V.N. Nikolić

Application of nanomaterials for electrocatalysts requires usage of low-cost and eco-friendly materials, characterized by high surface activity and stability. Due to low prices, high electrocatalytic activity, and eco-friendly behavior, transition metal-based nanocomposite materials are recognized as a potential replacement of precious metal electrocatalysts. The most straightforward way to improve properties of applied magnetic nanomaterials in electrocatalysts is to alter the synthesis approach, since it is known that variation of synthesis conditions enables tailoring of materials magnetic and catalytic properties. In this chapter is discussed the application of magnetic nanomaterials in hydrogen production and in biomedicine, since these areas nowadays attract the highest scientific attention and offer the most attractive future returns.

Magnetic Nanomaterials, Electrocatalysts, Synthesis, Structure

Published online 1/30/2020, 53 pages

Citation: V.N. Nikolić, Magnetic Nanomaterials for Electrocatalysis, Materials Research Proceedings, Vol. 66, pp 34-86, 2020


Part of the book on Magnetochemistry

[1] F.P. Bowden, E. Rideal, The electrolytic behaviour of thin films. Part I. Hydrogeneral, Proc. Roy. Soc. A 120 (1928) 59-79.
[2] S.H. Jordanov, P. Paunovic, O. Popovski, A. Dimitrov, D. Slavkov, Electrocataysts in the last 30 years – from precious metals to cheaper but sophisticated complex systems, Bull. Chem. Technol. Macedonia 23 (2004) 101–112.
[3] J.M. Leger, F. Hahn, Contribution of In-situ Infrared Reflectance Spectroscopy in the Study of Nanostructured Fuel Cell Electrodes, in: S.-G. Sun, P. A. Christensen, A. Wieckowski (Eds.), In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, E-Publishing Inc., New York, 2007, pp. 1-36.
[4] S. Blundell, Magnetism in Condensed Matter, Oxford University Press. Inc., New York, 2003.
[5] C. Kittel, Introduction to Solid State Physics, John Willey&Sons, New York, 1996.
[6] L.D. Leslie-Pelecky, R.D. Rieke, Magnetic properties of nanostructured materials, Chem. Mater. 8 (1996) 1770–1783.
[7] H. Zhong, C.A. Campos-Roldan, Y. Zhao, S. Zhang, Y. Feng, N. Alonso-Vante, Recent advances of cobalt-based electrocatalysts for oxygen electrode reactions and hydrogen evolution reaction, Catalysts 8 (2018) 1-43.
[8] A.D. Handoko, S. Deng, Y. Deng, A.F.W. Cheng, K.W. Chan, H.R. Tan, Y. Pan, E.S. Tok, C.H. Sow, B.S. Yeo, Enhanced activity of H2O2-treated copper(ii) oxide nanostructures for the electrochemical evolution of oxygen, Catal. Sci. Technol. 6 (2016) 269–274.
[9] E. Antolini, Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance, Appl. Catal. B 181 (2016) 298–313.
[10] L.M. Dai, Y.H. Xue, L.T. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction, Chem. Rev. 115 (2015) 4823–4892.
[11] B.I. Kharisov, O.V. Kharissova, H.V. Rasika Dias, U.O. Mendez, I.G. de la Fuente, Y. Pena, A.V. Dimas, Iron-based nanomaterials in the catalysis, in: N. Luis (Ed.), Advanced catalytic materials – Photocatalysis and other current trends, IntechOpen, London, 2016, pp. 1-29.
[12] J.H. Wang, W.Q. Liu, Z.C. Xing, A.M. Asiri, X.P. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting, Adv. Mater. 28 (2016) 215–230.
[13] W. Vielstich, A. Lamm, H.A. Gasteiger, Handbook of fuel cells: Fundamentals, technology, applications, John Willey&Sons, New York, 2003.
[14] T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Solar energy supply and storagefor the legacy and nonlegacy worlds, Chem. Rev. 110 (2010) 6474–6502.
[15] H.B. Gray, Powering the planet with solar fuel, Nat. Chem. 1 (2009) 1-7.
[16] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253–278.
[17] N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci.103 (2006) 15729–15735.
[18] Y.Y. Liang, Y.G. Li, H.L. Wang, H.J. Dai, Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis, J. Am. Chem. Soc. 135 (2013) 2013–2036.
[19] M.G. Walter, E.L. Warren, J. R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells, Chem. Rev. 110 (2010) 6446–6473.
[20] H.L. Wang, H.J. Dai, Strongly coupled inorganic–nanocarbon hybrid materials for energy storage, Chem. Soc. Rev. 42 (2013) 3088–3113.
[21] M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction, Nano Res. 9 (2016) 28-46.
[22] G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, The hydrogen economy, Phys. Today 57 (2004) 39–44.
[23] M.S. Dresselhaus, I.L. Thomas, Alternative energy technologies, Nature 414 (2001) 332–337.
[24] J.J. Spivey, Catalysis in the development of clean energy technologies, Catal. Today 100 (2005)171-176.
[25] P. Haussinger, R. Lohmuller, A.M. Watson, Hydrogen, in: F. Ullmann (Ed.), Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: Werlag GmbH& Co. KGaA, Berlin, 2002, pp. 281-304.
[26] M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy 38 (2013) 4901–4934.
[27] M. Gong, H.J. Dai, A mini review of nife-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res. 8 (2015) 23–39.
[28] J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catal. Today 139 (2009) 244–260.
[29] K. Zeng, D.K. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci. 36 (2010) 307–326.
[30] P. Millet, A. Godula-Jopek, Fundamentals of Water Electrolysis, in: A. Godula-Jopek (Ed.), Hydrogen Production: Electrolysis, Wiley-VCH: Verlag GmbH & Co. KGaA, Berlin, 2015, pp. 33-62.
[31] H. Schafer, S. Sasaf, L. Walder, K. Kuepper, S. Dinklage, J. Wollschlager, L. Schneider, M. Steinhart, J. Hardeged, D. Daum, Stainless steel made to rust: A robust water-splitting catalyst with benchmark characteristics, Energy Environ. Sci. 8 (2015) 2685-2697.
[32] D. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices, Chem. Rev. 115 (2015) 9869–9921.
[33] S.J. Trasatti, Electrocatalysis by oxides — Attempt at a unifying approach, J. Electroanal. Chem. 111 (1980) 125−131.
[34] Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions, J. Phys. Chem. Lett. 3 (2012) 399-404.
[35] F.M. Sapountzi, J.M. Gracia, C.J.Weststrate, H. Fredriksson, J.W. Niemantsverdriet, Electrocatalysis for the generation of hydrogen, oxygen and synthesis gas, Prog. Energy Combust. Sci. 58 (2017) 1-35.
[36] J. Xu, Y. Yang, Y.W. Li, Recent development in converting coal to clean fuels in China, Fuel 152 (2015) 122–30.
[37] Synthesis gas chemistry (Syngaschem), fundamental research projects, 2019 (accessed 05 March 2019).
[38] T. Lim, J.W. Niemantsverdriet, J. Gracia, Layered antiferromagnetic ordering in the most active perovskite catalysts for oxygen evolution reaction, ChemCatChem 8 (2016) 2968-2974.
[39] M.K. Masud, Md. N. Islam, Md. H. Haque, S. Tanaka, V. Gopalan, G. Alici, N.T. Nguyen, A.K. Lam, Md. S. A. Hossain, Y.Yamauchi, M.J.A. Shiddiky, Gold-loaded nanoporous superparamagnetic nanocubes for catalytic signal amplification in detecting miRNA, Chem. Commun. 53 (2017) 8231-8234.
[40] M.K. Masud, S. Yadav, Md. N. Islam, N.T. Nguyen, C. Salomon, R. Kline, H. R. Alamri, Z.A. Alothman, Y. Yamauchi, Md.S.A. Hossain, M.J.A. Shiddiky, Gold-loaded nanoporous ferric oxide nanocubes with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of autoantibody, Anal. Chem. 89 (2017) 11005-11013.
[41] J. Tang, D. Tang, Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: A review, Microchim. Acta 182 (2015) 2077-2089.
[42] C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E.G. Walsh, J.R. Morgan, Y.E. Chin, S. Sun, Au–Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes, Angew. Chem. Int. Ed. 47 (2008) 173 –176.
[43] L. Liu, D. Deng, W. Sun, X. Yang, S. Yang, S. He, electrochemical biosensors with electrocatalysts based on metallic nanomaterials as signal labels, Int. J. Electrochem. Sci. 13 (2018) 10496-10513.
[44] S. Lee, G.H. Lee, H.J. Lee, M.A. Dar, D.W. Kim, Fe-based hybrid electrocatalysts for nonaqueous lithium-oxygen batteries, Sci. Rep. 7 (2017) 1-9.
[45] Z. Zhang, J. Hao, W. Yang, B. Lu, J. Tang, Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction, Nanoscale 7 (2015) 4400-4408.
[46] A. Rinaldi, B. Mecheri, V. Garavaglia, S. Liococcia, P.D. Nardo, E. Traversa, Engineering materials and biology to boost performance of microbial fuel cells: A critical review, Energy Environ. Sci. 1 (2008) 417-429.
[47] G. Lu, Y. Zhu, L. Lu, K. Xu, H. Wang, Y. Jin, Z.J. Ren, Z. Liu, W. Zhang, Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells, J. Power Sources 315 (2016) 302-307.
[48] B. Seyyedi, Bio-inspired iron metal–carbon black based nano-electrocatalyst for the oxygen reduction reaction, Pigm. Resin Technol. 46 (2017) 267-275.
[49] M. Saruyama, S. Kim, T. Nishino, M. Sakamoto, M. Haruta, H. Kurata, S. Akiyama, T. Yamada, K. Domen, T. Teranishi, Phase-segregated NiPx@FePyOz core@shell nanoparticles: ready-to-use nanocatalysts for electro- and photo-catalytic water oxidation through in situ activation by structural transformation and spontaneous ligand removal, Chem. Sci. 9 (2018) 4830-4839.
[50] L. Yu, J. F. Yang, B. Y. Guan, Y. Lu, X.W. Lou, Hierarchical hollow nanoprisms based on ultrathin ni-fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution, Angew. Chem. Int. Ed. 57 (2018) 172-176.
[51] W. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou, T. Sasaki, A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water, ACS Nano 9 (2015) 1977-84.
[52] T. Shodiya, O. Schmidt, W. Peng, N. Hotz, Novel nano-scale Au/α-Fe2O3 catalyst for the preferential oxidation of CO in biofuel reformate gas, J. of Catalysis 300 (2013) 63-69.
[53] L. Ji, Z. Guo, T. Yan, H. Ma, B. Du, Y. Li, Q. Wei, Ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy using highly loaded palladium nanoparticles/carbon decorated magnetic microspheres as signal labels, Biosens. Bioelectron. 68 (2015) 757-762.
[54] T. Zheng, Q. Zhang, S. Feng, J.J. Zhu, Q. Wang, H. Wang, Robust nonenzymatic hybrid nanoelectrocatalysts for signal amplification toward ultrasensitive electrochemical cytosensing, J. Am. Chem. Soc. 136 (2014) 2288−2291.
[55] G.Y. Zhang, S.Y. Deng, W.R. Cai, S. Cosnier, X.J. Zhang, D. Shan, Magnetic zirconium hexacyanoferrate (ii) nanoparticle as tracingtag for electrochemical DNA assay, Anal. Chem. 87 (2015) 9093−9100.
[56] D. Wu, H. Fan, Y. Li, Y. Zhang, H. Liang, Q. Wei, Ultrasensitive electrochemical immunoassay for squamous cell carcinoma antigen using dumbbell-like Pt-Fe3O4 nanoparticles as signal amplification, Biosens. Bioelectron. 46 (2013) 91–96.
[57] H. Behret, H. Binder, G. Sandstede, Electrocatalytic oxygen reduction with thiospinels and other sulphidesof transition metals, Electrochim. Acta 20 (1975) 111–117.
[58] D. Baresel, W. Sarholz, P. Scharner, J. Schmitz, Transition Metal Chalcogenides as Oxygen Catalysts for Fuel Cells, Ber. Bunsen-Ges. 78 (1974) 608–618.
[59] R.A. Sidik, A.B. Anderson, Co9S8 as a catalyst for electroreduction of O2: Quantum Chemistry Predictions, J. Phys. Chem. B 110 (2006) 936–941.
[60] H.L. Wang, Y.Y. Liang, Y.G. Li, H.J. Dai, Co1-xS-Graphene Hybrid: A high-performance metal chalcogenide electrocatalyst for oxygen reduction, Angew. Chem. Int. Ed. Engl. 50 (2011) 10969–10972.
[61] X.D. Jia, S.J. Gao, T.Y. Liu, D.Q. Li, P.G.Y.J. Feng, Controllable synthesis and bi-functional electrocatalytic performance towards oxygen electrode reactions of Co3O4/N-RGO Composites, Electrochim. Acta 2626 (2017) 104–112.
[62] Y.J. Feng, N. Alonso-Vante, Structure phase transition and oxygen reduction activity in acidic medium ofcarbon-supported cobalt selenide nanoparticles, ECS Trans. 25 (2009) 167–173.
[63] Y.J. Feng, N. Alonso-Vante, Carbon-supported CoSe2 nanoparticles for oxygen reduction Reaction in Acid Medium, Fuel Cells 10 (2010) 77–83.
[64] G. Wu, H. T. Chung, M. Nelson, K. Artyushkova, K. L. More, C. M. Johnston, P. Zelenay, Graphene-enriched Co9S8-N-C non-precious metal catalyst for oxygen reduction in alkaline media, ECS Trans. 41 (2011) 1709–1717.
[65] R.D. Apostolova, E.M. Shembel, I. Talyosef, J. Grinblat, B. Markovsky, D. Aurbach, Study of electrolytic cobalt sulfide Co9S8 as an electrode material in lithium accumulator prototypes, Russ. J. Electrochem. 45 (2009) 311–319.
[66] C. Zhao, D.Q. Li, Y.J. Feng, Size-controlled hydrothermal synthesis and high electrocatalytic performance of CoS2 nanocatalysts as non-precious metal cathode materials for fuel cells, J. Mater. Chem. A1 (2013) 5741–5746.
[67] J.X. Wang, H. Inada, L.J. Wu, Y.M. Zhu, Y.M. Choi, P. Liu, W.P. Zhou, R.R. Adzic, Oxygen reduction onwell-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects, J. Am. Chem. Soc. 131 (2009) 17298–17302.
[68] Y.C. Wang, T. Zhou, K. Jiang, P.M. Da, Z. Peng, J. Tang, B.A. Kong, W.B. Cai, Z.Q. Yang, G.F. Zheng, Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes, Adv. Energy Mater. 4 (2014) 1400696–1400702.
[69] L. Fenglei, Q. Wang, S.M. Choi, Y. Yin, Noble-metal-free electrocatalysts for oxygen evolution, Small 15 (2018) 1-9.
[70] Y.S. Xia, H.X. Dai, H.Y. Jiang, L. Zhang, Three-dimensional ordered mesoporous cobalt oxides: highly active catalysts for the oxidation of toluene and methanol, Catal. Commun. 11 (2010) 1171–1175.
[71] H.M. Li, X. Qian, C.L. Zhu, X.X. Jiang, L. Shao, L.X. Hou, Template synthesis of CoSe2/Co3Se4 nanotubes: Tuning of their crystal structures for photovoltaics and hydrogen evolution in alkaline medium, J. Mater. Chem. A 5 (2017) 4513–4526.
[72] P. Chen, W. Xia, F. Yang, A. Kostka, Interaction of cobalt nanoparticles with oxygen- and nitrogen-functionalized carbon nanotubes and impact on nitrobenzene hydrogenation catalysis, ACS Catal. 4 (2014) 15-19.
[73] Z. Haihong, R. Tian, X. Gong, Y. Feng, Advanced bifunctional electrocatalyst generated through cobalt phthalocyaninetetrasulfonate intercalated Ni2Fe-layered double hydroxides for a laminar flow unitized regenerative micro-cell, J. Power Sources 361 (2017) 21-30.
[74] M. Darayi, T. Csesznok, I. Sarusi, A. Kukovecs, I. Kiricsi, Beneficial effect of multi-wall carbon nanotubes on the graphitization of polyacrylonitrile (PAN) coating, Proc. Appl. Cer. 4 (2010) 59-62.
[75] X.F. Dai, J.L. Qiao, X.J. Zhou, J.J. Shi, P. Xu, L. Zhang, J.J. Zhang, Effects of heat-treatment and pyridine addition on the catalytic activity of carbon-supported cobalt-phthalocyanine for oxygen reduction reaction in alkaline electrolyte, Int. J. Electrochem. Sci. 8 (2013) 3160–3175.
[76] S. Zhao, B. Rasimick, W. Mustain, H. Xu, Highly Durable and Active Co3O4 Nanocrystals Supported on Carbon Nanotubes as Bifunctional Electrocatalysts in Alkaline Media, Appl. Catal. B 203 (2017) 138–145.
[77] S.Y. Liu, L. J. Li, H.S. Ahn, A. Manthiram, Delineating the roles of Co3O4 and N-doped carbon nanoweb (CNW) in Bifunctional Co3O4/CNW catalysts for oxygen reduction and oxygen evolution reactions, J. Mater. Chem. A 3(2015) 11615–11623.
[78] Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Chen, G.M. Zhou, F. Li, H.M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance, ACS Nano 4 (2010) 3187–3194.
[79] N.P. Subramanian, S. P. Kumaraguru, H. Colon-Mercado, H. Kim, B.N. Popov, T. Black, D.A. Chen, Studies on Co-based catalysts supported on modified carbon substrates for PEMFC cathodes, J. Power Sources 157 (2006) 56–63.
[80] M. Khan, M.N. Tahir, S. F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-Warthan, W. Tremel, Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications, J. Mater. Chem. A 3 (2015) 18753–18808.
[81] M. Kuang, Q. Wang, P. Han, G.F. Zheng, Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions, Adv. Energy Mater. 7 (2017) 1700193–1700200.
[82] Y. Zhu, Y. Wang, S. Liu, R. Guo, Z. Li, Facile and controllable synthesis at an ionic layer level of high performance NiFe-based nanofilm electrocatalysts for the oxygen evolution reaction in alkaline electrolyte, Electrochem. Commun. 86 (2018) 38-42.
[83] E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 135 (2013) 9267−9270.
[84] W. Li, D. Xiong, X. Gao, W.G. Song, F. Xia, L. Liu, Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution, Catal. Today 2 (2017) 122–129.
[85] A.E. Mauer, D.W. Kirk, S.J. Thorpe, The role of iron in the prevention of nickel electrode deactivation in alkaline electrolysis, Electrochim. Acta 52 (2007) 3505–3509.
[86] M.K. Bates, Q. Jia, N. Ramaswamy, R.J. Allen, S. Mukerjee, Composite Ni/NiO-Cr2O3 catalyst for alkaline hydrogen evolution reaction, J. Phys. Chem. C 119 (2015) 5467–5477.
[87] E.S. Davydova, S. Mukerjee, F. Jaouen, D.R. Dekel, Electrocatalysts for hydrogen oxidation reaction in alkaline electrolytes, ACS Catal. 8 (2018) 6665–6690.
[88] D.R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources 375 (2018)158–169.
[89] E.S. Davydova, J. Zaffran, K. Dhaka, M.C. Torokel, D.R. Dekel, Hydrogen oxidation on Ni-based electrocatalysts: The effect of metal doping, Catalysts 8 (2018) 1-19.
[90] S.L. Altmann, C.A. Coulson, W. Hume-Rothery, On the relation between bond hybrids and the metallic structures, Proc. Roy. Soc. A 240 (1957) 145-159.
[91] S.J. Thomson, G.A. Harvey, The electrical conductivity of supported metal catalysts, J. Catalysts, 22 (1971) 359-363.
[92] R.M. Cornell, U. Schwertmann, The iron oxides: Structure, properties, reactions, occurrence and uses, John Wiley & Sons, New York, 2000.
[93] V.N. Nikolic, Preparation and Characterization of Fe2O3-SiO2 Nanocomposite for Biomedical Application, in: Y. Maeda (Ed.), Hematite, IntechOpen, London, 2019, pp. 1-22.
[94] E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev. 35 (2006) 583–592.
[95] J.Y. Buzare, J.C. Fayet, The Fe3+ – O2- pair in the diamagnetic AMF3 perovskites: A sensitive probe for EPR investigations of structural phase changes, Solid State Commun. 21 (1977) 1097-1100.
[96] Z. Ali, I. Khan, I. Ahmad, M. Salman Khan, S.J. Asadabadi, Theoretical studies of the paramagnetic perovskites MTaO3 (M = Ca, Sr and Ba), Mater. Chem. Phys. 162 (2015) 308-315.
[97] Y. Su, Y. Sui, J.G. Cheng, J.S. Zhou, X. Wang, Y. Wang, J.B. Goodenough, Critical behavior of the ferromagnetic perovskites RTiO3 (R = Dy, Ho, Er, Tm, Yb) by magnetocaloric measurements, Phys. Rev. B 87, 195102 (2013).
[98] T. Tajiri, S. Maruoka, H. Deguchi, S. Takagi, M. Mito, Y. Ishida, S. Kohiki, Superparamagnetic behavior of La1-xSrxMnO3 nanoparticles in the MCM-41 molecular sieve, Phys. B Condens Matter. 329 (2003) 860–861.
[99] C.R. Sankar, P.A. Joy, Superspin glass behavior of a nonstoichiometric lanthanum manganite LaMnO3.13, Phys. Rev. B 72, 13 (2005): 132407.
[100] D.T.T. Nguyet, N.P. Duong, T. Satoh, L.N. Anh, T.D. Hien, Temperature-dependent magnetic properties of yttrium iron garnet nanoparticles prepared by citrate sol–gel, J. Alloys Compd. 541 (2012) 18–22.
[101] L. Hadidi, E. Davari, D.G. Ivery, J.G.C. Veinot, Microwave-assisted synthesis and prototype oxygen reduction electrocatalyst application of N-doped carbon-coated Fe3O4 nanorods, Nanotechnology 28 (2017) 1-10.
[102] T. Tatarchuk, M. Bououdina, J. Judith Vijaya, L.J. Kennedy, Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications. In: International Conference on Nanotechnology and Nanomaterials; Lviv, Ukraine, 2016.
[103] Chemistry, LibreTexts., 2019 (accessed 05 March 2019).
[104] C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. van de Streek, Mercury: Visualization and analysis of crystal structures, J. Appl. Cryst. 39 (2006) 453–457.
[105] ICSD Inorganic Crystals Structure Database, Release 2014/2, FIZ Karlsruhe, Eggenstein-Leopoldshafen, Germany.
[106] A.K. Kundu, Magnetic Perovskites: Synthesis, Structure & Physical Properties, Springer Nature, 2016.
[107] R.H. Mitchell, M.D. Welch, A.R. Chakhmouradian, Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition, Miner. Magazine 81 (2017) 411–461.
[108] Z. Yavari, M. Noroozifar, M. Khorasani-Motlagh, The improvement of methanol oxidation using nano-electrocatalysts, J. Exp. Nanosci. 11 (2016) 798-815.
[109] M. Risch, Perovskite electrocatalysts for the oxygen reduction reaction in alkaline media, Catalysts 7 (2017) 1-31.
[110] K. Miyazaki, K. Kawaita, T. Abe, T. Fukutsuma, Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities, J. Mater. Chem. 21 (2011) 1913-1919.
[111] W. Eerenstein, N.D. Mathur, J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (2006) 759-765.
[112] Y. Kiros, A.R. Paulraj, La0.1Ca0.9MnO3/Co3O4 for oxygen reduction and evolution reactions (ORER) in alkaline electrolyte, J. Solid State Electrochem. 22 (2018) 1697–1710.
[113] Garnet Group (X3Y2Z3O12)., 2019 (accessed 05 March 2019).
[114] University of Colorado, Mineral Structure Data, Garnet., 2019 (accessed 05 March 2019).
[115] Magnetism in Gemstones, Kirk Feral, 2011., 2019 (accessed 05 March 2019).
[116] Z.D. Gordon, T. Yang, G.B.G. Morgado, C.K. Chan, Preparation of Nano- and Microstructured Garnet Li7La3Zr2O12 Solid Electrolytes for Li-Ion Batteries via Cellulose Templating, ACS Sustainable Chem. Eng. 4 (2016) 6391−6398.
[117] J.K. Burdett, G.L. Price, S.L. Price, Role of the crystal-field theory in determining the structures of spinels, J. Am. Chem. Soc. 104 (1982) 92–95.
[118] L. Shen, P.E. Laibinis, T.A. Hatton, Bilayer surfactant stabilized magnetic fluids:  Synthesis and interactions at interfaces, Langmuir 15 (1999) 447–453.
[119] R. Singh, G. Thirupathi, Manganese-zinc spinel ferrite nanoparticles and ferrofluids, in: M. Seehra (Ed.), Magnetic spinels-synthesis, properties and applications, IntechOpen, London, 2017, pp. 140–159.
[120] N. Sanpo, C. Wen, C.C. Berndt, J. Wang, Antibacterial properties of spinel ferrite nanoparticles, in: A. Mendez-Vilas (Ed.), Microbial pathogens and strategies for combating them: Science, technology and education, formatex research centre, Badajoz, 2013, pp. 239–250.
[121] L. Zhang, Y. Wu, Sol–gel synthesized magnetic MnFe2O4 spinel ferrite nanoparticles as novel catalyst for oxidative degradation of methyl orange, J. Nanomater. 6 (2013) 1–6.
[122] F. Waag, B. Gokce, C. Kalapu, G. Bendt, S. Salamon, J. Landers, U. Hagemann, M. Heidelmann, S. Schulz, H. Wende, N. Hartmann, Adjusting the catalytic properties of cobalt ferrite nanoparticles by pulsed laser fragmentation in water with defined energy dose, Sci. Rep. 7 (2017) 13161.
[123] S. Joshi, V.B. Kamble, M. Kumar, A.M. Umarji, G. Srivastava, Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles, J. Alloys Compd. 654 (2016) 460–466.
[124] Q. Zafar, M.I. Azmer, A.G. Al-Sehemi, M.S. Al-Assiri, A. Kalam, K. Sulaiman, Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles, J. Nanopart. Res. 18(2016) 186-195.
[125] Y. Peng, Z. Wang, W. Liu, H. Zhang, W. Zuo, H. Tang, F. Chen, B. Wang, Size-and shape-dependent peroxidase-like catalytic activity of MnFe2O4 nanoparticles and their applications in highly efficient colorimetric detection of target cancer cells, Dalton Trans. 44 (2015) 12871–12877.
[126] S. Reddy, B.K. Swamy, U. Chandra, K.R. Mahathesha, T.V. Sathisha, H. Jayadevappa, Synthesis of MgFe2O4 nanoparticles and MgFe2O4 nanoparticles/CPE for electrochemical investigation of dopamine, Anal. Methods 3(2011) 2792–2796.
[127] E. Cespedes, J.M. Byrne, N. Farrow, S. Moise, V.S. Coker, M. Bencsik, J.R. Lloyd, N.D. Telling, Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications, Nanoscale 6 (2014) 12958–12970.
[128] H. Choi, S. Lee, T. Kouh, S.J. Kim, C.S. Kim, E. Hahn, Synthesis and characterization of Co-Zn ferrite nanoparticles for application to magnetic hyperthermia, J. Korean Phys. Soc.70 (2017) 89–92.
[129] C. Shu, H. Qiao, Tuning magnetic properties of magnetic recording media cobalt ferrite nano-particles by co-precipitation method. In: Symposium on Photonics and Optoelectronics; Wuhan, China. 2009.
[130] A. Samavati, A.F. Ismail, Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method, Particuology 30 (2017) 158–163.
[131] A.H. Ashour, A.I. El-Batal, M.I.A. Abdel Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M.M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique, Particuology 40 (2018) 141-151.
[132] A.S. Khader, M.S. Shariff, F. Nayeem, J. Basavaraja, H. Mandanakumara, M.S. Thyagaraj, Structural and dielectric properties of Ni2+ doped Chromium Ferrite by Solution Combustion method, JCPS 9 (2016) 993-997.
[133] R. Pandu, CrFe2O4-BiFeO3 perovskite multiferroic nanocomposites – A review, Mat. Sci. Res. India 11 (2014) 128-145.
[134] Z. Shahnavaz, F. Lorestani, W.P. Meng, Y. Alias, Core-shell–CuFe2O4/PPy nanocomposite enzyme-free sensor for detection of glucose, J Solid State Electrochem. 19 (2015) 1223–1233.
[135] A. Benvidi, M.T. Nafar, S. Jahanbani, M.D. Tezerjani, M. Rezaeinsaab, S. Dalirnasab, Developing an electrochemical sensor based on a carbon paste electrode modified with nano-composite of reduced graphene oxide and CuFe2O4 nanoparticles for determination of hydrogen peroxide, Mater. Sci. Eng. C 75 (2017) 1435-1447.
[136] S. Tao, F. Gao, X. Liu, O.T. Sorensen, Preparation and gas-sensing properties of CuFe2O4 at reduced temperature, Mater. Sci. Eng. B 77 (2000) 172-176.
[137] J.A. Rodriguez, P. Liu, J. Hrbek, J. Evans, M. Perez, Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(0001): intrinsic activity and importance of support interactions, AngewChemInt Ed Engl. 46 (2007) 1329-32.
[138] C.T. Campbell, B.E. Koel, H2S/Cu(111): A model study of sulfur poisoning of water-gas shift catalysts, Surf. Sci.186 (1987) 393-398.
[139] A.A. Gokhale, J.A. Dumesic, M. Mavrikakis, On the mechanism of low-temperature water gas shift reaction on copper, J. Am. Chem. Soc. 130 (2008) 1402-1414.
[140] M. Estrella, L. Barrio, G. Zhou, X. Wang, Q. Wang, W. Wen, J.C. Hanson, A.I. Frenkel, J.A. Rodriguez, Characterization of CuFe2O4 and Cu/Fe3O4 Water-Gas Shift Catalysts, J. Phys. Chem. C 113 (2009) 14411–14417.
[141] M.A. Ansari, A. Baykal, S. Asiri, S. Rehman, Synthesis and characterization of antibacterial activity of spinelchromium-substituted copper ferrite nanoparticles for biomedical application, JIOPM 28 (2018) 2316–2327.
[142] S.A. Morrison, C.L. Cahill, E.E. Carpenter, S. Calvin, V.G. Harris, Preparation and characterization of MnZn–ferrite nanoparticlesusing reverse micelles, J. Appl. Phys. 93 (2003) 7489–7491.
[143] S.G. Ali, M.A. Ansari, H.M. Khan, M. Jalal, A.A. Mahdi, S.S. Cameotra, Antibacterial and antibiofilm potential of green synthesized silver nanoparticles against imipenem resistant clinical isolates of P. aeruginosa, BioNanoSci. 8 (2018) 544–553.
[144] J.N. Payne, H.K. Waghwani, M.G. Connor, W. Hamilton, S. Tockstein, H. Moolani, F. Chavda, V. Badwaik, M.B. Lawrenz, R. Dakshinamurthy, Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity, Front. Microbiol. 7 (2016) 607-617.
[145] R. Ding, L. Lv, L. Qi, M. Jia, H. Wang, A facile hard-templating synthesis of mesoporous spinel CoFe2O4 nanostructures as promising electrocatalysts for the H2O2 reduction reaction, RSC Adv. 4 (2014) 1754-1760.
[146] S. Liu, W. Bian, Z. Yang, J. Tian, C. Jin, M. Shen, Z. Zhou, R. Yang, A facile synthesis of CoFe2O4/biocarbon nanocomposites as efficient bi-functional electrocatalysts for the oxygen reduction and oxygen evolution reaction, J. Mater. Chem. A 2 (2014) 18012-18019.
[147] J. Yin, L. Shen, Y. Li, M. Lu, H. Sun, P. Xia, CoFe2O4 nanoparticles as efficient bifunctional catalysts applied in Zn-air battery, J. Mater. Res. 33 (2018) 590-600.
[148] A.M. Abu-Dief, I. F. Nassar, W. H. Elsayed, Magnetic NiFe2O4 nanoparticles: efficient, heterogeneous and reusable catalyst for synthesis of acetylferrocene chalcones and their anti-tumor activity, Appl. Organometal. Chem. 30 (2016) 917–923.
[149] A.A. Ensafi, A.R. Allafchian, B. Rezaei, R. Mohammadzadeh, Characterization of carbon nanotubes decorated with NiFe2O4 magneticnanoparticles as a novel electrochemical sensor: Application for highly selective determination of sotalol using voltammetry, Mater. Sci. Eng. C 33 (2013) 202–208.
[150] M. Kiani, J. Zhang, J. Fan, H. Yang, G. Wang, J. Chen, R. Wang, Spinel nickel ferrite nanoparticles supported onnitrogen doped graphene as efficient electrocatalyst for oxygen reduction in fuel cells, Mater. Express 7 (2017) 261-273.
[151] Google Patents, G-C3N4/NiFe2O4 composite material, as well as preparation method and application thereof., 2019 (accessed 01 February 2019).
[152] J. Li, W. Tang, J. Huang, J. Jin, J. Ma, Polyethyleneimine decorated graphene oxide-supported Ni1-xFex bimetallic nanoparticles as efficient and robust electrocatalysts for hydrazine fuel cells, Catal. Sci. Technol. 3 (2013) 3155–3162.
[153] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (1958) 1339-1348.
[154] Z.-P. Deng, Y. Sun, Y.-C. Wang, J.-D. Gao, A NiFe Alloy Reduced on Graphene Oxide for Electrochemical Nonenzymatic Glucose Sensing, Sensors 18 (2018) 3972.
[155] Q. Huang, P. Zhou, H. Yang, L. Zhu, H. Wu, In situ generation of inverse spinel CoFe2O4 nanoparticles onto nitrogen doped activated carbon for an effective cathode electrocatalyst of microbial fuel cells, Chem. Eng. J. 325 (2017) 466–473.
[156] P. Li, R. Ma, Y. Zhou, Y. Chen, Q. Liu, G. Peng, Z. Liang, J. Wang, Spinel nickel ferrite nanoparticles strongly crosslinked with multiwalled carbon nanotubes as a biefficient electrocatalyst for oxygen reduction andoxygen evolution, RSC Adv. 5 (2015) 73834.
[157] M. Kiani, J. Zhang, J. Fan, H. Yang, G. Wang, J. Chen, R. Wang, Spinel nickel ferrite nanoparticles supported on nitrogen doped graphene as efficient electrocatalyst for oxygen reduction in fuel cells, Mater. Express 7 (2017) 261-273.
[158] X. Tang, A. Manthiram, J.B. Goodenough, Copper Ferrite Revisited, J Solid State Chem. 79 (1989) 250-262.
[159] N. Nanba, S. Kobayashi, Semiconductive Properties and Cation Distribution of Copper Ferrites Cu1-δFe2+δO4, Japan J. Appl. Phys. 17 (1978) 1819-1824.
[160] J.A. Rodriguez, P. Liu, J. Hrbek, J. Evans, M. Perez, Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(0001): Intrinsic activity and importance of support interactions, Angew. Chem. Int. Ed. 46 (2007) 1329-1338.
[161] J. B. Park, J. Graciani, J. Evans, D. Stacchiola, S. Ma, P. Liu, A. Nakamura, J. Fernandez-Sanz, J. Hrbek, J. A. Rodriguez, High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level, Proc. Natl.Acad. Sci. U.S.A. 106 (2009) 4975-4985.
[162] R. Khan, M. Habib, M. A. Gondal, A. Khalil, Z.U. Rehman, Z. Muhammad, Y.A. Halem, C.Wang, C.Q. Wu, L. Song, Facile synthesis of CuFe2O4–Fe2O3 composite for high-performance supercapacitor electrode applications, Mater. Res. Express 4 (2017) 1-7.
[163] H. Yang, J. Yan, Z. Lu, X. Cheng, Y. Tang, Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation, J. Alloys Compd. 476 (2009) 715–719.
[164] V.A. Drits, B.A. Sakharov, A.L. Salyn, A. Manceau, Structural model for ferrihydrite, Clay Miner. 28 (1993) 185-207.
[165] Y. Cudennec, A. Lecerf, The transformation of ferrihydrite into goethite or hematite, revisited, J. Solid State Chem. 179 (2006) 716–722.
[166] S. Asbrink, L.J. Norrby, A refinement of the crystal structure of copper (ii) oxide with a discussion of some exceptional E.s.d.’s, ActaCrystallogr. B 26 (1969) 319-328.
[167] A.B. Kuzmenko, D. van der Marel, P.J.M. van Benthum, E.A. Tishchenko, C. Presura, A.A. Bush, Infrared spectroscopic study of CuO: Signatures of strong spin-phonon interaction and structural distortion, Phys. Rev. B 63 (2000) 094303.
[168] A.M. Balagurov, I.A. Bobrikov, M.S. Maschenko, D. Sangaa, V.G. Simkin, Structural phase transition in CuFe2O4 spinel, Crystallogr. Rep. 58 (2013) 710-717.
[169] N.H. Li, S.L. Lo, C.Y. Hu, C.H. Hsieh, C.L. Chen, Stabilization and phase transformation of CuFe2O4 sintered from simulated copper-laden sludge, J. Hazard. Mater. 190 (2011) 597–603.
[170] M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A.Abdel-Aal, Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources, Adv. Powder Technol. 23 (2012) 315–323.
[171] Z.H. Xiao, S.H. Jin, J.H. Wang, C.H. Liang, Magnetism and phase transformation of Cu-Fe composite oxides prepared by the sol-gel route, Hyperfine Interact. 217 (2013) 151–156.
[172] S. Pongpadung, T. Kamwanna, V. Amornkitbamrung, Effect of fabrication method on the structural and the magnetic properties of copper ferrite, J. Korean Phys. Soc. 68 (2016) 697–704.
[173] A. Kyono, S.A. Gramsch, Y. Nakamoto, M. Sakata, M. Kato, T. Tamura, T. Yamanaka, High-pressure behavior of cuprospinel CuFe2O4: influence of the Jahn-Teller effect on the spinel structure, Am. Mineral. 100 (2015) 1752-1761.
[174] V.N. Nikolic, M.M. Vasic, D. Kisic, Influence of the Fe3+ cation on the formation mechanism and crystallite size of CuFe2O4 nanoparticles, 26th Conference of the Serbian Crystallographic Society; Srebrno Jezero, Serbia. 2019
[175] V.N. Nikolic, M.M. Vasic, D. Kisic, Observation of c-CuFe2O4 nanoparticles of the same crystallite size indifferent nanocomposite materials: The influence of Fe3+ cations, J. Solid State Chem. 275 (2019) 187-196.
[176] L. Lutterotti, Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction, Nucl. Instrum. Methods B 268 (2010) 334–340.
[177] A.S. Moskvin, N.N. Loshkareva, Y.P. Sukhorukov, M.A. Sidorov, A.A. Samokhvalov, Characteristic features of the electronic structure of copper oxide (CuO): Initiation of the polar configuration phase and middle-IR optical absorption, Zh. Eksp. Teor. Fiz.105 (1994) 967-993.
[178] J. Zhao, F.E. Huggins, Z. Feng, G.P. Huffman, Ferrihydrite: surface structure and its effects on phase transformation, Clays and Clay Minerals 42 (1994) 737-746.
[179] V.N. Nikolic, M.M. Milic, Evolution of CuFe2O4 and α-Fe2O3 structural properties initiated by thermal treatment. In: 25th Conference of the Serbian Crystallographic Society; Bajina Basta, Serbia. 2018
[180] V.N. Nikolic, M. Vasic, M.M. Milic, Observation of low- and high-temperature CuFe2O4 phase at 1100 °C: The influence of Fe3+ ions on CuFe2O4 structural transformation, Cer. Inter. 44 (2018) 21145-21152.