Magnetic Nanomaterials for Spintronics


Magnetic Nanomaterials for Spintronics

Prasun Banerjee, Adolfo Franco Jr, D. Baba Basha, K. Chandra Babu Naidu

Magnetic nanomaterials are known to be prominent materials for development of next level of spintronic devices. The different magnetic nanomaterials can find application in spintronics devices especially some dilute magnetic semiconductors (DMSs) such as GaP: Mn, CdGeP2: Mn, GaN: Mn, ZnO: Co, TiO2: Co and CeO2: Co are specially mentioned in this chapter. The 1D nanowire of GaP: Mn is having clear magnetic hysteresis loop at room temperature which indicates its ferromagnetic nature. Chalcopyrite CdGeP2: Mn is another important DMS with a band gap value of 1.72 eV and Curie temperature situated at 293K. The strong exchange coupling between the spin polarization states in Mn-doped GaN DMS makes a very high value of Curie temperature at 940K. On the other hand due to the spin-split band and large Fermi level at higher magnetic fields ZnO: Co DMS shows both positive and negative magnetoresistance with high Curie temperature. TiO2: Co NCs shows room temperature ferromagnetism properties due to the defect and domain structure. The room temperature magnetic hysteresis loop for the CeO2: Co NPs shows ferromagnetic nature with giant magnetic properties up to 6.8 Bohr magnetron. Hence in this chapter, we specifically discussed the developments of the spintronics devices by using the DMS magnetic nanomaterials.

Dilute Magnetic Semiconductor (DMS), Curie Temperature, Ferromagnetic, Magneto Resistance, Nanowire, Hysteresis Loop

Published online 1/30/2020, 19 pages

Citation: Prasun Banerjee, Adolfo Franco Jr, D. Baba Basha, K. Chandra Babu Naidu, Magnetic Nanomaterials for Spintronics, Materials Research Proceedings, Vol. 66, pp 323-341, 2020


Part of the book on Magnetochemistry

[1] CW. Deisch, Simple switching control method changes power converter into a current source, In 1978 IEEE Power Electronics Specialists Conference, (1978) pp. 300-306.
[2] J.F. Gregg, Spintronics: a growing science, Nat. Mater. 6 (2007) 798.
[3] G.L. Rikken, A new twist on spintronics, Science 331 (2011) 864-865.
[4] J Sinova, Ž. Igor, New moves of the spintronics tango, Nat. Mater. 11 (2012) 368.
[5] S.A. Wolf, Y.C. Almadena, M.T. Daryl, Spintronics—A retrospective and perspective, IBM J. Res. Development 50 (2006) 101-110.
[6] A. Fert, G.J. Marie, J. Henri, M. Richard, S. Pierre, The new era of spintronics, Europhysics news 34 (2003) 227-229.
[7] S.D. Sarma, Spintronics: A new class of device based on electron spin, rather than on charge, may yield the next generation of microelectronics, American Scientist 89 (2001) 516-523.
[8] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S.V. Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future, Science 294 (2001) 1488-1495.
[9] A. McLaughlin, W.K. Eng, G. Vaio, T. Wilson, S.M. Laughlin. Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes, J. Membrane Biology 76 (1983) 183-193.
[10] N.A. Benedek, J.F Craig. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling, Phys. Rev. Lett.106 (2011) 107204.
[11] G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, B.J.V. Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor, Phys. Rev. B 62 (2000) R4790.
[12] M. Johnson, R.H. Silsbee, Spin-injection experiment, Phys. Rev. B 37 (1988) 5326.
[13] M. Tran, H. Jaffrès, C. Deranlot, J.M. George, A. Fert, A. Miard, A. Lemaître, Enhancement of the spin accumulation at the interface between a spin-polarized tunnel junction and a semiconductor, Phys. Rev. Lett. 102 (2009) 036601.
[14] G Jeong, W Cho, S Ahn, H Jeong, G Koh, Y Hwang, and K Kim. “A 0.24-/spl mu/m 2.0-V 1T1MTJ 16-kb nonvolatile magnetoresistance RAM with self-reference sensing scheme.” IEEE Journal of solid-state circuits 38, no. 11 (2003): 1906-1910.
[15] J Schliemann, J. C Egues, D Loss, Nonballistic spin-field-effect transistor, Physical review letters 90, no. 14 (2003): 146801.
[16] R. Fiederling, M. Keim, G Reuscher, W. Ossau, G. Schmidt, A. Waag, L.W. Molenkamp. Injection and detection of a spin-polarized current in a light-emitting diode, Nature 402 (1999) 787.
[17] L Noodleman, E.R. Davidson, Ligand spin polarization and antiferromagnetic coupling in transition metal dimers, Chem. Phys. 109 (1986) 131-143.
[18] P A Grünberg, Nobel Lecture: From spin waves to giant magnetoresistance and beyond, Rev. Modern Phys. 80 (2008) 1531.
[19] W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Graphene spintronics, Nature Nanotechnol. 9 (2014) 794.
[20] K Sato, H.K. Yoshida, Material design of GaN-based ferromagnetic diluted magnetic semiconductors, Japanese J. Appl. Phys. 40 (2001) L485.
[21] J. Alaria, M. Bouloudenine, G. Schmerber, S. Colis, A. Dinia, P. Turek, M. Bernard. Pure paramagnetic behavior in Mn-doped ZnO semiconductors, J. Appl. Phys. 99 (2006) 08M118.
[22] A. Wolos, M. Palczewska, M. Zajac, J. Gosk, M. Kaminska, A. Twardowski, M. Bockowski, I. Grzegory, S. Porowski, Optical and magnetic properties of Mn in bulk GaN, Phys. Rev. B 69 (2004) 115210.
[23] G.A. Medvedkin, T. Ishibashi, T. Nishi, K. Sato, A new magnetic semiconductor Cd1− xMnxGeP2, Semiconductors 35 (2001) 291-294.
[24] A. Wolos, A. Wysmolek, M. Kaminska, A. Twardowski, M. Bockowski, I. Grzegory, S. Porowski, M. Potemski, Neutral Mn acceptor in bulk GaN in high magnetic fields, Phys. Rev. B 70 (2004) 245202.
[25] H.V.S. Pessoni, P. Banerjee, A. Franco, Colossal dielectric permittivity in Co-doped ZnO ceramics prepared by a pressure-less sintering method, Phys. Chem. Chem. Phys. 20 (2018) 28712-28719.
[26] R.P. Galhenage, H Yan, S.A. Tenney, N. Park, G. Henkelman, P. Albrecht, D.R. Mullins, D.A. Chen, Understanding the nucleation and growth of metals on TiO2: Co compared to Au, Ni, and Pt, J. Phys. Chem. C 117 (2013) 7191-7201.
[27] L.R. Shah, B. Ali, H. Zhu, W.G. Wang, Y.Q. Song, H.W. Zhang, S.I. Shah, J.Q. Xiao, Detailed study on the role of oxygen vacancies in structural, magnetic and transport behavior of magnetic insulator: Co–CeO2, J. Phys. Condensed Matter 21 (2009) 486004.
[28] H. Ohno, F. Matsukura, A Ferromagnetic III–V Semiconductor:(Ga, Mn)As, Solid State Commun.117(3) (2001) 179-186.
[29] D.S. Han, S.Y. Bae, H.W. Seo, K. Chang, Synthesis and magnetic properties of manganese-doped GaP nanowires, J. Phys. Chem. B, 109 (2005) 9311-9316.
[30] K. Sato, G.A. Medvedkin, T. Nishi, Y. Hasegawa, R. Misawa, K. Hirose, T. Ishibashi, Ferromagnetic phenomenon revealed in the chalcopyrite semiconductor CdGeP2:Mn, J. Appl. Phys. 89 (2001) 7027-7029.
[31] T. Sasaki, S. Sonoda, Y. Yamamoto, K.I. Suga, S. Shimizu, K. Kindo, H. Hori, Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN, J. Appl. Phys. 91 (2002) 7911-7913.
[32] W. Liang, B.D. Yuhas, P. Yang, Magnetotransport in Co-doped ZnO nanowires, Nano Lett. 9 (2009) 892-896.
[33] J.D. Bryan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Strong room-temperature ferromagnetism in Co2+-doped TiO2 made from colloidal nanocrystals, J. Am. Chem. Soc.126 (2004) 11640-11647.
[34] A. Tiwari, V.M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, A. Gupta, Ferromagnetism in Co doped CeO2: Observation of a giant magnetic moment with a high Curie temperature, Appl. Phys. Lett. 88 (2006) 142511.