Energy Resolved Imaging using the GP2 Detector: Progress in Instrumentation, Methods and Data Analysis

Energy Resolved Imaging using the GP2 Detector: Progress in Instrumentation, Methods and Data Analysis

D.E. Pooley, J.W.L. Lee, F.A. Akeroyd, O. Arnold, M. Hart, J.J. John, P.M. Kadletz, W. Kockelmann, T. Minniti, C. Moreton-Smith, M. Morgano, N.J. Rhodes, E.M. Schooneveld, I.Sedgwick, C. Vallance, R. Woracek

download PDF

Abstract. We report on the recent developments of the ‘GP2’ detector, highlighting a selection of energy resolved measurements and associated methodology. GP2 is a 100k pixel time-of-flight (ToF) neutron camera, which combines a gadolinium converter film and a CMOS (Complementary Metal Oxide Semiconductor) readout sensor. This paper describes an up-to-date specification of the detector and its variants, progress that has been made towards integration into the Imaging and Materials Science instrument (IMAT) and an independent review at the ESS test beamline, V20. Two ToF data reduction methods are detailed, namely wavelength dispersive contrast enhancement and ‘wavelength frame multiplication’ (WFM) reduction.

Keywords
Neutron, Energy Resolved, Wavelength Dispersive, Imaging, Tomography, CMOS, Gadolinium, Pixel, Spallation, ToF, Time of Flight

Published online 1/5/2020, 7 pages
Copyright © 2020 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: D.E. Pooley, J.W.L. Lee, F.A. Akeroyd, O. Arnold, M. Hart, J.J. John, P.M. Kadletz, W. Kockelmann, T. Minniti, C. Moreton-Smith, M. Morgano, N.J. Rhodes, E.M. Schooneveld, I.Sedgwick, C. Vallance, R. Woracek, Energy Resolved Imaging using the GP2 Detector: Progress in Instrumentation, Methods and Data Analysis, Materials Research Proceedings, Vol. 15, pp 35-41, 2020

DOI: https://doi.org/10.21741/9781644900574-6

The article was published as article 6 of the book Neutron Radiography

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] I. Sedgwick, A. Clark, J. Crooks, R. Turchetta, L. Hill, J. J. John, A. Nomerotski, R. Pisarczyk, M. Brouard, S. H. Gardiner, E. Halford, J. W. Lee, M. L. Lipciuc, C. Slater, C. Vallance, E. S. Wilman, B. Winter and W. H. Yuen, “PImMS: A self-triggered, 25ns resolution monolithic CMOS sensor for Time-of-Flight and Imaging Mass Spectrometry,” IEEE NEWCAS (2012). https://doi.org/10.1109/NEWCAS.2012.6329065
[2] D. E. Pooley, J. W. L. Lee, M. Brouard, J. J. John, W. Kockelmann, N. J. Rhodes, E. M. Schooneveld, I. Sedgwick, R. Turchetta and C. Vallance, “Development of the “GP2” Detector: Modification of the PImMS CMOS Sensor for Energy-Resolved Neutron Radiography,” IEEE TNS, 64 (2017) 2979. https://doi.org/10.1109/TNS.2017.2772040
[3] T. Minniti, K. Watanabe, G. Burca and D. E. Pooley, “Characterization of the new neutron imaging and materials science facility IMAT,” NIM A, 888 (2018) 184. https://doi.org/10.1016/j.nima.2018.01.037
[4] M. Strobl, M. Bulat and K. Habicht, “The wavelength frame multiplication chopper system for the ESS test beamline at the BER II reactor-A concept study of a fundamental ESS instrument principle.,” NIM A, 705 (2013) 74. https://doi.org/10.1016/j.nima.2012.11.190
[5] [Online]. Available: https://epics-controls.org
[6] [Online]. Available: http://www.ni.com/white-paper/5484
[7] [Online]. Available: http://epics.isis.stfc.ac.uk/doxygen/NetShrVar
[8] M. Könnecke, F. A. Akeroyd, H. J. Bernstein, A. S. Brewster, S. I. Campbell, B. Clausen, S. Cottrell, J. U. Hoffmann, P. R. Jemian, D. Mannicke, R. Osborn, P. F. Peterson, T. Richter, J. Suzuki, B. Watts, E. Wintersberger and J. Wuttke, “The NeXus data format,” J. Appl. Cryst,. 48 (2015) 301. https://doi.org/10.1107/S1600576714027575
[9] [Online]. Available: https://savu.readthedocs.io/en/latest/about
[10] R. Woracek, J. Santisteban, A. Fedrigo and M. Strobl, “Diffraction in neutron imaging-A review,” NIM A, 878 (2018) 141. https://doi.org/10.1016/j.nima.2017.07.040
[11] N. Kardjilov, I. Manke, R. Woracek, A. Hilger and J. Banhart, “Advances in neutron imaging,” Materials Today, 21 (2018) 652. https://doi.org/10.1016/j.mattod.2018.03.001
[12] R. Woracek, T. Hofmann, M. Bulat, M. Sales, K. Habicht, K. Andersen and M. Strobl, “The test beamline of the European Spallation Source – Instrumentation development and wavelength frame multiplication,” NIM A, 839 (2016) 102. https://doi.org/10.1016/j.nima.2016.09.034
[13] O. Arnold, J.C. Bilheux, J.M. Borreguero, A. Buts, S.I. Campbell, L. Chapon, M. Doucet, N. Draper, R. Ferraz Leal, M.A. Gigg, V.E. Lynch, A. Markvardsen, D.J. Mikkelson, R.L. Mikkelson, R. Miller, K. Palmen, P. Parker, G. Passos, T.G. Perring, P.F. Peterson, S. Ren, M.A. Reuter, A.T. Savici, J.W. Taylor, R.J. Taylor, R. Tolchenov, W. Zhou, J. Zikovsky, “Mantid—Data analysis and visualization package for neutron scattering and μ SR experiments”, NIM A, 764 (2014) 156. https://doi.org/10.1016/j.nima.2014.07.029