Wavelength-Resolved Neutron Imaging on IMAT

W. Kockelmann, T. Minniti, R. Ramadhan, R. Ziesche, D.E. Pooley, S.C. Capelli, D. Glaser, A.S. Tremsin

download PDF

Abstract. The IMAT project is now well into its commissioning phase, and a user programme for neutron imaging has started on the new instrument at ISIS TS2. The performance parameters for white-beam tomography and energy-dispersive neutron imaging had been determined earlier. Here we report on a further evaluation of the wavelength-resolving imaging options on IMAT, including selection of neutron wavelength bands using disk choppers as well as energy-dispersive Bragg edge imaging using time-resolving detectors. We review the instrument parameters of IMAT relevant for energy-resolved imaging, and present one example of residual strain imaging.

Neutron Imaging, Neutron Radiography, Wavelength-Resolved Imaging, Energy-Selective, Energy-Dispersive, Time of Flight, Bragg Edge

Published online 1/5/2020, 6 pages
Copyright © 2020 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: W. Kockelmann, T. Minniti, R. Ramadhan, R. Ziesche, D.E. Pooley, S.C. Capelli, D. Glaser, A.S. Tremsin, Wavelength-Resolved Neutron Imaging on IMAT, Materials Research Proceedings, Vol. 15, pp 29-34, 2020

DOI: https://doi.org/10.21741/9781644900574-5

The article was published as article 5 of the book Neutron Radiography

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] E.H. Lehmann, B. Schillinger, How the NEUWAVE workshop series has pushed neutron imaging developments, Neutron News 29 (2018) 25-31. https://doi.org/10.1080/10448632.2018.1445923
[2] R. Woracek, J.R. Santisteban, A. Fedrigo, M. Strobl, Diffraction in neutron imaging – a review, Nucl Instr Meth A 878 (2018) 141–158. https://doi.org/10.1016/j.nima.2017.07.040
[3] W. Kockelmann et al., Time-of-Flight neutron imaging on IMAT@ISIS: a new user facility for materials science, J. Imaging 4 (2018) 47. https://doi.org/10.3390/jimaging4030047
[4] N. Kardjilov, B. Schillinger, E. Steichele, Energy-selective neutron radiography and tomography at FRM, Applied Radiation and Isotopes 61 (2004) 455-460. https://doi.org/10.1016/j.apradiso.2004.03.070
[5] M. Schulz , P. Boni, E. Calzada, M. Muhlbauer, B. Schillinger, Energy-dependent neutron imaging with a double crystal monochromator at the ANTARES facility at FRM II, Nucl Instr Meth A 605 (2009) 33–35. https://doi.org/10.1016/j.nima.2009.01.123
[6] J.R. Santisteban, L. Edwards, A. Steuwer, P.J. Withers, Time-of-flight neutron transmission diffraction, J. Appl. Crystallogr. 34 (2001) 289–297. https://doi.org/10.1107/S0021889801003260
[7] W. Kockelmann, G. Frei, E. H. Lehmann, P. Vontobel, J. R. Santisteban, Energy-selective neutron transmission imaging at a pulsed source, Nucl Instr Meth A 578 (2007) 421-434. https://doi.org/10.1016/j.nima.2007.05.207
[8] A.S. Tremsin, J.V. Vallerga, J.B. McPhate, O.H.W. Siegmund, R. Raffanti, High resolution photon counting with MCP-Timepix quad parallel readout operating at > 1 KHz frame rates. IEEE Trans. Nucl. Sci. 60 (2013) 578–585. https://doi.org/10.1109/TNS.2012.2223714
[9] Y. Matsumoto, M. Segawa, T. Kai, T. Shinohara, T. Nakatani, K. Oikawa, K. Hiroi, Y.H. Su, H. Hayashida, J. D. Parker, S.Y. Zhang, Y. Kiyanagi, Recent progress of radiography and tomography at the energy-resolved neutron imaging system RADEN, Physics Procedia 88 (2017) 162-166. https://doi.org/10.1016/j.phpro.2017.06.022
[10] T. Minniti, K. Watanabe, G. Burca, D. Pooley, W. Kockelmann, Characterization of the new neutron imaging and materials science facility IMAT, Nucl Instr Meth A888 (2018) 184-195. https://doi.org/10.1016/j.nima.2018.01.037
[11] R.S. Ramadhan, W. Kockelmann, T. Minniti, B. Chen, D. Parfitt, M.E. Fitzpatrick, A.S. Tremsin, Characterisation and application of Bragg edge transmission imaging for strain measurement and crystallographic analysis on the IMAT beamline, J. Appl. Cryst 52 (2019) 351-368. https://doi.org/10.1107/S1600576719001730
[12] D.E. Pooley, J.W.L. Lee, M. Brouard, J.J. John, W. Kockelmann, N.J. Rhodes, E.M. Schooneveld, I. Sedgwick, R. Turchetta, C. Vallance, Development of the GP2 Detector: Modification of the PImMS CMOS Sensor for Energy-Resolved Neutron Radiography, IEEE TNS, 64 (2017) 2970-2981. https://doi.org/10.1109/TNS.2017.2772040
[13] T.E. McDonald Jr., T.O. Brun, T.N. Claytor, E.H. Farnum, G.L. Greene, C. Morris, Time-gated energy-selected cold neutron radiography, Nucl Instr Meth A 424 (1999) 235-241. https://doi.org/10.1016/S0168-9002(98)01252-2
[14] A.S. Tremsin, T.Y. Yau, W. Kockelmann, Non-destructive examination of loads in regular and self-locking spiralock® threads through energy resolved neutron imaging, Strain (2016). https://doi.org/10.1111/str.12201