Future Prospects and Challenges of Graphene-Based Supercapacitor

$28.50

Future Prospects and Challenges of Graphene-Based Supercapacitor

Paul Thomas, Nelson Pynadathu Rumjit, Chin Wei Lai, Mohd Rafie Bin Johan

According to the statement made by IUPAC (International Union of Pure and Applied Chemistry), graphene is distinguished as a carbon monolayer of the graphite structure. It can be described by analogy to a polycyclic aromatic hydrocarbon of quasi-infinite size. Over the past few years, graphene-based materials have gained immense attraction as next-generation material inherited with its better mechanical characteristics, excellent electrical conductivity and better thermal conductivity as contrasted with other similar materials. In the subsequent section, the new aspects of next-generation of supercapacitors with modified graphene materials including metal oxide/graphene composites, activated graphene, reduced graphene, doped graphene, and polymer/graphene composites will be reviewed and discussed. Moreover, advantages and drawbacks of these resultant composite materials applied in supercapacitor application are summarized in this chapter.

Keywords
Graphene, Supercapacitor, Electrical Conductivity, Thermal Conductivity, Mechanical Properties, Composite Materials

Published online 12/1/2020, 19 pages

Citation: Paul Thomas, Nelson Pynadathu Rumjit, Chin Wei Lai, Mohd Rafie Bin Johan, Future Prospects and Challenges of Graphene-Based Supercapacitor, Materials Research Foundations, Vol. 64, pp 257-275, 2020

DOI: https://doi.org/10.21741/9781644900550-9

Part of the book on Graphene as Energy Storage Material for Supercapacitors

References
[1] R.R. Salunkhe, Y.-H. Lee, K.H. Chang, J.M. Li, P. Simon, J. Tang, N.L. Torad, C.C. Hu, Y. Yamauchi, Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications, Chem. Eur. J. 20 (2014) 13838–13852. https://doi.org/10.1002/chem.201403649.
[2] Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes–A review, J. Materiomics 2 (2016) 37–54. https://doi.org/10.1016/J.JMAT.2016.01.001.
[3] M. Gocyla, M. Pisarek, M. Holdynski, M. Opallo, Electrochemical detection of graphene oxide, Electrochem. Commun. 96 (2018) 77-82. https://doi.org/10.1016/J.ELECOM.2018.10.004.
[4] M. Ye, Z. Zhang, Y. Zhao, L. Qu, Graphene platforms for smart energy generation and storage, Joule 2 (2018) 245–268. https://doi.org/10.1016/J.JOULE.2017.11.011.
[5] H. Zhang, H. Guo, A. Li, X. Chang, S. Liu, D. Liu, Y. Wang, F. Zhang, H. Yuan, High specific surface area porous graphene grids carbon as anode materials for sodium ion batteries, J. Energy Chem. 31 (2019) 159-166. https://doi.org/10.1016/J.JECHEM.2018.06.002.
[6] J. Park, Y.S. Cho, S.J. Sung, M. Byeon, S.J. Yang, C.R. Park, Characteristics tuning of graphene-oxide-based-graphene to various end-uses, Energy Storage Mater. 14 (2018) 8–21. https://doi.org/10.1016/J.ENSM.2018.02.013.
[7] C. (John) Zhang, V. Nicolosi, Graphene and MXene-based transparent conductive electrodes and supercapacitors, Energy Storage Mater. 16 (2019) 102–125. https://doi.org/10.1016/J.ENSM.2018.05.003.
[8] H.G. Kang, J. Jeong, S.B. Hong, G.Y. Lee, D.H. Kim, J.W. Kim, B.G. Choi, Scalable exfoliation and activation of graphite into porous graphene using microwaves for high–performance supercapacitors, J. Alloys Compd. 770 (2019) 458–465. https://doi.org/10.1016/J.JALLCOM.2018.08.042.
[9] S. Sheng, W. Liu, K. Zhu, K. Cheng, K. Ye, G. Wang, D. Cao, J. Yan, Fe3O4 nanospheres in situ decorated graphene as high-performance anode for asymmetric supercapacitor with impressive energy density, J. Colloid Interface Sci. 536 (2019) 235–244. https://doi.org/10.1016/J.JCIS.2018.10.060.
[10] F.C. Wu, R.L. Tseng, C.C. Hu, C.C. Wang, The capacitive characteristics of activated carbons—comparisons of the activation methods on the pore structure and effects of the pore structure and electrolyte on the capacitive performance, J. Power Sources 159 (2006) 1532–1542. https://doi.org/10.1016/J.JPOWSOUR.2005.12.023.
[11] Y. Li, M. van Zijll, S. Chiang, N. Pan, KOH modified graphene nanosheets for supercapacitor electrodes, J. Power Sources 196 (2011) 6003–6006. https://doi.org/10.1016/J.JPOWSOUR.2011.02.092.
[12] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett. 11 (2011) 2472–2477. https://doi.org/10.1021/nl2009058.
[13] X. Zhao, A. Wang, J. Yan, G. Sun, L. Sun, T. Zhang, Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons, Chem. Mater. 22 (2010) 5463–5473. https://doi.org/10.1021/cm101072z.
[14] X. Zhao, Q. Zhang, C.M. Chen, B. Zhang, S. Reiche, A. Wang, T. Zhang, R. Schlögl, D. Sheng Su, Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor, Nano Energy 1 (2012) 624–630. https://doi.org/10.1016/J.NANOEN.2012.04.003.
[15] S. Shiraishi, M. Kibe, T. Yokoyama, H. Kurihara, N. Patel, A. Oya, Y. Kaburagi, Y. Hishiyama, Electric double layer capacitance of multi-walled carbon nanotubes and B-doping effect, Appl. Phys. A 82 (2006) 585–591. https://doi.org/10.1007/s00339-005-3399-6.
[16] X. Zhai, Y. Song, J. Liu, P. Li, M. Zhong, C. Ma, H. Wang, Q. Guo, L. Zhi, In-situ preparation of boron-doped carbons with ordered mesopores and enhanced electrochemical properties in supercapacitors, J. Electrochem. Soc. 159 (2012) E177–E182. https://doi.org/10.1149/2.047212jes.
[17] T. Tomko, R. Rajagopalan, P. Aksoy, H.C. Foley, Synthesis of boron/nitrogen substituted carbons for aqueous asymmetric capacitors, Electrochim. Acta 56 (2011) 5369–5375. https://doi.org/10.1016/J.ELECTACTA.2011.03.112.
[18] P.N. Vishwakarma, S.V. Subramanyam, Hopping conduction in boron doped amorphous carbon films, J. Appl. Phys. 100 (2006) 113702. https://doi.org/10.1063/1.2372585.
[19] H. Konno, T. Ito, M. Ushiro, K. Fushimi, K. Azumi, High capacitance B/C/N composites for capacitor electrodes synthesized by a simple method, J. Power Sources 195 (2010) 1739–1746. https://doi.org/10.1016/J.JPOWSOUR.2009.09.072.
[20] H. Konno, T. Nakahashi, M. Inagaki, T. Sogabe, Nitrogen incorporation into boron-doped graphite and formation of B–N bonding, Carbon 37 (1999) 471–475. https://doi.org/10.1016/S0008-6223(98)00215-2.
[21] D. Zhong, H. Sano, Y. Uchiyama, K. Kobayashi, Effect of low-level boron doping on oxidation behavior of polyimide-derived carbon films, Carbon 38 (2000) 1199–1206. https://doi.org/10.1016/S0008-6223(99)00245-6.
[22] L.R. Radovic, M. Karra, K. Skokova, P.A. Thrower, The role of substitutional boron in carbon oxidation, Carbon 36 (1998) 1841–1854. https://doi.org/10.1016/S0008-6223(98)00156-0.
[23] X.W. and, L.R. Radovic, Ab initio molecular orbital study on the electronic structures and reactivity of boron-substituted carbon, J. Phys. Chem. A 108 (2004) 9180-9187 (2004). https://doi.org/10.1021/JP048212W.
[24] T. Kwon, H. Nishihara, H. Itoi, Q.-H. Yang, T. Kyotani, Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels, Langmuir 25 (2009) 11961–11968. https://doi.org/10.1021/la901318d.
[25] M. Wu, Y. Ren, N. Guo, S. Li, X. Sun, M. Tan, D. Wang, J. Zheng, N. Tsubaki, Hydrothermal co-doping of boron and phosphorus into porous carbons prepared from petroleum coke to improve oxidation resistance, Mater. Lett. 82 (2012) 124–126. https://doi.org/10.1016/J.MATLET.2012.05.080.
[26] D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V.K. Adamchuk, A.B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, D. V. Vyalikh, Nitrogen-doped graphene: efficient growth, structure, and electronic properties, Nano Lett. 11 (2011) 5401–5407. https://doi.org/10.1021/nl2031037.
[27] M. Rybin, A. Pereyaslavtsev, T. Vasilieva, V. Myasnikov, I. Sokolov, A. Pavlova, E. Obraztsova, A. Khomich, V. Ralchenko, E. Obraztsova, Efficient nitrogen doping of graphene by plasma treatment, Carbon 96 (2016) 196–202. https://doi.org/10.1016/J.CARBON.2015.09.056.
[28] H. Xu, L. Ma, Z. Jin, Nitrogen-doped graphene: Synthesis, characterizations and energy applications, J. Energy Chem. 27 (2018) 146–160. https://doi.org/10.1016/J.JECHEM.2017.12.006.
[29] R. Yadav, C.K. Dixit, Synthesis, characterization and prospective applications of nitrogen-doped graphene: A short review, J. Sci. Adv. Mater. Devices 2 (2017) 141–149. https://doi.org/10.1016/J.JSAMD.2017.05.007.
[30] B. Jiang, C. Tian, L. Wang, L. Sun, C. Chen, X. Nong, Y. Qiao, H. Fu, Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction, Appl. Surf. Sci. 258 (2012) 3438–3443. https://doi.org/10.1016/J.APSUSC.2011.11.091.
[31] Y.J. Kim, Y. Abe, T. Yanagiura, K.C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M.S. Dresselhaus, Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors, Carbon 45 (2007) 2116–2125. https://doi.org/10.1016/J.CARBON.2007.05.026.
[32] N.D. Kim, W. Kim, J.B. Joo, S. Oh, P. Kim, Y. Kim, J. Yi, Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation, J. Power Sources 180 (2008) 671–675. https://doi.org/10.1016/J.JPOWSOUR.2008.01.055.
[33] T.E. Rufford, D. Hulicova-Jurcakova, Z. Zhu, G.Q. Lu, Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors, Electrochem. Commun. 10 (2008) 1594–1597. https://doi.org/10.1016/J.ELECOM.2008.08.022.
[34] S. Liu, D. Lentz, C.C. Tzschucke, Conversion of pyridine N-oxides to tetrazolopyridines, J. Org. Chem. 79 (2014) 3249–3254. https://doi.org/10.1021/jo500231m.
[35] T. Liao, C. Sun, A. Du, Z. Sun, D. Hulicova-Jurcakova, S. Smith, Charge carrier exchange at chemically modified graphene edges: A density functional theory study, J. Mater. Chem. 22 (2012) 8321. https://doi.org/10.1039/c2jm30387f.
[36] R. Rajagopalan, A. Balakrishnan, Innovations in engineered porous materials for energy generation and storage applications, CRC Press, 2018.
[37] K.N. Wood, R. O’hayre, S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications, Energy Environ. Sci. 7 (2014) 1212-1249. https://doi.org/10.1039/c3ee44078h.
[38] L. Zheng, H. Zheng, D. Huo, F. Wu, L. Shao, P. Zheng, Y. Jiang, X. Zheng, X. Qiu, Y. Liu, Y. Zhang, N-doped graphene-based copper nanocomposite with ultralow electrical resistivity and high thermal conductivity, Sci. Rep. 8 (2018) 9248. https://doi.org/10.1038/s41598-018-27667-9.
[39] N.E. Derradji, M.L. Mahdjoubi, H. Belkhir, N. Mumumbila, B. Angleraud, P.Y. Tessier, Nitrogen effect on the electrical properties of CNx thin films deposited by reactive magnetron sputtering, Thin Solid Films 482 (2005) 258–263. https://doi.org/10.1016/J.TSF.2004.11.137.
[40] J. Biemolt, I.M. Denekamp, T.K. Slot, G. Rothenberg, D. Eisenberg, Boosting the supercapacitance of nitrogen-doped carbon by tuning surface functionalities, ChemSusChem 10 (2017) 4018–4024. https://doi.org/10.1002/cssc.201700902.
[41] M. An, C. Du, L. Du, Y. Sun, Y. Wang, C. Chen, G. Han, G. Yin, Y. Gao, Phosphorus-doped graphene support to enhance electrocatalysis of methanol oxidation reaction on platinum nanoparticles, Chem. Phys. Lett. 687 (2017) 1–8. https://doi.org/10.1016/J.CPLETT.2017.08.058.
[42] Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova-Jurcakova, Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors, Chem. Eur. J. 21 (2015) 80–85. https://doi.org/10.1002/chem.201404779.
[43] M.Y. Rekha, N. Mallik, C. Srivastava, First Report on High Entropy alloy nanoparticle decorated graphene, Sci. Rep. 8 (2018) 8737. https://doi.org/10.1038/s41598-018-27096-8.
[44] L. Sun, J. Liu, Z. Liu, T. Wang, H. Wang, Y. Li, Sulfur-doped mesoporous carbon via thermal reduction of CS2 by Mg for high-performance supercapacitor electrodes and Li-ion battery anodes, RSC Adv. 8 (2018) 19964-19970. https://doi.org/10.1039/c8ra01729h.
[45] B. Mensah, S.I. Kang, W. Wang, C. Nah, Effect of graphene on polar and nonpolar rubber matrices, Mech. Adv. Mater. Mod. Process 4 (2018) 1. https://doi.org/10.1186/s40759-017-0034-0.
[46] A.K. Farquhar, P.A. Brooksby, A.J. Downard, Controlled spacing of few-layer graphene sheets using molecular spacers: capacitance that scales with sheet number, ACS Appl. Nano Mater. 1 (2018) 11420-11429. https://doi.org/10.1021/acsanm.8b00280.
[47] W. Lv, F. Sun, D.-M. Tang, H.-T. Fang, C. Liu, Q.H. Yang, H.M. Cheng, A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance, J. Mater. Chem. 21 (2011) 9014-9019. https://doi.org/10.1039/c1jm10400d.
[48] J.Z. Wang, C. Zhong, D. Wexler, N.H. Idris, Z.-X. Wang, L.-Q. Chen, H.-K. Liu, Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries, Chem. Eur. J. 17 (2011) 661–667. https://doi.org/10.1002/chem.201001348.
[49] D. Chen, G. Ji, Y. Ma, J.Y. Lee, J. Lu, Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries, ACS Appl. Mater. Interfaces 3 (2011) 3078–3083. https://doi.org/10.1021/am200592r.
[50] Z.S. Wu, D.-W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.-M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high performance electrochemical capacitors, Adv. Funct. Mater. 20 (2010) 3595–3602. https://doi.org/10.1002/adfm.201001054.
[51] G. Wang, T. Liu, Y. Luo, Y. Zhao, Z. Ren, J. Bai, H. Wang, Preparation of Fe2O3/graphene composite and its electrochemical performance as an anode material for lithium ion batteries, J. Alloys Compd. 509 (2011) L216–L220. https://doi.org/10.1016/j.jallcom.2011.03.151.
[52] S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Graphene-based nanosheets with a sandwich structure, Angew. Chemie Int. Ed. 49 (2010) 4795–4799. https://doi.org/10.1002/anie.201001634.
[53] S. Yang, X. Feng, K. Müllen, Sandwich-Like, Graphene-based titania nanosheets with high surface area for fast lithium storage, Adv. Mater. 23 (2011) 3575–3579. https://doi.org/10.1002/adma.201101599.
[54] Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu, H.M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors, ACS Nano 4 (2010) 5835–5842. https://doi.org/10.1021/nn101754k.
[55] Y. Li, H. Yadegari, X. Li, M.N. Banis, R. Li, X. Sun, Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium–air batteries, Chem. Commun. 49 (2013) 11731. https://doi.org/10.1039/c3cc46606j.
[56] X.-H. Zhang, S.-M. Wang, J. Wu, X.-J. Liu, Electropolymerization of PoPD from aqueous solutions of sodium dodecyl benzene sulfonate at conducting glass electrode, J. Appl. Polym. Sci. 104 (2007) 1928–1932. https://doi.org/10.1002/app.25877.
[57] G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z. Bao, Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors, Nano Lett. 11 (2011) 2905–2911. https://doi.org/10.1021/nl2013828.
[58] A. Yu, H.W. Park, A. Davies, D.C. Higgins, Z. Chen, X. Xiao, Free-Standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries, J. Phys. Chem. Lett. 2 (2011) 1855–1860. https://doi.org/10.1021/jz200836h.
[59] C.X. Guo, M. Wang, T. Chen, X.W. Lou, C.M. Li, A Hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high-performance lithium ion batteries, Adv. Energy Mater. 1 (2011) 736–741. https://doi.org/10.1002/aenm.201100223.
[60] M. Zheng, X. Xiao, L. Li, P. Gu, X. Dai, H. Tang, Q. Hu, H. Xue, H. Pang, Hierarchically nanostructured transition metal oxides for supercapacitors, Sci. China Mater. 61 (2018) 185–209. https://doi.org/10.1007/s40843-017-9095-4.
[61] K.H. Chang, Y.-F. Lee, C.-C. Hu, C.-I. Chang, C.-L. Liu, Y.-L. Yang, A unique strategy for preparing single-phase unitary/binary oxides–graphene composites, Chem. Commun. 46 (2010) 7957. https://doi.org/10.1039/c0cc01805h.
[62] A.K. Mishra, S. Ramaprabhu, Functionalized graphene-based nanocomposites for supercapacitor application, J. Phys. Chem. C. 115 (2011) 14006–14013. https://doi.org/10.1021/jp201673e.
[63] W. Shi, J. Zhu, D.H. Sim, Y.Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H.H. Hng, Q. Yan, Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites, J. Mater. Chem. 21 (2011) 3422. https://doi.org/10.1039/c0jm03175e.
[64] S. Huang, G.-N. Zhu, C. Zhang, W.W. Tjiu, Y.-Y. Xia, T. Liu, Immobilization of Co–Al layered double hydroxides on graphene oxide nanosheets: Growth mechanism and supercapacitor studies, ACS Appl. Mater. Interfaces 4 (2012) 2242–2249. https://doi.org/10.1021/am300247x.
[65] X. Dong, L. Wang, D. Wang, C. Li, J. Jin, Layer-by-layer engineered Co–Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor, Langmuir 28 (2012) 293–298. https://doi.org/10.1021/la2038685.
[66] W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C.M. Li, T. Yu, Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes, Phys. Chem. Chem. Phys. 13 (2011) 14462-14465. https://doi.org/10.1039/c1cp21917k.
[67] X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection, ACS Nano 6 (2012) 3206–3213. https://doi.org/10.1021/nn300097q.
[68] G. Xu, P. Nie, H. Dou, B. Ding, L. Li, X. Zhang, Exploring metal organic frameworks for energy storage in batteries and supercapacitors, Mater. Today 20 (2017) 191–209. https://doi.org/10.1016/J.MATTOD.2016.10.003.
[69] D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites, Prog. Mater. Sci. 90 (2017) 75–127. https://doi.org/10.1016/J.PMATSCI.2017.07.004.
[70] Q. Xiao, X. Yi, B. Jiang, Z. Qin, J. Hu, Y. Jiang, H. Liu, B. Wang, D. Yi, In-situ synthesis of graphene on surface of copper powder by rotary CVD and its application in fabrication of reinforced Cu-matrix composites, Adv. Mater. Sci. 2 (2017). https://doi.org/10.15761/AMS.1000123.
[71] H.Y. Chiu, C.P. Cho, H.Y. Chiu, C.P. Cho, Mixed-Phase MnO2/N-containing graphene composites applied as electrode active materials for flexible asymmetric solid-state supercapacitors, Nanomaterials 8 (2018) 924. https://doi.org/10.3390/nano8110924.
[72] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Counter electrodes in dye-sensitized solar cells, Chem. Soc. Rev. 46 (2017) 5975–6023. https://doi.org/10.1039/C6CS00752J.
[73] Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films, ACS Nano 4 (2010) 1963–1970. https://doi.org/10.1021/nn1000035.
[74] D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode, ACS Nano 3 (2009) 1745–1752. https://doi.org/10.1021/nn900297m.
[75] H. Wang, J. Lin, Z.X. Shen, Polyaniline (PANi) based electrode materials for energy storage and conversion, J. Sci. Adv. Mater. Devices 1 (2016) 225–255. https://doi.org/10.1016/J.JSAMD.2016.08.001.
[76] B. Ma, X. Zhou, H. Bao, X. Li, G. Wang, Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors, J. Power Sources 215 (2012) 36–42. https://doi.org/10.1016/j.jpowsour.2012.04.083.
[77] K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater. 22 (2010) 1392–1401. https://doi.org/10.1021/cm902876u.
[78] W. Fan, C. Zhang, W.W. Tjiu, K.P. Pramoda, C. He, T. Liu, Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications, ACS Appl. Mater. Interfaces 5 (2013) 3382–3391. https://doi.org/10.1021/am4003827.
[79] F. Chen, P. Liu, Q. Zhao, Well-defined graphene/polyaniline flake composites for high performance supercapacitors, Electrochim. Acta 76 (2012) 62–68. https://doi.org/10.1016/J.ELECTACTA.2012.04.154.
[80] X. Lu, H. Dou, B. Gao, C. Yuan, S. Yang, L. Hao, L. Shen, X. Zhang, A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors, Electrochim. Acta 56 (2011) 5115–5121. https://doi.org/10.1016/J.ELECTACTA.2011.03.066.
[81] H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Graphene oxide doped polyaniline for supercapacitors, Electrochem. Commun. 11 (2009) 1158–1161. https://doi.org/10.1016/j.elecom.2009.03.036.
[82] D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, Y. Ma, Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors, J. Power Sources 196 (2011) 5990–5996. https://doi.org/10.1016/J.JPOWSOUR.2011.02.090.
[83] C. Zhu, J. Zhai, D. Wen, S. Dong, Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage, J. Mater. Chem. 22 (2012) 6300-6306. https://doi.org/10.1039/c2jm16699b.
[84] Y. Xu, Y. Wang, J. Liang, Y. Huang, Y. Ma, X. Wan, Y. Chen, A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency, Nano Res. 2 (2009) 343–348. https://doi.org/10.1007/s12274-009-9032-9.
[85] P.J. Hung, K.H. Chang, Y.F. Lee, C.C. Hu, K.M. Lin, Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows, Electrochim. Acta 55 (2010) 6015–6021. https://doi.org/10.1016/J.ELECTACTA.2010.05.058.
[86] B.G. Choi, S.-J. Chang, H.-W. Kang, C.P. Park, H.J. Kim, W.H. Hong, S. Lee, Y.S. Huh, High performance of a solid-state flexible asymmetric supercapacitor based on graphene films, Nanoscale 4 (2012) 4983-4988. https://doi.org/10.1039/c2nr30991b.
[87] H. Gao, F. Xiao, C.B. Ching, H. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2, ACS Appl. Mater. Interfaces 4 (2012) 2801–2810. https://doi.org/10.1021/am300455d.