Defect Engineered Graphene Materials for Supercapacitors


Defect Engineered Graphene Materials for Supercapacitors

Madhabi Devi and Ashok Kumar

Growing global demand for efficient and sustainable energy storage systems can be met through the development of electrochemical capacitors or supercapacitors owing to their high power performance, long cycle life and environmental benignity. Graphene and its derivatives have been widely used as electrode materials for supercapacitors because of their high specific surface area, low density, high electrical conductivity, thermal and mechanical stability. However, their re-aggregation reduces specific surface area and inhibits their electrochemical performance. Introducing defects in graphene has gained importance to address this issue, which can change its density of states, crystal symmetry and porosity enhancing electrode-electrolyte interfacial interaction. The present chapter deals with defect engineering on graphene-based materials for improved supercapacitor performance. Different defect generation and characterization techniques have been discussed in detail.

Supercapacitors, Graphene, Defect Engineering, Doping, Functionalization, Irradiation, Swift Heavy Ions

Published online 12/1/2019, 48 pages

Citation: Madhabi Devi and Ashok Kumar, Defect Engineered Graphene Materials for Supercapacitors, Materials Research Foundations, Vol. 64, pp 209-256, 2020


Part of the book on Graphene as Energy Storage Material for Supercapacitors

[1] D.G. Nocera, Living healthy on a dying planet, Chem. Soc. Rev. 38 (2009) 13-15.
[2] K. Kaygusu, Energy for sustainable development: A case of developing countries, Renew. Sust. Energy Rev. 16 (2012) 1116-1126.
[3] Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Science 332 (2011) 1537-1541.
[4] H. Wang, J. Deng, Y. Chen, F. Xu, Z. Wei, Y. Wang, Hydrothermal synthesis of manganese oxide encapsulated multiporous carbon nanofibers for supercapacitors, Nano Res. 9 (2016) 2672-2680.
[5] B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors, Mater. Chem. Phys. 170 (2016) 266-275.
[6] D. Sun, L. Jin, Y. Chen, J.R. Zhang, J.J. Zhu, Microwave‐assisted in situ synthesis of graphene/PEDOT hybrid and its application in supercapacitors, ChemPlusChem 78 (2013) 227-234.
[7] S.K. Simotwo, C. DelRe, V. Kalra, Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers, ACS Appl. Mater. Interfaces 8 (2016) 21261-21269.
[8] S. Pei, H.-M. Cheng, The reduction of graphene oxide, Carbon 50 (2012) 3210-3228.
[9] L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem. 20 (2010) 5983-5992.
[10] Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci. 8 (2015) 702-730.
[11] M. Vangari, T. Pryor, L. Jiang, Supercapacitors: review of materials and fabrication methods, J. Energy Eng. 139 (2012) 72-79.
[12] J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater. 4 (2014) 1300816.
[13] L. Dong, C. Xu, Y. Li, Z.-H. Huang, F. Kang, Q.-H. Yang, X. Zhao, Flexible electrodes and supercapacitors for wearable energy storage: a review by category, J. Mater. Chem. A 4 (2016) 4659-4685.
[14] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrogen Energy 34 (2009) 4889-4899.
[15] X. Li, B. Wei, Supercapacitors based on nanostructured carbon, Nano Energy 2 (2013) 159-173.
[16] A.K. Shukla, A. Banerjee, M.K. Ravikumar, A. Jalajakshi, Electrochemical capacitors: technical challenges and prognosis for future markets, Electrochim. Acta 84 (2012) 165-173.
[17] E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys. 9 (2007) 1774-1785.
[18] S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem. 22 (2012) 767-784.
[19] G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy 2 (2013) 213-234.
[20] B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, J. Power Sources 66 (1997) 1-14.
[21] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources 196 (2011) 1-12. DOI: 10.1016/j.jpowsour.2010.06.084
[22] J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, Supercapacitors: properties and applications, J. Energy Storage 17 (2018) 224-227.
[23] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484-7539.
[24] Z.S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu, H.-M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors, ACS Nano 4 (2010) 5835-5842.
[25] D.P. Dubal, O. Ayyad, V. Ruiz, P.G.-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries, Chem. Soc. Rev. 44 (2015) 1777-1790.
[26] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.
[27] X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41 (2012) 666-686.
[28] Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438 (2005) 201.
[29] D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458 (2009) 872.
[30] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706.
[31] K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nat. Mater. 8 (2009) 203.
[32] V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene, Nat. Nanotechnol. 4 (2009) 25.
[33] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano 4 (2010) 4806-4814.
[34] H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano 2 (2008) 463-470.
[35] H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.‐Y. Choi, Y.H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv. Funct. Mater. 19 (2009) 1987-1992.
[36] V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All‐organic vapor sensor using inkjet‐printed reduced graphene oxide, Angew. Chem. 122 (2010) 2200-2203.
[37] S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon 48 (2010) 4466-4474.
[38] M. Pumera, Electrochemistry of graphene, graphene oxide and other graphenoids, Electrochem. Commun. 36 (2013) 14-18.
[39] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498-3502.
[40] Y. Liu, Y. Ying, Y. Mao, L. Gu, Y. Wang, X. Peng, CuO nanosheets/rGO hybrid lamellar films with enhanced capacitance, Nanoscale 5 (2013) 9134-9140.
[41] J. Zhang, P. Chen, B.H. Oh, M.B. Chan-Park, High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly, Nanoscale 5 (2013) 9860-9866.
[42] Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.-M. Cheng, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy 1 (2012) 107-131.
[43] Y. Shao, H. Wang, Q. Zhang, Y. Li, High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes, J. Mater. Chem. C 1 (2013) 1245-1251.
[44] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228-240. DOI: 10.1039/B917103G
[45] Z.S. Wu, D.W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors, Adv. Funct. Mater. 20 (2010) 3595-3602.
[46] Q. Wang, J. Yan, Z. Fan, T. Wei, M. Zhang, X. Jing, Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors, J. Power Sources 247 (2014) 197-203.
[47] S. Ye, J. Feng, Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors, ACS Appl. Mater. Interfaces 6 (2014) 9671-9679.
[48] M.A. Memon, W. Bai, J. Sun, M. Imran, S.N. Phulpoto, S. Yan, Y. Huang, J. Geng, Conjunction of conducting polymer nanostructures with macroporous structured graphene thin films for high-performance flexible supercapacitors, ACS Appl. Mater. Interfaces 8 (2016) 11711-11719.
[49] Y. Haldorai, Y.S. Huh, Y.-K. Han, Surfactant-assisted hydrothermal synthesis of flower-like tin oxide/graphene composites for high-performance supercapacitors, New J. Chem. 39 (2015) 8505-8512.
[50] Y.-W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons, Nature 444 (2006) 347.
[51] D.W. Boukhvalov, M.I. Katsnelson, Chemical functionalization of graphene with defects, Nano Lett. 8 (2008) 4373-4379.
[52] J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, M. Batzill, An extended defect in graphene as a metallic wire, Nat. Nanotechnol. 5 (2010) 326.
[53] G. Luo, L. Liu, J. Zhang, G. Li, B. Wang, J. Zhao, Hole defects and nitrogen doping in graphene: implication for supercapacitor applications, ACS Appl. Mater. Interfaces 5 (2013) 11184-11193.
[54] G.F. Schneider, S.W. Kowalczyk, V.E. Calado, G. Pandraud, H.W. Zandbergen, L.M.K Vandersypen, C. Dekker, DNA translocation through graphene nanopores, Nano Lett. 10 (2010) 3163-3167.
[55] S. Blankenburg, M. Bieri, R. Fasel, K. Müllen, C.A. Pignedoli, D. Passerone, Porous graphene as an atmospheric nanofilter, Small 6 (2010) 2266-2271.
[56] A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M.H. Veen, J. Hofkens, M.M. Heyns, S.D. Gendt, B.F. Sels, Bandgap opening in oxygen plasma-treated graphene, Nanotechnology 21 (2010) 435203. DOI: 10.1088/0957-4484/21/43/435203
[57] J. Yan, J. Liu, Z. Fan, T. Wei, L. Zhang, High-performance supercapacitor electrodes based on highly corrugated graphene sheets, Carbon 50 (2012) 2179-2188.
[58] Z. Jin, J. Yao, C. Kittrell, J.M. Tour, Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets, ACS Nano 5 (2011) 4112-4117.
[59] L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Synthesis, structure, and properties of boron-and nitrogen-doped graphene, Adv. Mater. 21 (2009) 4726-4730.
[60] V. Thirumal, A. Pandurangan, D. Jayakumar, R. Ilangovan, Modified solar power: electrochemical synthesis of nitrogen doped few layer graphene for supercapacitor applications, J. Mater. Sci.: Mater. Electron. 27 (2016) 3410-3419.
[61] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett. 9 (2009) 1752-1758.
[62] Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Crumpled nitrogen‐doped graphene nanosheets with ultrahigh pore volume for high‐performance supercapacitor, Adv. Mater. 24 (2012) 5610-5616.
[63] Z.-Y. Sui, Y.-N. Meng, P.-W. Xiao, Z.-Q. Zhao, Z.-X. Wei, B.-H. Han, Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents, ACS Appl. Mater. Interfaces 7 (2015) 1431-1438.
[64] E. Haque, M.M. Islam, E. Pourazadi, M. Hassan, S.N. Faisal, A.K. Roy, K. Konstantinov, A.T. Harris, A.I. Minett, V.G. Gomes, Nitrogen doped graphene via thermal treatment of composite solid precursors as a high performance supercapacitor, RSC Adv. 5 (2015) 30679-30686.
[65] H. Jin, X. Wang, Z. Gu, Q. Fan, B. Luo, A facile method for preparing nitrogen-doped graphene and its application in supercapacitors, J. Power Sources 273 (2015) 1156-1162.
[66] D. Li, C. Yu, M. Wang, Y. Zhang, C. Pan, Synthesis of nitrogen doped graphene from graphene oxide within an ammonia flame for high performance supercapacitors, RSC Adv. 4 (2014) 55394-55399.
[67] M.P. Kumar, T. Kesavan, G. Kalita, P. Ragupathy, T.N. Narayanan, D.K. Pattanayak, On the large capacitance of nitrogen doped graphene derived by a facile route, RSC Adv. 4 (2014) 38689-38697.
[68] C. Li, Y. Hu, M. Yu, Z. Wang, W. Zhao, P. Liu, Y. Tong, X. Lu, Nitrogen doped graphene paper as a highly conductive, and light-weight substrate for flexible supercapacitors, RSC Adv. 4 (2014) 51878-51883.
[69] Y. Lu, Y. Huang, F. Zhang, L. Zhang, X. Yang, T. Zhang, K. Leng, M. Zhang, Y. Chen, Functionalized graphene oxide based on p-phenylenediamine as spacers and nitrogen dopants for high performance supercapacitors, Chinese Sci. Bull. 59 (2014) 1809-1815.
[70] D. Wang, Y. Min, Y. Yu, B. Peng, A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors, J. Colloid Interface Sci. 417 (2014) 270-277.
[71] V. Sahu, S. Grover, B. Tulachan, M. Sharma, G. Srivastava, M. Roy, M. Saxena, N. Sethy, K. Bhargava, D. Philip, H. Kim, G. Singh, S.K. Singh, M. Das, R.K. Sharma, Heavily nitrogen doped, graphene supercapacitor from silk cocoon, Electrochim. Acta 160 (2015) 244-253.
[72] T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, J. Shen, Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid, New J. Chem. 36 (2012) 1385-1391.
[73] L. Niu, Z. Li, W. Hong, J. Sun, Z. Wang, L. Ma, J. Wang, S. Yang, Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors, Electrochim. Acta 108 (2013) 666-673.
[74] Z. Zuo, Z. Jiang, A. Manthiram, Porous B-doped graphene inspired by fried-ice for supercapacitors and metal-free catalysts, J. Mater. Chem. A 1 (2013) 13476-13483.
[75] J. Han, L.L. Zhang, S. Lee, J. Oh, K.-S. Lee, J.R. Potts, J. Ji, X. Zhao, R.S. Ruoff, S. Park, Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications, ACS Nano 7 (2012) 19-26.
[76] A. Ambrosi, H.L. Poh, L. Wang, Z. Sofer, M. Pumera, Capacitance of p‐and n‐doped graphenes is dominated by structural defects regardless of the dopant type, ChemSusChem 7 (2014) 1102-1106.
[77] J.P. Paraknowitsch, A. Thomas, J. Schmidt, Microporous sulfur-doped carbon from thienyl-based polymer network precursors, Chem. Commun. 47 (2011) 8283-8285.
[78] X. Zhao, Q. Zhang, C.-M. Chen, B. Zhang, S. Reiche, A. Wang, T. Zhang, R. Schlögl, D.S. Su, Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor, Nano Energy 1 (2012) 624-630.
[79] X. Chen, X. Chen, X. Xu, Z. Yang, Z. Liu, L. Zhang, X. Xu, Y. Chen, S. Huang, Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials, Nanoscale 6 (2014) 13740-13747.
[80] Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova-Jurcakova, Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors, Chem.: Eur. J. 21 (2015) 80-85.
[81] P. Karthika, N. Rajalakshmi, K.S. Dhathathreyan, Phosphorus-doped exfoliated graphene for supercapacitor electrodes, J. Nanosci. Nanotechnol. 13 (2013) 1746-1751.
[82] V. Thirumal, A. Pandurangan, R. Jayavel, R. Ilangovan, Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications, Synth. Met. 220 (2016) 524-532.
[83] Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li, P.R. Smalley, J. Lin, J.M. Tour, Flexible boron-doped laser-induced graphene microsupercapacitors, ACS Nano 9 (2015) 5868-5875.
[84] D.-Y. Yeom, W. Jeon, N.D.K. Tu, S.Y. Yeo, S.-S. Lee, B.J. Sung, H. Chang, J.A. Lim, H. Kim, High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties, Sci. Rep. 5 (2015) 9817.
[85] N. Parveen, M.O. Ansari, S.A. Ansari, M.H. Cho, Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials, J. Mater. Chem. A 4 (2015) 233-240.
[86] E. Bekyarova, M.E. Itkis, P. Ramesh, C. Berger, M. Sprinkle, W.A. Heer, R.C. Haddon, Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups, J. Am. Chem. Soc. 131 (2009) 1336-1337.
[87] J. Zhang, Y. Xu, L. Cui, A. Fu, W. Yang, C. Barrow, J. Liu, Mechanical properties of graphene films enhanced by homo-telechelic functionalized polymer fillers via π-π stacking interactions, Compos. Part A: Appl. Sci. Manuf. 71 (2015) 1-8.
[88] Z. Lei, J. Zhang, L.L. Zhang, N.A. Kumar, X.S. Zhao, Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties, Energy Environ. Sci. 9 (2016) 1891-1930.
[89] A.K. Mishra, S. Ramaprabhu, Functionalized graphene-based nanocomposites for supercapacitor application, J. Phys. Chem. C 115 (2011) 14006-14013.
[90] Z. Gao, F. Wang, J. Chang, D. Wu, X. Wang, X. Wang, F. Xu, S. Gao, K. Jiang, Chemically grafted graphene-polyaniline composite for application in supercapacitor, Electrochim. Acta 133 (2014) 325-334.
[91] B. Song, J. Zhao, M. Wang, J. Mullavey, Y. Zhu, Z. Geng, D. Chen, Y. Ding, K.-S. Moon, M. Liu, C.-P. Wong, Systematic study on structural and electronic properties of diamine/triamine functionalized graphene networks for supercapacitor application, Nano Energy 31 (2017) 183-193.
[92] B. Song, J.I. Choi, Y. Zhu, Z. Geng, L. Zhang, Z. Lin, C.-C. Tuan, K.-S. Moon, C.-P. Wong, Molecular level study of graphene networks functionalized with phenylenediamine monomers for supercapacitor electrodes, Chem. Mater. 28 (2016) 9110-9121.
[93] G. Xie, R. Yang, P. Chen, J. Zhang, X. Tian, S. Wu, J. Zhao, M. Cheng, W. Yang, D. Wang, C. He, X. Bai, D. Shi, G. Zhang, A general route towards defect and pore engineering in graphene, Small 10 (2014) 2280-2284.
[94] J. Chen, Y. Han, X. Kong, X. Deng, H.J. Park, Y. Guo, S. Jin, Z. Qi, Z. Lee, Z. Qiao, R.S. Ruoff, H. Ji, The origin of improved electrical double-layer capacitance by inclusion of topological defects and dopants in graphene for supercapacitors, Angew. Chem. Int. Ed. 55 (2016) 13822-13827.
[95] J. Zhu, A.S. Childress, M. Karakaya, S. Dandeliya, A. Srivastava, Y. Lin, A.M. Rao, R. Podila, Defect-engineered graphene for high-energy-and high-power-density supercapacitor devices, Adv. Mater. 28 (2016) 7185-7192.
[96] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett. 11 (2011) 2472-2477.
[97] S. Arif, M.S. Rafique, F. Saleemi, F. Naab, O. Toader, R. Sagheer, S. Bashir, R. Zia, K. Siraj, S. Iqbal, Surface topographical and structural analysis of Ag+-implanted polymethylmethacrylate, Nucl. Instrum. Methods Phys. Res. B 381 (2016) 114-121.
[98] D.K Avasthi, Modification and characterisation of materials by swift heavy ions, Def. Sci. J. 59 (2009) 401-412.
[99] S.B. Kadam, K. Datta, P. Ghosh, A.B. Kadam, P.W. Khirade, V. Kumar, R.G. Sonkawade, A.B. Gambhire, M.K. Lande, M.D. Shirsat, Improvement of ammonia sensing properties of poly (pyrrole)-poly (n-methylpyrrole) composite by ion irradiation, Appl. Phys. A 100 (2010) 1083-1088.
[100] D. Kanjilal, Swift heavy ion-induced modification and track formation in materials, Curr. Sci. 80 (2001) 1560-1566.
[101] D.K Avasthi, Some interesting aspects of swift heavy ions in materials science, Curr. Sci. 78 (2000) 1297-1302.
[102] E.H. Lee, Ion-beam modification of polymeric materials-fundamental principles and applications, Nucl. Instrum. Methods Phys. Res. B 151 (1999) 29-41.
[103] M. Kang, D.H. Lee, Y.-M. Kang, H. Jung, Electron beam irradiation dose dependent physico-chemical and electrochemical properties of reduced graphene oxide for supercapacitor, Electrochim. Acta 184 (2015) 427-435.
[104] M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance, Nanoscale 6 (2014) 11988-11994.
[105] V. Sridhar, H.-J. Kim, J.-H. Jung, C. Lee, S. Park, I.-K. Oh, Defect-engineered three-dimensional graphene-nanotube-palladium nanostructures with ultrahigh capacitance, ACS Nano 6 (2012) 10562-10570.
[106] J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, A. Zettl, Direct imaging of lattice atoms and topological defects in graphene membranes, Nano Lett. 8 (2008) 3582-3586.
[107] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers, Nature 430 (2004) 870.
[108] I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers, Nano Lett. 7 (2007) 2645-2649.
[109] G. Compagnini, F. Giannazzo, S. Sonde, V. Raineri, E. Rimini, Ion irradiation and defect formation in single layer graphene, Carbon 47 (2009) 3201-3207.
[110] J. Zeng, H.J. Yao, S.X. Zhang, P.F. Zhai, J.L. Duan, Y.M. Sun, G.P. Li, J. Liu, Swift heavy ions induced irradiation effects in monolayer graphene and highly oriented pyrolytic graphite, Nucl. Instrum. Methods Phys. Res. B 330 (2014) 18-23.
[111] Y.B. Zhou, Z.M. Liao, Y.-F. Wang, G.S. Duesberg, J. Xu, Q. Fu, X.S. Wu, D.-P. Yu, Ion irradiation induced structural and electrical transition in graphene, J. Chem. Phys. 133 (2010) 234703.
[112] H.C. Schniepp, K.N. Kudin, J.-L. Li, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Bending properties of single functionalized graphene sheets probed by atomic force microscopy, ACS Nano 2 (2008) 2577-2584.
[113] J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascon, Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide, Langmuir 25 (2009) 5957-5968.
[114] T.H.D. Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels, Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening, J. Appl. Crystallogr. 15 (1982) 308-314.
[115] D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.-K. Sham, X. Sun, S. Ye, S. Knights, Nitrogen doping effects on the structure of graphene, Appl. Surf. Sci. 257 (2011) 9193-9198.
[116] V.A. Chirayath, M.D. Chrysler, A.D. McDonald, R.W. Gladen, A.J. Fairchild, A.R. Koymen, A.H. Weiss, Investigation of graphene using low energy positron annihilation induced Doppler broadening spectroscopy, J. Phys. Conf. Ser. 791 (2017) 012032.
[117] U. Rana, P.M.G. Nambissan, S. Malik, K. Chakrabarti, Effects of process parameters on the defects in graphene oxide-polyaniline composites investigated by positron annihilation spectroscopy, Phys. Chem. Chem. Phys. 16 (2014) 3292-3298.
[118] M. Devi, A. Kumar, In-situ reduced graphene oxide nanosheets-polypyrrole nanotubes nanocomposites for supercapacitor applications, Synth. Met. 222 (2016) 318-329.
[119] M. Devi, A. Kumar, 85 MeV C6+ swift heavy ion irradiation of in-situ reduced graphene oxide-polypyrrole nanotubes nanocomposite films for supercapacitor electrodes, Electrochim. Acta 261 (2018) 1-13.
[120] D.K. Avasthi, S. Ghosh, S.K. Srivastava, W. Assmann, Existence of transient temperature spike induced by SHI: evidence by ion beam analysis, Nucl. Instrum. Methods Phys. Res. B 219 (2004) 206-214.
[121] V. Kumar, Y. Ali, K. Sharma, V. Kumar, R.G. Sonkawade, A.S. Dhaliwal, H.C. Swart, Swift heavy ions induced surface modifications in Ag-polypyrrole composite films synthesized by an electrochemical route, Nucl. Instrum. Methods Phys. Res. B 323 (2014) 7-13.
[122] S. Kumar, A. Tripathi, F. Singh, S.A. Khan, V. Baranwal, D.K. Avasthi, Purification/annealing of graphene with 100-MeV Ag ion irradiation, Nanoscale Res. Lett. 9 (2014) 126.
[123] E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Beguin, Enhanced capacitance of carbon nanotubes through chemical activation, Chem. Phys. Lett. 361 (2002) 35-41.
[124] J.M. Carlsson, M. Scheffler, Structural, electronic, and chemical properties of nanoporous carbon, Phys. Rev. Lett. 96 (2006) 046806.