Graphene-Based ZnO Nanocomposites for Supercapacitor Applications

$28.50

Graphene-Based ZnO Nanocomposites for Supercapacitor Applications

Udaya Bhat K., Sunil Meti

In the recent past, the increase in energy needs and the development of efficient energy storage devices have opened a new area of research. Batteries and supercapacitors are generally used as energy storage devices. Graphene-based nanocomposite materials have proven to be promising material for supercapacitor applications. Graphene-based ZnO nanocomposites are known to have high specific capacitance. In this chapter, many approaches for graphene and graphene-based ZnO nanocomposite synthesis are explained. Electrochemical characterization and specific capacitance of graphene-based ZnO nanocomposites are also reviewed.

Keywords
Graphene, ZnO Nanoparticles, Synthesis Methods, Specific Capacitance, Crystal Growth

Published online 12/1/2019, 28 pages

Citation: Udaya Bhat K., Sunil Meti, Graphene-Based ZnO Nanocomposites for Supercapacitor Applications, Materials Research Foundations, Vol. 64, pp 181-208, 2020

DOI: https://doi.org/10.21741/9781644900550-7

Part of the book on Graphene as Energy Storage Material for Supercapacitors

References
[1] B.E. Conway, Electrochemical Supercapacitors, Springer US, Boston, MA, 1999. https://doi.org/10.1007/978-1-4757-3058-6.
[2] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531. https://doi.org/10.1039/b813846j.
[3] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845–854. https://doi.org/10.1038/nmat2297.
[4] M. Jayalakshmi, K. Balasubramanian, Simple capacitors to supercapacitors-An overview, Int. J. Electrochem. Sci. 3 (2008) 1196-1217.
[5] R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6.
[6] Y. Bar-Cohen, Electroactive polymer (EAP) actuators as artificial muscles : reality, potential, and challenges, SPIE Press, 2004. https://doi.org/10.1117/3.547465
[7] H. Wang, J.T. Robinson, G. Diankov, H. Dai, Nanocrystal growth on graphene with various degrees of oxidation, J. Am. Chem. Soc. 132 (2010) 3270–3271. https://doi.org/10.1021/ja100329d.
[8] J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater. 4 (2014) 1300816. https://doi.org/10.1002/aenm.201300816.
[9] F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv. Mater. 26 (2014) 2219–2251. https://doi.org/10.1002/adma.201304137.
[10] X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol. 6 (2011) 232–236. https://doi.org/10.1038/nnano.2011.13.
[11] I.Y.Y. Bu, R. Huang, One-pot synthesis of ZnO/reduced graphene oxide nanocomposite for supercapacitor applications, Mater. Sci. Semicond. Process. 31 (2015) 131–138. https://doi.org/10.1016/J.MSSP.2014.11.037.
[12] Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes – A review, J. Mater. (2016). https://doi.org/10.1016/j.jmat.2016.01.001.
[13] Y.Z. Liu, Y.F. Li, Y.G. Yang, Y.F. Wen, M.Z. Wang, A one-pot method for producing ZnO–graphene nanocomposites from graphene oxide for supercapacitors, Scr. Mater. 68 (2013) 301–304. https://doi.org/10.1016/j.scriptamat.2012.10.048.
[14] M. Raja, A.B.V.K. Kumar, N. Arora, J. Subha, Studies on electrochemical properties of zno/rgo nanocomposites as electrode materials for supercapacitors, Fullerenes Nanotub. Carbon Nanostructures. 23 (2015) 691–694. https://doi.org/10.1080/1536383X.2014.971117.
[15] M. Saranya, R. Ramachandran, F. Wang, Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications, J. Sci. Adv. Mater. Devices J. (2016). https://doi.org/10.1016/j.jsamd.2016.10.001.
[16] T. Lu, Y. Zhang, H. Li, L. Pan, Y. Li, Z. Sun, Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors, Electrochim. Acta. 55 (2010) 4170–4173. https://doi.org/10.1016/J.ELECTACTA.2010.02.095.
[17] T. Lu, L. Pan, H. Li, G. Zhu, T. Lv, X. Liu, Z. Sun, T. Chen, D.H.C. Chua, Microwave-assisted synthesis of graphene–ZnO nanocomposite for electrochemical supercapacitors, J. Alloys Compd. 509 (2011) 5488–5492. https://doi.org/10.1016/J.JALLCOM.2011.02.136.
[18] J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S.A. Suthanthiraraj, R. Jayavel, D. Nedumaran, Synthesis and electrochemical studies of rgo/zno nanocomposite for supercapacitor application, J. Inorg. Organomet. Polym. Mater. 28 (2018) 2046–2055. https://doi.org/10.1007/s10904-018-0873-0.
[19] Y.-L. Chen, Z.-A. Hu, Y.-Q. Chang, H.-W. Wang, Z.-Y. Zhang, Y.-Y. Yang, H.-Y. Wu, Zinc Oxide/Reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix, J. Phys. Chem. C. 115 (2011) 2563–2571. https://doi.org/10.1021/jp109597n.
[20] A. Ramadoss, S.J. Kim, Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications, Mater. Chem. Phys. 140 (2013) 405–411. https://doi.org/10.1016/J.MATCHEMPHYS.2013.03.057.
[21] J. Wang, Z. Gao, Z. Li, B. Wang, Y. Yan, Q. Liu, T. Mann, M. Zhang, Z. Jiang, Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties, J. Solid State Chem. 184 (2011) 1421–1427. https://doi.org/10.1016/J.JSSC.2011.03.006.
[22] Z. Li, Z. Zhou, G. Yun, K. Shi, X. Lv, B. Yang, High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites, Nanoscale Res. Lett. 8 (2013) 473. https://doi.org/10.1186/1556-276X-8-473.
[23] Y. Zhang, H. Li, L. Pan, T. Lu, Z. Sun, Capacitive behavior of graphene–ZnO composite film for supercapacitors, J. Electroanal. Chem. 634 (2009) 68–71. https://doi.org/10.1016/J.JELECHEM.2009.07.010.
[24] V. Rajeswari, R. Jayavel, A. Clara Dhanemozhi, Synthesis and characterization of graphene-zinc oxide nanocomposite electrode material for supercapacitor applications, Mater. Today Proc. 4 (2017) 645–652. https://doi.org/10.1016/J.MATPR.2017.01.068.
[25] Z. Li, P. Liu, G. Yun, K. Shi, X. Lv, K. Li, J. Xing, B. Yang, 3D (Three-dimensional) sandwich-structured of ZnO (zinc oxide)/rGO (reduced graphene oxide)/ZnO for high performance supercapacitors, Energy. 69 (2014) 266–271. https://doi.org/10.1016/J.ENERGY.2014.03.003.
[26] L. Huang, G. Guo, Y. Liu, Q. Chang, Y. Xie, Reduced graphene oxide-ZnO nanocomposites for flexible supercapacitors, J. Disp. Technol. 8 (2012) 373–376. https://doi.org/10.1109/JDT.2011.2173158.
[27] X. Li, Z. Wang, Y. Qiu, Q. Pan, P. Hu, 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes, J. Alloys Compd. 620 (2015) 31–37. https://doi.org/10.1016/J.JALLCOM.2014.09.105.
[28] L. Fang, B. Zhang, W. Li, J. Zhang, K. Huang, Q. Zhang, Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors, Electrochim. Acta. 148 (2014) 164–169. https://doi.org/10.1016/J.ELECTACTA.2014.10.065.
[29] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 157 (2006) 11–27. https://doi.org/10.1016/J.JPOWSOUR.2006.02.065.
[30] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotechnol. 5 (2010) 651–654. https://doi.org/10.1038/nnano.2010.162.
[31] H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Advanced asymmetrical supercapacitors based on graphene hybrid materials, Nano Res. 4 (2011) 729–736. https://doi.org/10.1007/s12274-011-0129-6.
[32] M. Winter, R.J. Brodd, What are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev. 104 (2004) 4245–4270. https://doi.org/10.1021/cr020730k.
[33] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, J. Power Sources. 195 (2010) 7880–7903. https://doi.org/10.1016/j.jpowsour.2010.06.036.
[34] A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (2005) 366–377. https://doi.org/10.1038/nmat1368.
[35] J. Li, F. Gao, Analysis of electrodes matching for asymmetric electrochemical capacitor, J. Power Sources 194 (2009) 1184–1193. https://doi.org/10.1016/j.jpowsour.2009.06.017.
[36] E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett. 8 (2008) 2277–2282. https://doi.org/10.1021/nl800957b.
[37] T. Bhardwaj, A. Antic, B. Pavan, V. Barone, B.D. Fahlman, Enhanced electrochemical lithium storage by graphene nanoribbons, J. Am. Chem. Soc. 132 (2010) 12556–12558. https://doi.org/10.1021/ja106162f.
[38] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498–3502. https://doi.org/10.1021/nl802558y.
[39] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113 (2009) 13103–13107. https://doi.org/10.1021/jp902214f.
[40] X. An, T. Simmons, R. Shah, C. Wolfe, K.M. Lewis, M. Washington, S.K. Nayak, S. Talapatra, S. Kar, Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications, Nano Lett. 10 (2010) 4295–4301. https://doi.org/10.1021/nl903557p.
[41] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials, J. Phys. Chem. C. 113 (2009) 13103–13107. https://doi.org/10.1021/jp902214f.
[42] T. Palaniselvam, J.-B. Baek, Graphene based 2D-materials for supercapacitors, 2D Mater. 2 (2015) 32002. https://doi.org/10.1088/2053-1583/2/3/032002.
[43] J. Basu, J.K. Basu, T.K. Bhattacharyya, The evolution of graphene-based electronic devices, Int. J. Smart Nano Mater. 1 (2010) 201–223. https://doi.org/10.1080/19475411.2010.510856.
[44] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56 (2011) 1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003.
[45] A. Kolodziejczak-Radzimska, T. Jesionowski, Zinc oxide-from synthesis to application: A review, Materials 7 (2014) 2833–2881. https://doi.org/10.3390/ma7042833.
[46] N. Al-Dhabi, M. Valan Arasu, Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties, Nanomaterials 8 (2018) 500. https://doi.org/10.3390/nano8070500.
[47] Y. Wang, X. Xiao, H. Xue, H. Pang, Zinc oxide based composite materials for advanced supercapacitors, ChemistrySelect 3 (2018) 550–565. https://doi.org/10.1002/slct.201702780.
[48] S. Meti, M.R. Rahman, M.I. Ahmad, K.U. Bhat, Chemical free synthesis of graphene oxide in the preparation of reduced graphene oxide-zinc oxide nanocomposite with improved photocatalytic properties, Appl. Surf. Sci. 451 (2018) 67–75. https://doi.org/10.1016/j.apsusc.2018.04.138.
[49] A.R. Marlinda, N.M. Huang, M.R. Muhamad, M.N. An’Amt, B.Y.S. Chang, N. Yusoff, I. Harrison, H.N. Lim, C.H. Chia, S.V. Kumar, Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites, Mater. Lett. 80 (2012) 9–12. https://doi.org/10.1016/j.matlet.2012.04.061.
[50] B. Saravanakumar, R. Mohan, S.-J. Kim, Facile synthesis of graphene/ZnO nanocomposites by low temperature hydrothermal method, Mater. Res. Bull. 48 (2013) 878–883. https://doi.org/10.1016/J.MATERRESBULL.2012.11.048.
[51] Y.. b Zhao, G.. Chen, Y.. Wang, Facile synthesis of graphene/ZnO composite as an anode with enhanced performance for lithium ion batteries, J. Nanomater. 2014 (2014). https://doi.org/10.1155/2014/964391.
[52] X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization, Langmuir 29 (2013) 3097–3105. https://doi.org/10.1021/la4001768.
[53] X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, C. Sun, UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI), Chem. Eng. J. 183 (2012) 238–243. https://doi.org/10.1016/J.CEJ.2011.12.068.
[54] A. Kajbafvala, M.R. Shayegh, M. Mazloumi, S. Zanganeh, A. Lak, M.S. Mohajerani, S.K. Sadrnezhaad, Nanostructure sword-like ZnO wires: Rapid synthesis and characterization through a microwave-assisted route, J. Alloys Compd. 469 (2009) 293–297. https://doi.org/10.1016/j.jallcom.2008.01.093.
[55] A. Ashkarran, B. Mohammadi, ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light, Appl. Surf. Sci. 342 (2015) 112–119. https://doi.org/10.1016/j.apsusc.2015.03.030.
[56] J. Wu, X. Shen, L. Jiang, K. Wang, K. Chen, Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites, Appl. Surf. Sci. 256 (2010) 2826–2830. https://doi.org/10.1016/j.apsusc.2009.11.034.
[57] W. Zou, J. Zhu, Y. Sun, X. Wang, Depositing ZnO nanoparticles onto graphene in a polyol system, Mater. Chem. Phys. 125 (2011) 617–620. https://doi.org/10.1016/j.matchemphys.2010.10.008.
[58] G. Du, X. Wang, L. Zhang, Y. Feng, Y. Li, Controllable synthesis of different ZnO architectures decorated reduced graphene oxide nanocomposites, Mater. Lett. 96 (2013) 128–130. https://doi.org/10.1016/J.MATLET.2013.01.063.
[59] I.Y.Y. Bu, R. Huang, One-pot synthesis of ZnO/reduced graphene oxide nanocomposite for supercapacitor applications, Mater. Sci. Semicond. Process. 31 (2015) 131–138. https://doi.org/10.1016/J.MSSP.2014.11.037.
[60] M. Jayalakshmi, M. Palaniappa, K. Balasubramanian, Single step solution combustion synthesis of ZnO/carbon composite and its electrochemical characterization for supercapacitor application, Int. J. Electrochem. Sci. 3 (2008) 96-103.
[61] L. Liao, X. Duan, Graphene-dielectric integration for graphene transistors, Mater. Sci. Eng. R Reports 70 (2010) 354–370. https://doi.org/10.1016/j.mser.2010.07.003.
[62] N. Hashim, Z. Muda, M.Z. Hussein, I.M. Isa, A. Mohamed, A. Kamari, S.A. Bakar, M. Mamat, A. Jaafar, A brief review on recent graphene oxide-based material nanocomposites: Synthesis and applications, J. Mater. Environ. Sci. 7 (2016) 3225–3243.
[63] T.-H. Han, H. Kim, S.-J. Kwon, T.-W. Lee, Graphene-based flexible electronic devices, Mater. Sci. Eng. R Reports. 118 (2017) 1–43. https://doi.org/10.1016/J.MSER.2017.05.001.
[64] L. Tang, X. Li, R. Ji, K.S. Teng, G. Tai, J. Ye, C. Wei, S.P. Lau, Bottom-up synthesis of large-scale graphene oxide nanosheets, J. Mater. Chem. 22 (2012) 5676-5683. https://doi.org/10.1039/c2jm15944a.
[65] M.M. Benameur, F. Gargiulo, S. Manzeli, G. Autès, M. Tosun, O. V. Yazyev, A. Kis, Electromechanical oscillations in bilayer graphene, Nat. Commun. 6 (2015) 8582. https://doi.org/10.1038/ncomms9582.
[66] Z. Shi, H. Lu, L. Zhang, R. Yang, Y. Wang, D. Liu, H. Guo, D. Shi, H. Gao, E. Wang, G. Zhang, Studies of graphene-based nanoelectromechanical switches, Nano Res. 2012 (n.d.) 82–87. https://doi.org/10.1007/s12274-011-0187-9.
[67] M. Gu, Y. Liu, T. Chen, F. Du, X. Zhao, C. Xiong, Y. Zhou, Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering?, Tissue Eng. Part B. Rev. 20 (2014) 477–91. https://doi.org/10.1089/ten.TEB.2013.0638.
[68] S. Meti, U.B. K, M.R. Rahman, M. Jayalakshmi, Photocatalytic behaviour of nanocomposites of sputtered titanium oxide film on graphene oxide nanosheets, Am. J. Mater. Sci. 5 (2015) 12–18. https://doi.org/10.5923/c.materials.201502.03.
[69] K.S. Novoselov, A.K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669. https://doi.org/10.1126/science.1102896.
[70] R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A.Y. Kuznetsov, D. Chakarov, Influence of graphene synthesizing techniques on the photocatalytic performance of graphene–TiO2 nanocomposites, Phys. Chem. Chem. Phys. 15 (2013) 15528–15537. https://doi.org/10.1039/C3CP52457D.
[71] N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, C.H. Voon, Synthesis of graphene oxide using modified Hummers method: Solvent influence, Procedia Eng. 184 (2017) 469–477. https://doi.org/10.1016/J.PROENG.2017.04.118.
[72] G. Pan, B. Li, M. Heath, D. Horsell, M.L. Wears, L. Al Taan, S. Awan, Transfer-free growth of graphene on SiO2 insulator substrate from sputtered carbon and nickel films, Carbon 65 (2013) 349–358. https://doi.org/10.1016/J.CARBON.2013.08.036.
[73] C.-C. Hsu, J.D. Bagley, M.L. Teague, W.S. Tseng, K.L. Yang, Y. Zhang, Y. Li, Y. Li, J.M. Tour, N.C. Yeh, High-yield single-step catalytic growth of graphene nanostripes by plasma enhanced chemical vapor deposition, Carbon 129 (2018) 527–536. https://doi.org/10.1016/J.CARBON.2017.12.058.
[74] S. Zheng, G. Zhong, X. Wu, L. D’arsì, J. Robertson, Metal-catalyst-free growth of graphene on insulating substrates by ammonia-assisted microwave plasma-enhanced chemical vapor deposition, RSC Adv. 7 (2017) 33185-33193. https://doi.org/10.1039/c7ra04162d.
[75] S. Hari, A.M. Goossens, L.M.K. Vandersypen, C.W. Hagen, Electron Beam Induced Deposition on graphene on silicon oxide and hexagonal boron nitride: A comparison of substrates, Microelectron. Eng. 121 (2014) 122–126. https://doi.org/10.1016/J.MEE.2014.04.037.
[76] M. Shandilya, R. Rai, J. Singh, Review: hydrothermal technology for smart materials, Adv. Appl. Ceram. 115 (2016) 354–376. https://doi.org/10.1080/17436753.2016.1157131.
[77] X. Zhou, T. Shi, H. Zhou, Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation, Appl. Surf. Sci. 258 (2012) 6204–6211. https://doi.org/10.1016/j.apsusc.2012.02.131.
[78] B. Li, H. Cao, ZnO@graphene composite with enhanced performance for the removal of dye from water, J. Mater. Chem. 21 (2011) 3346–3349. https://doi.org/10.1039/C0JM03253K.
[79] T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, Appl. Catal. B Environ. 101 (2011) 382–387. https://doi.org/10.1016/J.APCATB.2010.10.007.
[80] Y.J. Zhu, F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase, Chem. Rev. 114 (2014) 6462–6555. https://doi.org/10.1021/cr400366s.
[81] M.H. Wong, A. Berenov, X. Qi, M.J. Kappers, Z.H. Barber, B. Illy, Z. Lockman, M.P. Ryan, J.L. MacManus-Driscoll, Electrochemical growth of ZnO nano-rods on polycrystalline Zn foil, Nanotechnology. 14 (2003) 968–973. https://doi.org/10.1088/0957-4484/14/9/306.
[82] H.B. Zeng, Y. Bando, Xi, J. Xu, L. Li, Tian, Y. Zhai, X.S. Fang, D. Golberg, Heteroepitaxial growth of ZnO nanorod arrays on GaAs (111) substrates by electrochemical deposition, (2010). https://doi.org/10.1002/ejic.201000527.
[83] S. Peulon, D. Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Adv. Mater. 8 (1996) 166–170. https://doi.org/10.1002/adma.19960080216.
[84] Run Liu, Alexey A. Vertegel, Eric W. Bohannan, and Thomas A. Sorenson, J.A. Switzer, Epitaxial Electrodeposition of zinc oxide nanopillars on single-crystal gold, Chem. Mater. 13 (2001) 2508-2512. https://doi.org/10.1021/CM000763L.
[85] M. Izaki, T. Omi, Transparent zinc oxide films prepared by electrochemical reaction, Appl. Phys. Lett. 68 (1998) 2439. https://doi.org/10.1063/1.116160.
[86] E. Pourshaban, H. Abdizadeh, M.R. Golobostanfard, A close correlation between nucleation sites, growth and final properties of ZnO nanorod arrays: Sol-gel assisted chemical bath deposition process, Ceram. Int. 42 (2016) 14721–14729. https://doi.org/10.1016/J.CERAMINT.2016.06.098.
[87] J.A. Alvarado, A. Maldonado, H. Juarez, M. Pacio, Synthesis of colloidal ZnO nanoparticles and deposit of thin films by spin coating technique, J. Nanomater. 2013 (2013). https://doi.org/10.1155/2013/903191.
[88] M. Singh, M.Y. Mulla, M.V. Santacroce, M. Magliulo, C. Di Franco, K. Manoli, D. Altamura, C. Giannini, N. Cioffi, G. Palazzo, G. Scamarcio, L. Torsi, Effect of the gate metal work function on water-gated ZnO thin-film transistor performance, J. Phys. D. Appl. Phys. 49 (2016) 275101. https://doi.org/10.1088/0022-3727/49/27/275101.
[89] M. Zhou, D. Zang, X. Zhai, Z. Gao, W. Zhang, C. Wang, Preparation of biomorphic porous zinc oxide by wood template method, Ceram. Int. 42 (2016) 10704–10710. https://doi.org/10.1016/J.CERAMINT.2016.03.188.
[90] W. Chebil, M.A. Boukadhaba, A. Fouzri, Epitaxial growth of ZnO on quartz substrate by sol-gel spin-coating method, Superlattices Microstruct. 95 (2016) 48–55. https://doi.org/10.1016/J.SPMI.2016.04.033.
[91] R. Haarindraprasad, U. Hashim, S.C.B. Gopinath, V. Perumal, W.-W. Liu, S.R. Balakrishnan, Fabrication of interdigitated high-performance zinc oxide nanowire modified electrodes for glucose sensing, Anal. Chim. Acta. 925 (2016) 70–81. https://doi.org/10.1016/J.ACA.2016.04.030.
[92] T.A. Para, H.A. Reshi, S. Pillai, V. Shelke, Grain size disposed structural, optical and polarization tuning in ZnO, Appl. Phys. A. 122 (2016) 730. https://doi.org/10.1007/s00339-016-0256-8.
[93] H. Li, Y. Wei, Y. Zhang, C. Zhang, G. Wang, Y. Zhao, F. Yin, Z. Bakenov, In situ sol-gel synthesis of ultrafine ZnO nanocrystals anchored on graphene as anode material for lithium-ion batteries, Ceram. Int. 42 (2016) 12371–12377. https://doi.org/10.1016/J.CERAMINT.2016.05.010.
[94] T. Demes, C. Ternon, D. Riassetto, H. Roussel, L. Rapenne, I. Gélard, C. Jimenez, V. Stambouli, M. Langlet, New insights in the structural and morphological properties of sol-gel deposited ZnO multilayer films, J. Phys. Chem. Solids. 95 (2016) 43–55. https://doi.org/10.1016/J.JPCS.2016.03.017.
[95] D.G. Ayana, R. Ceccato, C. Collini, L. Lorenzelli, V. Prusakova, S. Dirè, Sol-gel derived oriented multilayer ZnO thin films with memristive response, Thin Solid Films 615 (2016) 427–436. https://doi.org/10.1016/J.TSF.2016.07.025.
[96] L.M. Zimmermann, P. V Baldissera, I.H. Bechtold, Stability of ZnO quantum dots tuned by controlled addition of ethylene glycol during their growth, Mater. Res. Express. 3 (2016) 75018. https://doi.org/10.1088/2053-1591/3/7/075018.
[97] A.T. Khalil, M. Ovais, I. Ullah, M. Ali, Z.K. Shinwari, S. Khamlich, M. Maaza, Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications, Nanomedicine 12 (2017) 1767–1789. https://doi.org/10.2217/nnm-2017-0124.
[98] A. Venkateasan, R. Prabakaran, V. Sujatha, Phytoextract-mediated synthesis of zinc oxide nanoparticles using aqueous leaves extract of Ipomoea pes-caprae (L).R.br revealing its biological properties and photocatalytic activity, Nanotechnol. Environ. Eng. 2 (2017) 8. https://doi.org/10.1007/s41204-017-0018-7.
[99] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56 (2011) 1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003.
[100] Y. Haldorai, W. Voit, J.-J. Shim, Nano ZnO@reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid, Electrochim. Acta. 120 (2014) 65–72. https://doi.org/10.1016/J.ELECTACTA.2013.12.063.