Graphene-Based Materials for Micro-Supercapacitors


Graphene-Based Materials for Micro-Supercapacitors

Akanksha R. Urade, Gurjinder Kaur, Indranil Lahiri

With the increase in the demand for flexible miniaturized electronic devices, there is a rapid development in micro-power sources. Recently developed on-chip micro-supercapacitors are raising possibilities for energy storage because of fast charge-discharge rates, higher power density and long lifetime than their counterparts. Among all the materials, graphene-based materials exhibit great potential in the development of thin, flexible and long-life micro-supercapacitors. This chapter presents fundamental working mechanism and design of planar interdigital micro-supercapacitors with particular emphasis on graphene-based micro-supercapacitors. New trends in the electrode preparations and fabrication techniques are identified. Finally, the future prospects in the development of graphene-based micro-supercapacitors are briefly discussed.

Graphene, Carbon, Supercapacitors, Micro-Supercapacitors, Energy Storage

Published online 12/1/2020, 38 pages

Citation: Akanksha R. Urade, Gurjinder Kaur, Indranil Lahiri, Graphene-Based Materials for Micro-Supercapacitors, Materials Research Foundations, Vol. 64, pp 129-166, 2020


Part of the book on Graphene as Energy Storage Material for Supercapacitors

[1] M. Winter, R.J. Brodd, What are Batteries, Fuel Cells, and Supercapacitors?, Chem Rev. 104 (2004) 4245–4270.
[2] M. Jayalakshmi, K. Balasubramanian, Simple capacitors to supercapacitors-An overview, Int. J. Electrochem. Sci. 3 (2008) 1196–1217.
[3] A. Burk, Ultracapacitors: why, how, and where is the technology, J. Power Sources 91 (2000) 37–50.
[4] Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions, Energy Environ. Sci. 8 (2015) 702–730.
[5] Y. Wang, Y. Xia, Recent progress in supercapacitors: From materials design to system construction, Adv. Mater. 25 (2013) 5336–5342.
[6] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrog. Energy 34 (2009) 4889–4899.
[7] R. Ko, M. Carlen, R. Kotz and M. Carlen, Principles and Applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 1–16.
[8] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (2010) 4863–4868.
[9] Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater. 21 (2011) 2366–2375.
[10] J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density, Adv. Funct. Mater. 22 (2012) 2632–2641.
[11] X. Yu, B. Lu, Z. Xu, Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4-3D graphene hybrid electrodes, Adv. Mater. 26 (2014) 1044–1051.
[12] N. Kurra, Q. Jiang, H.N. Alshareef, A general strategy for the fabrication of high-performance microsupercapacitors, Nano Energy 16 (2015) 1–9.
[13] G. Zhang, Y. Han, C. Shao, N. Chen, G. Sun, X. Jin, J. Gao, B. Ji, H. Yang, L. Qu, Processing and manufacturing of graphene-based microsupercapacitors, Mater Chem Front. (2018) 1750–1764.
[14] Z.S. Wu, K. Parvez, X. Feng, K. Müllen, Graphene-based in-plane micro-supercapacitors with high power and energy densities, Nat. Commun. 4 (2013) 1-7.
[15] X. Shi, Z.S. Wu, J. Qin, S. Zheng, S. Wang, F. Zhou, C. Sun, X. Bao, Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output, Adv. Mater. 29 (2017) 1–9.
[16] W. Liu, X. Yan, J. Chen, Y. Feng, Q. Xue, Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers, Nanoscale 5 (2013) 6053–6062.
[17] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. Taberna, P. Simon, Ultrahigh-power micrometer-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5 (2010) 651–654.
[18] T. M Dinh, D. Pech, M. Brunet, A. Achour, High-resolution electrochemical micro-capacitors based on oxidized multi-walled carbon nanotubes, J. Phys.: Conf. Ser. 476 2013.
[19] K. Parvez, X. Feng, K. Mu, Graphene-based in-plane micro-supercapacitors with high power and energy densities, Nat. Commun. 4 (2013) 1-7.
[20] D. Pech, M. Brunet, P. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, H. Durou, Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor, J. Power Sources 195 (2010) 1266–1269.
[21] M. Stoller, S. Park, Y. Zhu, J. An, R. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498–3502.
[22] E. Gongadze, S. Petersen, U. Beck, U. Van Rienen, Classical Models of the Interface between an Electrode and an Electrolyte, COMSOL Conference (2009).
[23] J.P. Valleau, G.M. Torrie, The electrical double layer. III. Modified Gouy-Chapman theory with unequal ion sizes, J. Chem. Phys. 76 (1982) 4623–4630.
[24] D. Henderson, Recent progress in the theory of the electric double layer, Prog. Surf. Sci. 13 (1983) 197–224.
[25] J.P. Zheng, Hydrous Ruthenium Oxide as an Electrode Material for electrochemical capacitors, ‎J. Electrochem. Soc. 142 (1995) 2699.
[26] S. Makino, Y. Yamauchi, W. Sugimoto, Synthesis of electro-deposited ordered mesoporous RuO x using lyotropic liquid crystal and application toward micro-supercapacitors, J. Power Sources 227 (2013) 153–160.
[27] Y.G. Wang, Z.D. Wang, Y.Y. Xia, An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes, Electrochim. Acta 50 (2005) 5641–5646.
[28] H.Y. Lee, J.B. Goodenough, Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes, Solid State Ionics 153 (2002) 833–841.
[29] H. Wang, X. Sun, Z. Liu, Z. Lei, Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes, Nanoscale 6 (2014) 6577–6584.
[30] Q. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor, Electrochim.Acta 48 (2003) 575–580.
[31] C. Peng, S. Zhang, D. Jewell, G.Z. Chen, Carbon nanotube and conducting polymer composites for supercapacitors, Prog. Nat. Sci. 18 (2008) 777–788.
[32] Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy 36 (2017) 268–285.
[33] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources 196 (2011) 1–12.
[34] D.W. Wang, F. Li, H.M. Cheng, Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor, J. Power Sources 185 (2008) 1563–1568.
[35] Y. Zhu, C. Cao, S. Tao, W. Chu, Z. Wu, Y. Li, Ultrathin nickel hydroxide and oxide nanosheets: Synthesis, characterizations and excellent supercapacitor performances, Sci. Rep. 4 (2014) 1–7.
[36] L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, L. Xu, Y.Z. Luo, Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance, Nat. Commun. 2 (2011) (1–7).
[37] H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials, Adv. Funct. Mater. 24 (2014) 934–942.
[38] T. Ohzuku, A. Ueda, Why transition metal (di) oxides are the most attractive materials for batteries, Solid State Ions. 69 (1994) 201–211.
[39] K.-C. Liu, Porous nickel oxide/nickel films for electrochemical capacitors, J. Electrochem. Soc. 143 (1996) 124.
[40] B.K. Kim, V. Chabot, A. Yu, Carbon nanomaterials supported Ni(OH)2/NiO hybrid flower structure for supercapacitor, Electrochim. Acta 109 (2013) 370–380.
[41] C. Xu, Y. Zhao, G. Yang, F. Li, H. Li, Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications, Chem. Comm. (2009) 7575–7577.
[42] G.W. Yang, C.L. Xu, H.L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance, Chem. Comm. (2008) 6537–6539.
[43] F. Luan, G. Wang, Y. Ling, X. Lu, H. Wang, Y. Tong, X.X. Liu, Y. Li, High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode, Nanoscale 5 (2013) 7984–7990.
[44] F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density, Energy Environ. Sci. 6 (2013) 1623–1632.
[45] Y.K.A. Lau, A. V Kvit, A.L. Schmitt, S. Jin, D.J. Chernak, M.J. Bierman, S. Jin, A.R. Harutyunyan, B.I. Yakobson, C. Growth, S. Publishing, N. Cabrera, C. Frank, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, J.H. Song, K. Keis, S.E. Lindquist, A. Hagfeldt, D.S. Boyle, P.B. Kenway, M. Dudley, D. Bliss, M. Callahan, M. Harris, G.M. Fuge, N.A. Fox, D.J. Riley, J.F. Banfield, H.P. Strunk, V.D. Heydemann, G. Pensl, J.D. Eshelby, J.D. Eshelby, C.M. Drum, T.B. Bateman, H.H. Teng, P.M. Dove, J.J. De Yoreo, C. Cottrell, S. Award, D. Young, Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors, Science 1060 (2010) 480–484.
[46] W. Sun, X. Chen, Fabrication and tests of a novel three dimensional micro supercapacitor, Microelectron Eng. 86 (2009) 1307-1310.
[47] W. Sun, R. Zheng, X. Chen, Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes, J. Power Sources 195 (2010) 7120–7125.
[48] C. Shen, X. Wang, W. Zhang, F. Kang, A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials, J.Power Sources 196 (2011) 10465–10471.
[49] M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors, Energy Environ. Sci. 7 (2014) 867–884.
[50] M. Beidaghi, C. Wang, Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance, Adv. Funct. Mater. 22 (2012) 4501–4510.
[51] J. Sung, S. Kim, K. Lee, Fabrication of microcapacitors using conducting polymer microelectrodes, J. Power Sources 124 (2003) 343–350.
[52] J.H. Sung, S.J. Kim, K.H. Lee, Fabrication of all-solid-state electrochemical microcapacitors, J. Power Sources 133 (2004) 312–319.
[53] M. Xue, Z. Xie, L. Zhang, X. Ma, X. Wu, Y. Guo, W. Song, Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles, Nanoscale 3 (2011) 2703–2708.
[54] M.F. El-kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nat. Commun. 4 (2013) 1475–1479.
[55] X. Du, C.Y. Wang, M.M. Chen, Y. Jiao, J. Wang, Electrochemical performances of nanoparticle fe3o4/activated carbon supercapacitor using KOH Electrolyte solution, J Phys Chem. C 113 (2009) 2643–2646.
[56] A. Yuan, Q. Zhang, A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte, Electrochem. Commun. 8 (2006) 1173–1178.
[57] J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources 101 (2001) 109–116.
[58] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon Nanotubes-the route toward applications, Science 787 (2012) 787–792.
[59] M. Kaempgen, C.K. Chan, J. Ma, A. Kiebele, Y. Cui, G. Gruner, Printable Thin film supercapacitors using single-walled carbon nanotubes, Nano Lett. 9 (2009) 1872-1876.
[60] B.R. Pan, S.W. Lee, C.J. Tseng, C.L. Chang, W.C. Hung, J.K. Chang, Supercapacitive performance of porous graphene nanosheets in bis(trifluoromethylsulfony)imide and bis(fluorosulfonyl)imide ionic liquid electrolytes, J. Solid State Electr. 22 (2018) 2197–2203.
[61] J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, 3‑Dimensional graphene-carbon nanotube carpet-based microsupercapacitors with high electrochemical performance, Nano Lett.13 (2013) 72-78.
[62] B.Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide : Synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906–3924.
[63] L. Li, A. Quinlivan, Patricia, R.U. Knappe, Detlef, Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solutions, Carbon 40 (2AD) 2085–2100.
[64] E. Frackowiak, Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39 (2001) 937–950.
[65] Z. Tang, C.H. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes, Adv. Funct. Mater. 22 (2012) 1272–1278.
[66] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484–7539.
[67] Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. Chen, All-solid-state flexible ultrathin micro-supercapacitors based on graphene, Adv. Mater. 25 (2013) 4035–4042.
[68] L. Le, H. Qiu et al. Inkjet-printed graphene for flexible micro-supercapacitors, Conference: IEEE Nanotechnology (2011).
[69] V. Strong, S. Dubin, M.F. El-Kady, A. Lech, Y. Wang, B.H. Weiller, R.B. Kaner, Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices, ACS Nano 6 (2012) 1395–1403.
[70] L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem. 20 (2010) 5983–5992.
[71] E. Frackowiak, Carbon materials for supercapacitor application, Phys Chem Chem Phys 9 (2007) 1774–1785.
[72] L.M. Da Silva, L.A. De Faria, J.F.C. Boodts, Determination of the morphology factor of oxide layers, Electrochim. Acta 47 (2001) 395–403.
[73] G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z. Bao, Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors, Nano Lett. 11 (2011) 2905–2911.
[74] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: A review, J. Mater. Chem. A 5 (2017) 12653–12672.
[75] L. Lv, Y. Fan, Q. Chen, Y. Zhao, Y. Hu, Z. Zhang, N. Chen, L. Qu, Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors, Nanotechnology 25 (2014) 235401.
[76] Y. Wang, A. Hu, Carbon quantum dots: Synthesis, properties and applications, J. Mater. Chem. C 2 (2014) 6921–6939.
[77] Y.-Q. Dang, S.-Z. Ren, G. Liu, J. Cai, Y. Zhang, J. Qiu, Electrochemical and capacitive properties of carbon dots/reduced graphene oxide supercapacitors, Nanomaterials 6 (2016) 212.
[78] X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage, Natl. Sci. Rev. 4 (2017) 453–489.
[79] G.E. Lecroy, S.K. Sonkar, F. Yang, L.M. Veca, P. Wang, K.N. Tackett, J.J. Yu, E. Vasile, H. Qian, Y. Liu, P. Luo, Y.P. Sun, Toward structurally defined carbon dots as ultracompact fluorescent probes, ACS Nano 8 (2014) 4522–4529.
[80] Y. Xu, X.H. Jia, X.B. Yin, X.W. He, Y.K. Zhang, Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging, Anal. Chem. 86 (2014) 12122–12129.
[81] A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, Surface functionalized carbogenic quantum dots, Small 4 (2008) 455–458.
[82] Q.L. Zhao, Z.L. Zhang, B.H. Huang, J. Peng, M. Zhang, D.W. Pang, Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite, Chem. Comm. 41 (2008) 5116–5118.
[83] L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite, J. Am. Chem. Soc. 131 (2009) 4564–4565.
[84] F.A. Pyatakovich, O. V. Mevsha, T.I. Yakunchenko, K.F. Makkonen, Biotechnical system of automatic classification scattergrams and evaluation of atrial fibrillation outcomes, Int J Pharm Pharm Sci. 8 (2016) 14129–14136.
[85] H.M.R. Gonçalves, A.J. Duarte, J.C.G. Esteves da Silva, Optical fiber sensor for Hg(II) based on carbon dots, Biosens. Bioelectron. 26 (2010) 1302–1306.
[86] Y.-P. Sun, S.-T. Yang, L. Cao, P.G. Luo, F. Lu, X. Wang, H. Wang, M.J. Meziani, Y. Liu, G. Qi, Carbon dots for optical imaging in vivo, J. Am. Chem. Soc. 131 (2009) 11308–9.
[87] Q. Wang, X. Liu, L. Zhang, Y. Lv, Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application, Analyst 137 (2012) 5392–5397.
[88] H. Jiang, F. Chen, M.G. Lagally, F.S. Denes, New strategy for synthesis and functionalization of carbon nanoparticles, Langmuir 26 (2010) 1991–1995.
[89] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc. 126 (2004) 12736–12737.
[90] J. Xu, K. Hou, Z. Ju, C. Ma, W. Wang, C. Wang, J. Cao, Z. Chen, Synthesis and electrochemical properties of carbon dots/manganese dioxide (CQDs/MnO2) nanoflowers for supercapacitor applications, J. Electrochem. Soc. 164 (2017) A430–A437.
[91] Y. Zhu, X. Ji, C. Pan, Q. Sun, W. Song, L. Fang, Q. Chen, C.E. Banks, A carbon quantum dot decorated RuO2 network: Outstanding supercapacitances under ultrafast charge and discharge, Energy Environ. Sci. 6 (2013) 3665–3675.
[92] H. Feng, P. Xie, S. Xue, L. Li, X. Hou, Z. Liu, D. Wu, L. Wang, P.K. Chu, Synthesis of three-dimensional porous reduced graphene oxide hydrogel/carbon dots for high-performance supercapacitor, J. Electroanal. Chem. 808 (2018) 321–328.
[93] S. Mondal, U. Rana, S. Malik, Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials, Chem.Comm. 51 (2015) 12365–12368.
[94] Z. Zhao, Y. Xie, Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid, J. Power Sources 337 (2017) 54–64.
[95] X. Zhang, J. Wang, J. Liu, J. Wu, H. Chen, H. Bi, Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application: Importance and unique role of carbon dots, Carbon 115 (2017) 134–146.
[96] L. Ferragut, R. Montenegro, G. Winter, A. Núñez, Accurate extraction of interconnect capacitances by adaptive mixed F.E.M., Microprocessing and Microprogramming 32 (1991) 61–68.
[97] C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70 (1997) 1480–1482.
[98] R.Z. Ma J. Liang, D.H. Wu, R.Z. Ma, J. Liang, B.Q. Wei, B. Zhang, C.L. Xu, Study of electrochemical capacitors utilizing carbon nanotube electrodes, J. Power Sources 84 (1999) 126–129.
[99] B. Hsia, J. Marschewski, S. Wang, J. Bin In, C. Carraro, D. Poulikakos, C.P. Grigoropoulos, R. Maboudian, Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes, Nanotechnology 25 (2014) 055401.
[100] Y.Q. Jiang, Q. Zhou, L. Lin, Planar mems supercapacitor using carbon nanotube forests, Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), (2009).
[101] W. Yu, H. Zhou, B.Q. Li, S. Ding, 3D Printing of carbon nanotubes-based microsupercapacitors, ACS Appl. Mater. Interfaces 9 (2017) 4597–4604.
[102] A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183–191.
[103] J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene, Nat. Nanotechnol. 4 (2009) 505–509.
[104] X. Cao, Z. Yin, H. Zhang, Three-dimensional graphene materials: Preparation, structures and application in supercapacitors, Energy Environ. Sci. 7 (2014) 1850–1865.
[105] S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, Graphene-based electrochemical supercapacitors, J. Chem. Sci. 120 (2008) 9–13.
[106] Y. Wu, T. Zhang, F. Zhang, Y. Wang, Y. Ma, Y. Huang, Y. Liu, Y. Chen, In situ synthesis of graphene/single-walled carbon nanotube hybrid material by arc-discharge and its application in supercapacitors, Nano Energy 1 (2012) 820–827.
[107] J.M. Chem, C.M. Ma, C. Hu, Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors J. Mater. Chem. 21 (2011) 2374-2380.
[108] J. Li, M. Östling, Prevention of graphene restacking for performance boost of supercapacitors—A review, Crystals 3 (2013) 163–190.
[109] Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, L. Liu, A new partially reduced graphene oxide nanosheet/polyaniline nanowafer hybrid as supercapacitor electrode material, Energy Fuels 27 (2013) 568–575.
[110] Z. Li, H. Zhang, Q. Liu, L. Sun, L. Stanciu, J. Xie, Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors, ACS Appl. Mater. Interfaces 5 (2013) 2685–2691.
[111] J.M. Chem, High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes, J. Mater. Chem. 21 (2011) 16197–16204.
[112] J. Wang, Z. Gao, Z. Li, B. Wang, Y. Yan, Q. Liu, T. Mann, Journal of Solid State Chemistry Green synthesis of graphene nanosheets / ZnO composites and electrochemical properties, J. Solid State Chem.184 (2011) 1421–1427.
[113] Z. Gao, J. Wang, Z. Li, W. Yang, B. Wang, M. Hou, Y. He, Q. Liu, T. Mann, P. Yang, M. Zhang, L. Liu, Graphene Nanosheet/Ni2+/Al3+ Layered Double-Hydroxide Composite as a Novel Electrode for a Supercapacitor, Chem. Mater. 23 (2011) 3509–3516.
[114] W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P.M. Ajayan, Direct laser writing of micro-supercapacitors on hydrated graphite oxide films, Nat. Nanotechnol. 6 (2011) 496–500.
[115] D.E. Lobo, P.C. Banerjee, C.D. Easton, M. Majumder, Miniaturized Supercapacitors: Focused Ion Beam Reduced Graphene Oxide Supercapacitors with Enhanced Performance Metrics, Adv. Energy Mater. 5 (2015) (1-10).
[116] M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nat. Commun. 4 (2013) (1-7).
[117] D. Shen, G. Zou, L. Liu, W. Zhao, A. Wu, W.W. Duley, Y.N. Zhou, Scalable High-Performance Ultraminiature Graphene Micro-Supercapacitors by a Hybrid Technique Combining Direct Writing and Controllable Microdroplet Transfer, ACS Appl. Mater. Interfaces 10 (2018) 5404–5412.
[118] J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E.L.G. Samuel, M.J. Yacaman, B.I. Yakobson, J.M. Tour, Laser-induced porous graphene films from commercial polymers, Nat. Commun. 5 (2015) 5–12.
[119] J. Luo, F.R. Fan, T. Jiang, Z. Wang, W. Tang, C. Zhang, M. Liu, G. Cao, Z.L. Wang, Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit, Nano Res. 8 (2015) 3934–3943.
[120] Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li, P.R. Smalley, J. Lin, J.M. Tour, Flexible boron-doped laser-induced graphene microsupercapacitors, ACS Nano 9 (2015) 5868–5875.
[121] S. Wang, Z. Wu, S. Zheng, F. Zhou, C. Sun, H. Cheng, X. Bao, Scalable fabrication of photochemically reduced graphene-based monolithic micro- supercapacitors with superior energy and power densities, ACS Nano 11 (2017) 4283−4291.
[122] Z. Liu, Z. Wu, S. Yang, R. Dong, X. Feng, K. Müllen, Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene, Adv. Mater. 28 (2016) 2217–2222.
[123] J. Li, S.S. Delekta, P. Zhang, S. Yang, M.R. Lohe, X. Zhuang, X. Feng, Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing, ACS Nano 11 (2017) 8249−8256.
[124] G. Xiong, C. Meng, R.G. Reifenberger, Graphitic petal micro-supercapacitor electrodes for ultra-high power graphitic petal micro-supercapacitor electrodes for ultra-high power density, Energy Technol. 2 (2014) 897-905.