Three-Dimensional Graphene Materials for Supercapacitors

$28.50

Three-Dimensional Graphene Materials for Supercapacitors

Gurjinder Kaur, Narasimha Vinod Pulagara, Indranil Lahiri

Three-dimensional (3D) graphene architectures have allured remarkable attention for supercapacitor (SC) applications owing to their highly accessible surface area, low density, structural interconnectivity (micro-, meso- and macro-interconnected pores), excellent electrical conductivity and good mechanical strength. Overall supercapacitance performance of 3D graphene-based SCs has been due to enhanced accessibility of the electrode surface to electrolyte ions, which also provides conductive channels for electron transfer. In addition, 3D graphene structures provide an ideal template for active material decoration. In this book chapter, an intense review on types of three-dimensional graphene-related materials, and their synthesis methods as well as electrochemical performance for SC applications is presented.

Keywords
3D graphene, Foam, Gels, Spheres, Fibers, Supercapacitors

Published online 12/1/2019, 51 pages

Citation: Gurjinder Kaur, Narasimha Vinod Pulagara, Indranil Lahiri, Three-Dimensional Graphene Materials for Supercapacitors, Materials Research Foundations, Vol. 64, pp 77-128, 2020

DOI: https://doi.org/10.21741/9781644900550-4

Part of the book on Graphene as Energy Storage Material for Supercapacitors

References
[1] F. Mohamad, J. Teh, Impacts of energy storage system on power system reliability: A systematic review, Energies 11 (2018) 1-23. https://doi.org/10.3390/en11071749.
[2] A. Chatzivasileiadi, E. Ampatzi, I. Knight, Characteristics of electrical energy storage technologies and their applications in buildings, Renew. Sustain. Energy Rev. 25 (2013) 814–830. https://doi.org/10.1016/j.rser.2013.05.023.
[3] J.S. Lee, S.I. Kim, J.C. Yoon, J.H. Jang, Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor, ACS Nano 7 (2013) 6047–6055. https://doi.org/10.1021/nn401850z.
[4] K. Chatzivasileiadi, Large stationary batteries for deployment in grid-connected photovoltaic and other renewable energy power plants, 7th International Renewable Energy Storage Conference and Exhibition, November 2012.
[5] P. Simon, Y. Gogotsi, Materials for electrochmeical capacitors, Nat. Mater. (2008) 845–854. https://doi.org/10.1038/nmat2297.
[6] R.M.A.S. Rajakaruna, Small signal transfer functions of the classical boost converter supplied by ultracapacitor banks, Second IEEE conference on Ind. Electron. and applications (2007) 692–697.
[7] T. Wei, S. Wang, Z. Qi, A supercapacitor based ride-through system for industrial drive applications, Proc. 2007 IEEE Int. Conf. Mechatronics Autom. ICMA 2007. (2007) 3833–3837. https://doi.org/10.1109/ICMA.2007.4304186.
[8] S.C. Smith, P.K. Sen, Ultracapacitors and energy storage: Applications in electrical power system, 40th North Am. Power Symp. NAPS2008. (2008) 1–6. https://doi.org/10.1109/NAPS.2008.5307299.
[9] M. Vangari, T. Pryor, L. Jiang, Supercapacitors: Review of Materials and Fabrication Methods, J. Energy Eng. 139 (2013) 72–79. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000102.
[10] Y. Wang, Supercapacitor devices based on graphene materials, J. Phys. Chem. C. 113 (2009) 13103–13107. https://doi.org/10.1021/jp902214f.
[11] V.V.N. Obreja, Supercapacitors specialities-Materials review, AIP Conf. Proc. 1597 (2014) 98–120. https://doi.org/10.1063/1.4878482.
[12] Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci. 11 (2016) 10628–10643. https://doi.org/10.20964/2016.12.50.
[13] B. Francesco, C. Luigi, Y. Guihai, M. Stoller, V. Tozzini, C.F. Andrea, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science 347 (2015) 27–43. https://doi.org/10.1126/science.1246501.
[14] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sustain. Energy Rev. 58 (2016) 1189–1206. https://doi.org/10.1016/j.rser.2015.12.249.
[15] J.A. Fernández, T. Morishita, M. Toyoda, M. Inagaki, F. Stoeckli, T.A. Centeno, Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors, J. Power Sources 175 (2008) 675–679. https://doi.org/10.1016/j.jpowsour.2007.09.042.
[16] D. Qu, Studies of the activated carbons used in double-layer supercapacitors, IFMBE Proc. 41 (2014) 1108–1110. https://doi.org/10.1007/978-3-319-00846-2_274.
[17] K. Nanaji, V. Upadhyayula, T.N. Rao, S. Anandan, Robust, environmentally benign synthesis of nanoporous graphene sheets from biowaste for ultrafast supercapacitor application, ACS Sustain. Chem. Eng. 7 (2019) 2516-2529. https://doi.org/10.1021/acssuschemeng.8b05419.
[18] Y. Wang, Y. Xia, Recent progress in supercapacitors: From materials design to system construction, Adv. Mater. 25 (2013) 5336–5342. https://doi.org/10.1002/adma.201301932.
[19] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (2010) 4863–4868. https://doi.org/10.1021/nl102661q.
[20] H. Pan, J. Li, Y.P. Feng, Carbon nanotubes for supercapacitor, Nanoscale Res. Lett. 5 (2010) 654–668. https://doi.org/10.1007/s11671-009-9508-2.
[21] H.I. Becker, United States Patent Office, (1940). https://doi.org/10.13189/cme.2016.040202.
[22] M. Dinari, M.M. Momeni, M. Goudarzirad, Nanocomposite films of polyaniline/graphene quantum dots and its supercapacitor properties, Surf. Eng. 32 (2016) 535–540. https://doi.org/10.1080/02670844.2015.1108047.
[23] S. Zhang, L. Sui, H. Dong, W. He, L. Dong, L. Yu, High-performance supercapacitor of graphene quantum dots with uniform sizes, ACS Appl. Mater. Interfaces 10 (2018) 12983–12991. https://doi.org/10.1021/acsami.8b00323.
[24] S. Mondal, U. Rana, S. Malik, Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials, Chem. Commun. 51 (2015) 12365–12368. https://doi.org/10.1039/c5cc03981a.
[25] K. Lee, H. Lee, Y. Shin, Y. Yoon, D. Kim, H. Lee, Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate, Nano Energy 26 (2016) 746–754. https://doi.org/10.1016/j.nanoen.2016.06.030.
[26] Q. Chen, Y. Hu, C. Hu, H. Cheng, Z. Zhang, H. Shao, L. Qu, Graphene quantum dots-three-dimensional graphene composites for high-performance supercapacitors, Phys. Chem. Chem. Phys. 16 (2014) 19307–19313. https://doi.org/10.1039/c4cp02761b.
[27] Y. Hu, Y. Zhao, G. Lu, N. Chen, Z. Zhang, H. Li, H. Shao, L. Qu, Graphene quantum dots–carbon nanotube hybrid arrays for supercapacitors, Nanotechnology 24 (2013) 1-7. https://doi.org/10.1088/0957-4484/24/19/195401.
[28] A.B. Ganganboina, A. Dutta Chowdhury, R.A. Doong, New avenue for appendage of graphene quantum dots on halloysite nanotubes as anode materials for high performance supercapacitors, ACS Sustain. Chem. Eng. 5 (2017) 4930–4940. https://doi.org/10.1021/acssuschemeng.7b00329.
[29] H. Jia, Y. Cai, J. Lin, H. Liang, J. Qi, J. Cao, J. Feng, W.D. Fei, Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors, Adv. Sci. 5 (2018) 1–10. https://doi.org/10.1002/advs.201700887.
[30] P. Dhar, S.S. Gaur, A. Kumar, V. Katiyar, Cellulose nanocrystal templated graphene nanoscrolls for high performance supercapacitors and hydrogen storage: An experimental and molecular simulation study, Sci. Rep. 8 (2018) 1–15. https://doi.org/10.1038/s41598-018-22123-0.
[31] Z. Xu, B. Zheng, J. Chen, C. Gao, Highly efficient synthesis of neat graphene nanoscrolls from graphene oxide by well-controlled lyophilization, Chem. Mater. 26 (2014) 6811–6818. https://doi.org/10.1021/cm503418h.
[32] F. Zeng, Y. Kuang, Y. Wang, Z. Huang, C. Fu, H. Zhou, Facile preparation of high-quality graphene scrolls from graphite oxide by a microexplosion method, Adv. Mater. 23 (2011) 4929–4932. https://doi.org/10.1002/adma.201102798.
[33] C.A. Amadei, I.Y. Stein, G.J. Silverberg, B.L. Wardle, C.D. Vecitis, Fabrication and morphology tuning of graphene oxide nanoscrolls, Nanoscale. 8 (2016) 6783–6791. https://doi.org/10.1039/c5nr07983g.
[34] B. Zheng, Z. Xu, C. Gao, Mass production of graphene nanoscrolls and their application in high rate performance supercapacitors, Nanoscale. 8 (2016) 1413–1420. https://doi.org/10.1039/c5nr07067h.
[35] K. Mohanapriya, N. Jha, Fabrication of one dimensional graphene nanoscrolls for high performance supercapacitor application, Appl. Surf. Sci. 449 (2018) 461–467. https://doi.org/10.1016/j.apsusc.2017.12.186.
[36] M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Q. An, L. Xu, C. Niu, Y. Zhao, X. Tian, P. Hu, H. Wu, L. Mai, Nanowire templated semihollow bicontinuous graphene scrolls: Designed construction, mechanism, and enhanced energy storage performance, J. Am. Chem. Soc. 135 (2013) 18176–18182. https://doi.org/10.1021/ja409027s.
[37] B.N. Zheng, C. Gao, Preparation of graphene nanoscroll/polyaniline composites and their use in high performance supercapacitors, New Carbon Mater. 31 (2016) 315–320. https://doi.org/10.1016/S1872-5805(16)60015-X.
[38] H. Cheng, C. Hu, Y. Zhao, L. Qu, Graphene fiber: A new material platform for unique applications, NPG Asia Mater. 6 (2014) e113-13. https://doi.org/10.1038/am.2014.48.
[39] Z. Xu, C. Gao, Graphene fiber: A new trend in carbon fibers, Mater. Today. 18 (2015) 480–492. https://doi.org/10.1016/j.mattod.2015.06.009.
[40] S.H. Aboutalebi, R. Jalili, D. Esrafilzadeh, M. Salari, Z. Gholamvand, S. Aminorroaya Yamini, K. Konstantinov, R.L. Shepherd, J. Chen, S.E. Moulton, P.C. Innis, A.I. Minett, J.M. Razal, G.G. Wallace, High-performance multifunctional Graphene yarns: Toward wearable all-carbon energy storage textiles, ACS Nano 8 (2014) 2456–2466. https://doi.org/10.1021/nn406026z.
[41] W. Cai, T. Lai, J. Lai, H. Xie, L. Ouyang, J. Ye, C. Yu, Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density, Sci. Rep. 6 (2016) 1–9. https://doi.org/10.1038/srep26890.
[42] Q. Chen, Y. Meng, C. Hu, Y. Zhao, H. Shao, N. Chen, L. Qu, MnO2-modified hierarchical graphene fiber electrochemical supercapacitor, J. Power Sources 247 (2014) 32–39. https://doi.org/10.1016/j.jpowsour.2013.08.045.
[43] K. Gopalsamy, Z. Xu, B. Zheng, T. Huang, L. Kou, X. Zhao, C. Gao, Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors, Nanoscale 6 (2014) 8595–8600. https://doi.org/10.1039/c4nr02615b.
[44] L. Liu, Y. Yu, C. Yan, K. Li, Z. Zheng, Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes, Nat. Commun. 6 (2015) 1–9. https://doi.org/10.1088/0950-7671/42/8/448.
[45] Q. Yang, Z. Xu, C. Gao, Graphene fiber based supercapacitors: Strategies and perspective toward high performances, J. Energy Chem. 27 (2018) 6–11. https://doi.org/10.1016/j.jechem.2017.10.023.
[46] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 6–10. https://doi.org/10.1021/nl802558y.
[47] L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors, Nano Lett. 12 (2012) 1806-1812. https://doi.org/10.1021/nl203903z.
[48] G. Sun, J. Liu, X. Zhang, X. Wang, H. Li, Y. Yu, W. Huang, H. Zhang, P. Chen, Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors, Angew. Chemie Int. Ed. 53 (2014) 12576–12580. https://doi.org/10.1002/anie.201405325.
[49] Q. Li, X. Guo, Y. Zhang, W. Zhang, C. Ge, L. Zhao, X. Wang, H. Zhang, J. Chen, Z. Wang, L. Sun, Porous graphene paper for supercapacitor applications, J. Mater. Sci. Technol. 33 (2017) 793–799. https://doi.org/10.1016/j.jmst.2017.03.018.
[50] S. Gan, L. Zhong, T. Wu, D. Han, J. Zhang, J. Ulstrup, Q. Chi, L. Niu, Spontaneous and fast growth of large-area graphene nanofilms facilitated by oil/water interfaces, Adv. Mater. 24 (2012) 3958–3964. https://doi.org/10.1002/adma.201201098.
[51] G. Wallace, R.B. Kaner, M. Muller, S. Gilje, D. Li, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2008) 101–105. https://doi.org/10.1038/nnano.2007.451.
[52] F. Gu, H. Shin, C. Biswas, G.H. Han, E.S. Kim, S.J. Chae, Layer-by-layer doping of few-layer graphene film, ACS Nano 4 (2010) 4595–4600. https://doi.org/ 10.1021/nn1008808
[53] A. Davies, P. Audette, B. Farrow, F. Hassan, Z. Chen, J.Y. Choi, A. Yu, Graphene-based flexible supercapacitors: Pulse-electropolymerization of polypyrrole on free-standing graphene films, J. Phys. Chem. C. 115 (2011) 17612–17620. https://doi.org/10.1021/jp205568v.
[54] S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem. 22 (2012) 767–784. https://doi.org/10.1039/c1jm14468e.
[55] J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater. Sci. 57 (2012) 724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003.
[56] H. Jiang, P.S. Lee, C. Li, 3D Carbon based nanostructures for advanced supercapacitors, Energy Environ. Sci. 6 (2013) 41–53. https://doi.org/10.1039/c2ee23284g.
[57] L. Liu, Z. Niu, J. Chen, Flexible supercapacitors based on carbon nanomaterials, Chinese Chem. Lett. 29 (2018) 571–581. https://doi.org/10.1016/j.cclet.2018.01.013.
[58] Y. Ma, Y. Chen, Three-dimensional graphene networks : Synthesis, properties and applications, Natl. Sci. Rev. 2 (2015) 40-53. https://doi.org/10.1093/nsr/nwu072
[59] X. Cao, Z. Yin, H. Zhang, Three-dimensional graphene materials: Preparation, structures and application in supercapacitors, Energy Environ. Sci. 7 (2014) 1850–1865. https://doi.org/10.1039/c4ee00050a.
[60] Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater. 10 (2011) 424–428. https://doi.org/10.1038/nmat3001.
[61] J. Sha, C. Gao, S.K. Lee, Y. Li, N. Zhao, J.M. Tour, Preparation of three-dimensional graphene foams using powder metallurgy templates, ACS Nano 10 (2016) 1411–1416. https://doi.org/10.1021/acsnano.5b06857.
[62] X.H. Xia, D.L. Chao, Y.Q. Zhang, Z.X. Shen, H.J. Fan, Three-dimensional graphene and their integrated electrodes, Nano Today 9 (2014) 785–807. https://doi.org/10.1016/j.nantod.2014.12.001.
[63] Q. Fang, Y. Shen, B. Chen, Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review, Chem. Eng. J. 264 (2015) 753–771. https://doi.org/10.1016/j.cej.2014.12.001.
[64] Z. Yang, S. Chabi, Y. Xia, Y. Zhu, Preparation of 3D graphene-based architectures and their applications in supercapacitors, Prog. Nat. Sci. Mater. Int. 25 (2015) 554–562. https://doi.org/10.1016/j.pnsc.2015.11.010.
[65] Y. Ping, Y. Gong, Q. Fu, C. Pan, Preparation of three-dimensional graphene foam for high performance supercapacitors, Prog. Nat. Sci. Mater. Int. 27 (2017) 177–181. https://doi.org/10.1016/j.pnsc.2017.03.005.
[66] H. Huang, Y. Tang, L. Xu, S. Tang, Y. Du, Direct formation of reduced graphene oxide and 3D lightweight nickel network composite foam by hydrohalic acids and its application for high-performance supercapacitors, ACS Appl. Mater. Interfaces 6 (2014) 10248–10257. https://doi.org/10.1021/am501635h.
[67] H. Huang, L. Xu, Y. Tang, S. Tang, Y. Du, Facile synthesis of nickel network supported three-dimensional graphene gel as a lightweight and binder-free electrode for high rate performance supercapacitor application, Nanoscale 6 (2014) 2426–2433. https://doi.org/10.1039/c3nr05952a.
[68] J. Yang, E. Zhang, X. Li, Y. Yu, J. Qu, Z. Yu, Direct reduction of graphene oxide by ni foam as a high-capacitance supercapacitor electrode, ACS Appl. Mater. Interfaces 8 (2016) 2297-2305. https://doi.org/10.1021/acsami.5b11337.
[69] S. Sivaprakash, P. Sivaprakash, A facile synthesis of graphene foam as electrode material for supercapacitor, Mater. Res. Express 3 (2016) 1–7. https://doi.org/10.1088/2053-1591/3/7/075020.
[70] P. Miao, J. He, Z. Sang, F. Zhang, J. Guo, D. Su, X. Yan, X. Li, H. Ji, Hydrothermal growth of 3D graphene on nickel foam as a substrate of nickel-cobalt-sulfur for high-performance supercapacitors, J. Alloys Compd. 732 (2018) 613–623. https://doi.org/10.1016/j.jallcom.2017.10.243.
[71] Z. Niu, J. Chen, H.H. Hng, J. Ma, X. Chen, A leavening strategy to prepare reduced graphene oxide foams, Adv. Mater. 24 (2012) 4144–4150. https://doi.org/10.1002/adma.201200197.
[72] W.Y. Tsai, R. Lin, S. Murali, L. Li Zhang, J.K. McDonough, R.S. Ruoff, P.L. Taberna, Y. Gogotsi, P. Simon, Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from -50 to 80°C, Nano Energy 2 (2013) 403–411. https://doi.org/10.1016/j.nanoen.2012.11.006.
[73] Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors, Science 332 (2011) 1537–1542. https://doi.org/10.1126./science.1200770.
[74] B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, 3D Macroporous graphene frameworks for supercapacitors with high energy and power densities, ACS Nano 6 (2012) 4020–4028. https://doi.org/10.1021/nn3003345.
[75] Y. Cai, A. Zhang, Y. Ping Feng, C. Zhang, Switching and rectification of a single light-sensitive diarylethene molecule sandwiched between graphene nanoribbons, J. Chem. Phys. 135 (2011) 1-6. https://doi.org/10.1063/1.3657435.
[76] M.P. Down, C.E. Banks, Freestanding Three-dimensional graphene macroporous supercapacitor, ACS Appl. Energy Mater. 1 (2018) 891–899. https://doi.org/10.1021/acsaem.7b00338.
[77] S. Yang, Y. Liu, Y. Hao, X. Yang, W.A. Goddard, X.L. Zhang, B. Cao, Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes, Adv. Sci. 5 (2018) 1-10. https://doi.org/10.1002/advs.201700659.
[78] X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Preparation of novel 3d graphene networks for supercapacitor applications, Small 7 (2011) 3163–3168. https://doi.org/10.1002/smll.201100990.
[79] C. Jiang, B. Zhao, J. Cheng, J. Li, H. Zhang, Z. Tang, J. Yang, Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors, Electrochim. Acta 173 (2015) 399–407. https://doi.org/10.1016/j.electacta.2015.05.081.
[80] J. Gao, H. Xuan, Y. Xu, T. Liang, X. Han, J. Yang, P. Han, D. Wang, Y. Du, Interconnected network of zinc-cobalt layered double hydroxide stick onto rGO/nickel foam for high performance asymmetric supercapacitors, Electrochim. Acta 286 (2018) 92–102. https://doi.org/10.1016/j.electacta.2018.08.043.
[81] X. Dong, J. Wang, J. Wang, M.B. Chan-Park, X. Li, L. Wang, W. Huang, P. Chen, Supercapacitor electrode based on three-dimensional graphene-polyaniline hybrid, Mater. Chem. Phys. 134 (2012) 576–580. https://doi.org/10.1016/j.matchemphys.2012.03.066.
[82] J. Ren, R.P. Ren, Y.K. Lv, Stretchable all-solid-state supercapacitors based on highly conductive polypyrrole-coated graphene foam, Chem. Eng. J. 349 (2018) 111–118. https://doi.org/10.1016/j.cej.2018.05.075.
[83] C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, A reduced graphene oxide/Co3O4 composite for supercapacitor electrode, J. Power Sources 226 (2013) 65–70. https://doi.org/10.1016/j.jpowsour.2012.10.064.
[84] X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection, ACS Nano 6 (2012) 3206–3213. https://doi.org/10.1021/nn300097q.
[85] Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes, ACS Nano 7 (2013) 174–182. https://doi.org/10.1021/nn304833s.
[86] J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor, ACS Nano 7 (2013) 6237–6243. https://doi.org/10.1021/nn4021955.
[87] W. Zhou, X. Cao, Z. Zeng, W. Shi, Y. Zhu, Q. Yan, H. Liu, J. Wang, H. Zhang, One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core-shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors, Energy Environ. Sci. 6 (2013) 2216–2221. https://doi.org/10.1039/c3ee40155c.
[88] U.M. Patil, S.C. Lee, J.S. Sohn, S.B. Kulkarni, K. V. Gurav, J.H. Kim, J.H. Kim, S. Lee, S.C. Jun, Enhanced symmetric supercapacitive performance of Co(OH)2 nanorods decorated conducting porous graphene foam electrodes, Electrochim. Acta 129 (2014) 334–342. https://doi.org/10.1016/j.electacta.2014.02.063.
[89] S. Sun, P. Wang, S. Wang, Q. Wu, S. Fang, Fabrication of MnO2/nanoporous 3D graphene for supercapacitor electrodes, Mater. Lett. 145 (2015) 141–144. https://doi.org/10.1016/j.matlet.2015.01.061.
[90] U.M. Patil, J.S. Sohn, S.B. Kulkarni, H.G. Park, Y. Jung, K.V. Gurav, J.H. Kim, S.C. Jun, A facile synthesis of hierarchical α-MnO2 nanofibers on 3D-graphene foam for supercapacitor application, Mater. Lett. 119 (2014) 135–139. https://doi.org/10.1016/j.matlet.2013.12.105.
[91] W. Deng, Y. Sun, Q. Su, E. Xie, W. Lan, Porous CoO nanobundles composited with 3D graphene foams for supercapacitors electrodes, Mater. Lett. 137 (2014) 124–127. https://doi.org/10.1016/j.matlet.2014.08.154.
[92] S. Khamlich, T. Khamliche, M.S. Dhlamini, M. Khenfouch, B.M. Mothudi, M. Maaza, Rapid microwave-assisted growth of silver nanoparticles on 3D graphene networks for supercapacitor application, J. Colloid Interface Sci. 493 (2017) 130–137. https://doi.org/10.1016/j.jcis.2017.01.020.
[93] W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, C.S. Ozkan, Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors, Sci. Rep. 4 (2014) 1–9. https://doi.org/10.1038/srep04452.
[94] X. Yu, B. Lu, Z. Xu, Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4-3D graphene hybrid electrodes, Adv. Mater. 26 (2014) 1044–1051. https://doi.org/10.1002/adma.201304148.
[95] X. Hong, B. Zhang, E. Murphy, J. Zou, F. Kim, Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors, J. Power Sources 343 (2017) 60–66. https://doi.org/10.1016/j.jpowsour.2017.01.034.
[96] A.A. Mirghni, D. Momodu, K.O. Oyedotun, J.K. Dangbegnon, N. Manyala, Electrochemical analysis of Co3(PO4)2·4H2O/graphene foam composite for enhanced capacity and long cycle life hybrid asymmetric capacitors, Electrochim. Acta 283 (2018) 374–384. https://doi.org/10.1016/j.electacta.2018.06.181.
[97] J. Hao, T. Meng, D. Shu, X. Song, H. Cheng, B. Li, X. Zhou, F. Zhang, Z. Li, C. He, Synthesis of three dimensional N,S co-doped rGO foam with high capacity and long cycling stability for supercapacitors, J. Colloid Interface Sci. 537 (2019) 57–65. https://doi.org/10.1016/j.jcis.2018.11.007.
[98] N.M. Ndiaye, B.D. Ngom, N.F. Sylla, T.M. Masikhwa, M.J. Madito, D. Momodu, T. Ntsoane, N. Manyala, Three dimensional vanadium pentoxide/graphene foam composite as positive electrode for high performance asymmetric electrochemical supercapacitor, J. Colloid Interface Sci. 532 (2018) 395–406. https://doi.org/10.1016/j.jcis.2018.08.010.
[99] K. Halab Shaeli Iessa, Y. Zhang, G. Zhang, F. Xiao, S. Wang, Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor, J. Power Sources 302 (2016) 92–97. https://doi.org/10.1016/j.jpowsour.2015.10.036.
[100] P. Yu, X. Zhao, Z. Huang, Y. Li, Q. Zhang, Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors, J. Mater. Chem. A 2 (2014) 14413–14420. https://doi.org/10.1039/c4ta02721c.
[101] S. Chabi, C. Peng, Z. Yang, Y. Xia, Y. Zhu, Three dimensional (3D) flexible graphene foam/polypyrrole composite: Towards highly efficient supercapacitors, RSC Adv. 5 (2015) 3999–4008. https://doi.org/10.1039/c4ra13743d.
[102] C. Xiong, T. Li, Y. Zhu, T. Zhao, A. Dang, H. Li, X. Ji, Y. Shang, M. Khan, Two-step approach of fabrication of interconnected nanoporous 3D reduced graphene oxide-carbon nanotube-polyaniline hybrid as a binder-free supercapacitor electrode, J. Alloys Compd. 695 (2017) 1248–1259. https://doi.org/10.1016/j.jallcom.2016.10.253.
[103] Z.S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, K. Müllen, Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors, Adv. Mater. 24 (2012) 5130–5135. https://doi.org/10.1002/adma.201201948.
[104] T. Qin, Z. Wan, Z. Wang, Y. Wen, M. Liu, S. Peng, D. He, J. Hou, F. Huang, G. Cao, 3D flexible O/N co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances, J. Power Sources 336 (2016) 455–464. https://doi.org/10.1016/j.jpowsour.2016.11.003.
[105] H. Huang, C. Lei, G. Luo, Z. Cheng, G. Li, S. Tang, Y. Du, Facile synthesis of nitrogen-doped graphene on Ni foam for high-performance supercapacitors, J. Mater. Sci. 51 (2016) 6348–6356. https://doi.org/10.1007/s10853-016-9931-6.
[106] L. Zhang, D. DeArmond, N.T. Alvarez, D. Zhao, T. Wang, G. Hou, R. Malik, W.R. Heineman, V. Shanov, Beyond graphene foam, a new form of three-dimensional graphene for supercapacitor electrodes, J. Mater. Chem. A. 4 (2016) 1876-1886. https://doi.org/10.1039/c5ta10031c.
[107] E. Senthilkumar, V. Sivasankar, B.R. Kohakade, K. Thileepkumar, M. Ramya, G. Sivagaami Sundari, S. Raghu, R.A. Kalaivani, Synthesis of nanoporous graphene and their electrochemical performance in a symmetric supercapacitor, Appl. Surf. Sci. 460 (2018) 17–24. https://doi.org/10.1016/j.apsusc.2017.10.221.
[108] Z. Xing, B. Wang, W. Gao, C. Pan, J.K. Halsted, E.S. Chong, J. Lu, X. Wang, W. Luo, C.H. Chang, Y. Wen, S. Ma, K. Amine, X. Ji, Reducing CO2 to dense nanoporous graphene by Mg/Zn for high power electrochemical capacitors, Nano Energy 11 (2014) 600–610. https://doi.org/10.1016/j.nanoen.2014.11.
[109] H. Yang, S. Kannappan, A.S. Pandian, J.H. Jang, Y.S. Lee, W. Lu, Graphene supercapacitor with both high power and energy density, Nanotechnology 28 (2017) 1-10. https://doi.org/10.1088/1361-6528/aa8948.
[110] C. Chen, C. Chen, P. Huang, F. Duan, S. Zhao, P. Li, J. Fan, W. Song, Y. Qin, NiO/nanoporous graphene composites with excellent supercapacitive performance produced by atomic layer deposition, Nanotechnology 25 (2014) 1-9. https://doi.org/10.1088/0957-4484/25/50/504001.
[111] Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films, ACS Nano 7 (2013) 4042–4049. https://doi.org/10.1021/nn4000836.
[112] G. Gorgolis, D. Karamanis, Solar Energy Materials & Solar Cells, Sol. Energy Mater. Solar Cells 144 (2016) 559–578. https://doi.org/10.1016/j.solmat.2015.09.040.
[113] P. Ngoc Hong, Carbon nanotube and graphene aerogels–The world’s 3d lightest materials for environment applications: A review, Int. J. Mater. Sci. Appl. 6 (2017) 277-283. https://doi.org/10.11648/j.ijmsa.20170606.12.
[114] G. Gorgolis, C. Galiotis, Graphene aerogels: A review, 2D Mater. 4 (2017) 1-22. https://doi.org/10.1088/2053-1583/aa7883.
[115] X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, B. Liu, Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources, J. Mater. Chem. (2011) 6494–6497. https://doi.org/10.1039/c1jm10239g.
[116] S. Ye, J. Feng, Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors, ACS Appl. Mater. Interfaces 6 (2014) 9671–9679. https://doi.org/10.1021/am502077p.
[117] H. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels, Adv. Mater. 25 (2013) 2554–2560. https://doi.org/10.1002/adma.201204576.
[118] M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher, T.F. Baumann, Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc. (2010) 14067–14069.
[119] C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores, Nano Lett. 16 (2016) 3448–3456. https://doi.org/10.1021/acs.nanolett.5b04965.
[120] H. Bai, C. Li, G. Shi, A pH-sensitive graphene oxide composite hydrogel, Chem. Commun. 46 (2010) 2376–2378. https://doi.org/10.1039/c000051e.
[121] H. Bai, C. Li, X. Wang, G. Shi, On the gelation of graphene oxide, J. Phys. Chem. C 115 (2011) 5545–5551. https://doi.org/10.1021/jp1120299.
[122] O.C. Compton, Z. An, K.W. Putz, B. Jin, B.G. Hauser, L.C. Brinson, S.T. Nguyen, Additive-free hydrogelation of graphene oxide by ultrasonication, Carbon 50 (2012) 3399–3406. https://doi.org/10.1016/j.carbon.2012.01.061.
[123] W. Chen, S. Li, C. Chen, L. Yan, Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3d graphene/nanoparticle aerogel, Adv. Mater. 23 (2011) 5679–5683. https://doi.org/10.1002/adma.201102838.
[124] Y. Tao, X. Xie, W. Lv, D. Tang, D. Kong, Z. Huang, H. Nishihara, T. Ishii, B. Li, D. Golberg, F. Kang, T. Kyotani, Q. Yang, Towards ultrahigh volumetric capacitance : Graphene derived highly dense but porous carbons for supercapacitors, Sci. Rep. 3 (2013) 1–8. https://doi.org/10.1038/srep02975.
[125] J.M. Chem, High-rate capacitive performance of graphene aerogel with a superhigh C/O molar ratio, J. Mater. Chem. 22 (2012) 23186–23193. https://doi.org/10.1039/c2jm35278h.
[126] X. Meng, L. Lu, C. Sun, Green Synthesis of three-dimensional MnO2/graphene hydrogel composites as a high-performance electrode material for supercapacitors, ACS Appl. Mater. Interfaces 10 (2018) 16474–16481. https://doi.org/10.1021/acsami.8b02354.
[127] C. Wang, H. Chen, S. Lu, Manganese Oxide/Graphene Aerogel Composites as an Outstanding Supercapacitor Electrode Material, Chem. Eur. J. 20 (2014) 517-523. https://doi.org/10.1002/chem.201303483.
[128] J. Chen, J. Song, X. Feng, Facile synthesis of graphene/polyaniline composite hydrogel for high-performance supercapacitor, Polym. Bull. 74 (2017) 27–37. https://doi.org/10.1007/s00289-016-1695-2.
[129] H. Zhou, T. Ni, X. Qing, X. Yue, G. Li, Y. Lu, One-step construction of graphene-polypyrrole hydrogels and their superior electrochemical performance, RSC Adv. 4 (2014) 4134–4139. https://doi.org/10.1039/c3ra44647f.
[130] S. Biswas, L.T. Drzal, Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes, Chem. Mater. 22 (2010) 5667–5671. https://doi.org/10.1021/cm101132g.
[131] C. Zhu, T.Y.J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Highly compressible 3D periodic graphene aerogel microlattices, Nat. Commun. 6 (2015) 1–8. https://doi.org/10.1038/ncomms7962.
[132] Q. Zhang, F. Zhang, S.P. Medarametla, H. Li, C. Zhou, D. Lin, 3D Printing of Graphene Aerogels, Small 12 (2016) 1702–1708. https://doi.org/10.1002/smll.201503524.
[133] B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, Y. Li, Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading, Joule 3 (2019) 458–470. https://doi.org/10.1016/j.joule.2018.09.020.
[134] P. Lv, X. Tang, W. Wei, Graphene/MnO2 aerogel with both high compression-tolerance ability and high capacitance, for compressible all-solid-state supercapacitors, RSC Adv. 7 (2017) 47116–47124. https://doi.org/10.1039/c7ra08428e.
[135] Y. Zhao, M.P. Li, S. Liu, M.F. Islam, Superelastic pseudocapacitors from freestanding MnO2‑decorated graphene-coated carbon nanotube aerogels, ACS Appl. Mater. Interfaces 9 (2017) 23810-23819. https://doi.org/10.1021/acsami.7b06210.
[136] Z. Yu, M. Mcinnis, J. Calderon, S. Seal, L. Zhai, J. Thomas, Functionalized graphene aerogel composites for high-performance asymmetric supercapacitors, Nano Energy 11 (2015) 611–620. https://doi.org/10.1016/j.nanoen.2014.11.030.
[137] W. Chen, D. Gui, S. Yu, C. Liu, L. Zhao, J. Liu, E.D. Gui, Composites and its electrochemical performance for supercapacitor, Chem. Mater. 18 (2016) 249–252. https://doi.org/10.1109/ICEPT.2016.7583129.
[138] G. Wu, L. Wu, J. Jin, S. Yang, G. Li, Structure and electrochemical performance of melamine/graphene aerogel composite for supercapacitors, Mater. Sci. Forum 898 (2017) 1844–1849. https://doi.org/10.4028/www.scientific.net/MSF.898.1844.
[139] N. Phattharasupakun, J. Wutthiprom, N. Ma, P. Suktha, M. Sawangphruk, High-performance supercapacitors of N-doped graphene aerogel and its nanocomposites with manganese oxide and polyaniline, J. Electrochem. Soc. 165 (2018) A1430–A1439. https://doi.org/10.1149/2.0981807jes.
[140] R. Liu, L. Wan, S. Liu, L. Pan, D. Wu, D. Zhao, An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors, Adv. Funct. Mater. 25 (2015) 526–533. https://doi.org/10.1002/adfm.201403280.
[141] L. Pei, Y. Yang, H. Chu, J. Shen, M. Ye, Self-assembled flower-like FeS2/graphene aerogel composite with enhanced electrochemical properties, Ceram. Int. 42 (2016) 5053–5061. https://doi.org/10.1016/j.ceramint.2015.11.178.
[142] N. Van Hoa, T.T.H. Quyen, N. Van Hieu, T.Q. Ngoc, P.V. Thinh, P.A. Dat, H.T.T. Nguyen, Three-dimensional reduced graphene oxide-grafted polyaniline aerogel as an active material for high performance supercapacitors, Synth. Met. 223 (2017) 192–198. https://doi.org/10.1016/j.synthmet.2016.11.021.
[143] Z. Gao, J. Yang, J. Huang, C. Xiong, Q. Yang, A three-dimensional graphene aerogel containing solvent-free polyaniline fluid for high performance supercapacitors, Nanoscale 9 (2017) 17710–17716. https://doi.org/10.1039/c7nr06847f.
[144] Z. Song, W. Liu, N. Sun, W. Wei, Z. Zhang, H. Liu, G. Liu, Z. Zhao, One-step self-assembly fabrication of three-dimensional copper oxide/graphene oxide aerogel composite material for supercapacitors, Solid State Commun. 287 (2019) 27–30. https://doi.org/10.1016/j.ssc.2018.10.007.
[145] Y. Zhou, L. Le Wen, K. Zhan, Y. Yan, B. Zhao, Three-dimensional porous graphene/nickel cobalt mixed oxide composites for high-performance hybrid supercapacitor, Ceram. Int. 44 (2018) 21848–21854. https://doi.org/10.1016/j.ceramint.2018.08.292.
[146] S. Mao, Z. Wen, H. Kim, G. Lu, P. Hurley, J. Chen, A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications, ACS Nano 6 (2012) 7505–7513. https://doi.org/10.1021/nn302818j.
[147] J. Luo, H.D. Jang, J. Huang, Effect of sheet morphology on the scalability of graphene-based ultracapacitors, ACS Nano 7 (2013) 1464–1471. https://doi.org/10.1021/nn3052378.
[148] T. Derived, Design of 3D graphene-oxide spheres and their derived hierarchical porous structures for high performance supercapacitors, Small 13 (2017) 1702474. https://doi.org/10.1002/smll.201702474.
[149] E. Hee, J. Choi, S. Park, C. Min, H. Chang, H. Dong, Size and structural effect of crumpled graphene balls on the electrochemical properties for supercapacitor application, Electrochim. Acta 222 (2016) 58–63. https://doi.org/10.1016/j.electacta.2016.11.016.
[150] X. He, H. Zhang, L. Xiaojing, N. Xiao, J. Qiu, Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors, J.Mater. Chem. A 2 (2014) 19633-19640. https://doi.org/10.1039/c4ta03323j.
[151] L. Chen, Y. Liu, Y. Zhao, N. Chen, L. Qu, Graphene-based fibers for supercapacitor applications, Nanotechnology 27 (2016) 1-19.
[152] X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, H. Zhu, Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers, Phys. Chem. Chem. Phys. 15 (2013) 17752–17757. https://doi.org/10.1039/c3cp52908h.
[153] S. Chen, L. Wang, M. Huang, L. Kang, Z. Lei, Reduced graphene oxide/Mn3O4 nanocrystals hybrid fiber for flexible all-solid-state supercapacitor with excellent volumetric energy density, Electrochim. Acta 242 (2017) 10–18. https://doi.org/10.1016/j.electacta.2017.05.013.
[154] V. Ruiz, C. Blanco, R. Santamaría, J.M. Ramos-Fernández, M. Martínez-Escandell, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, An activated carbon monolith as an electrode material for supercapacitors, Carbon 47 (2009) 195–200. https://doi.org/10.1016/j.carbon.2008.09.048.
[155] X. Ding, Y. Zhao, C. Hu, Y. Hu, Z. Dong, N. Chen, Z. Zhang, L. Qu, Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors, J. Mater. Chem. A 2 (2014) 12355–12360. https://doi.org/10.1039/c4ta01230e.
[156] V.A. Online, T. Huang, B. Zheng, L. Kou, K. Gopalsamy, Z. Xu, C. Gao, Y. Meng, Z. Wei, Flexible high performance wet-spun graphene fiber supercapacitors, RSC adv. (2013) 23957–23962. https://doi.org/10.1039/c3ra44935a.
[157] G. Qu, J. Cheng, X. Li, D. Yuan, P. Chen, X. Chen, B. Wang, H. Peng, A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode, Adv. Mater. 28 (2016) 3646–3652. https://doi.org/10.1002/adma.201600689.
[158] S. Chen, W. Ma, H. Xiang, Y. Cheng, S. Yang, W. Weng, M. Zhu, Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors, J. Power Sources 319 (2016) 271–280. https://doi.org/10.1016/j.jpowsour.2016.04.030.
[159] Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high performance wearble supercapapitors, Nano Energy 15 (2015) 642-653.
[160] X. Zhao, B. Zheng, T. Huang, C. Gao, Graphene-based single fiber supercapacitor with a coaxial structure, Nanoscale 7 (2015) 9399–9404. https://doi.org/10.1039/c5nr01737h.
[161] W. Ma, S. Chen, S. Yang, W. Chen, W. Weng, M. Zhu, Bottom-up fabrication of activated carbon fiber for all-solid-state supercapacitor with excellent electrochemical performance, ACS Appl. Mater. Interfaces 8 (2016) 14622–14627. https://doi.org/10.1021/acsami.6b04026.
[162] Y. Ma, P. Li, J.W. Sedloff, X. Zhang, H. Zhang, J. Liu, Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes, ACS Nano 9 (2015) 1352–1359. https://doi.org/10.1021/nn505412v.
[163] X. Jiang, Y. Cao, P. Li, J.Wei, K. Wang, D. Wu, H. Zhu, Polyaniline graphene carbon fiber ternary composites as supercapacitor electrodes, Mater. Lett. 140 (2015) 43-47.
https://doi.org/ 10.1016/j.matlet.2014.10.162
[164] W. Cai, T. Lai, J. Ye, A spinneret as the key component for surface-porous graphene fibers in high energy density micro-supercapacitors, J. Mater. Chem. A 3 (2015) 5060–5066. https://doi.org/10.1039/c5ta00365b.
[165] B.S. Mao, Z. Wen, Z. Bo, J. Chang, X. Huang, J. Chen, Hierarchical nanohybrids with porous cnt-networks decorated crumpled graphene balls for supercapacitors, ACS Appl. Mater. Interfaces 6 (2014) 9881-9889. https://doi.org/10.1021/am502604u.
[166] J.Y. Lee, K. Lee, Y.J. Kim, J.S. Ha, S. Lee, Sea-urchin-inspired 3d crumpled graphene balls using simultaneous etching and reduction process for high- density capacitive energy storage, Adv. Funct. Mater. 25 (2015) 3606–3614. https://doi.org/10.1002/adfm.201404507.
[167] T. Kim, G. Jung, S. Yoo, K.S. Suh, R.S. Ruoff, Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores, ACS Nano 7 (2013) 6899–6905. https://doi.org/10.1021/nn402077v.
[168] Z. Tang, X. Li, T. Sun, S. Shen, X. Huixin, J. Yang, Microporous and mesoporous materials porous crumpled graphene with hierarchical pore structure and high surface utilization efficiency for supercapacitor, Microporous Mesoporous Mater. 272 (2018) 40–43. https://doi.org/10.1016/j.micromeso.2018.06.020.
[169] T. Ha, S.K. Kim, J. Choi, H. Chang, H.D. Jang, pH controlled synthesis of porous graphene sphere and application to supercapacitors, Adv. Powder Technol. 30 (2019) 18–22. https://doi.org/10.1016/j.apt.2018.10.002.
[170] K. Xia, G. Wang, H. Zhang, Synthesis and characterization of nitrogen-doped graphene hollow spheres as electrode material for supercapacitors, J. Nanopart. Res. 19 (2017) 2-11. https://doi.org/10.1007/s11051-017-3954-z.
[171] C. Zhang, L. Wang, Y. Zhao, Y. Tian, J. Liang, Self-assembly synthesis of graphene oxide double-shell hollow spheres decorated with Mn3O4 for electrochemical supercapacitors, Carbon 107 (2016) 100–108. https://doi.org/10.1016/j.carbon.2016.05.057.