Correlation between Synthesis and Properties of Graphene

$28.50

Correlation between Synthesis and Properties of Graphene

Praveen Mishra, Badekai Ramachandra Bhat

The discovery of a modest way to obtain graphene has led to an exponential rise in the development of materials for the electrodes of supercapacitors. The fabrication of graphene since then has come a long way. The synthesis of graphene using physical and chemical methods completes the top down and bottom up sets for this wonder material. In this chapter, we will review the various methods for the preparation and their implications on the properties of graphene and subsequently the effects on the parameters of fabricated device.

Keywords
Graphene, 2D Nanoparticles, Top-down Method, Bottom up Method, Supercapacitor

Published online 12/1/2019, 38 pages

Citation: Praveen Mishra, Badekai Ramachandra Bhat, Correlation between Synthesis and Properties of Graphene, Materials Research Foundations, Vol. 64, pp 25-62, 2020

DOI: https://doi.org/10.21741/9781644900550-2

Part of the book on Graphene as Energy Storage Material for Supercapacitors

References
[1] Poonam, K. Sharma, A. Arora, S.K. Tripathi, Review of supercapacitors: Materials and devices, J. Energy Storage 21 (2019) 801-825. https://doi.org/10.1016/j.est.2019.01.010
[2] M. Winter, R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev. 104 (2004) 4245-4270. https://doi.org/10.1021/cr020730k
[3] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531. https://doi.org/10.1039/b813846j
[4] A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plée, M. Mastragostino, S. Passerini, High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte, J. Power Sources 165 (2007) 922-927. https://doi.org/10.1016/j.jpowsour.2006.12.048
[5] R.R. Rajagopal, L.S. Aravinda, R. Rajarao, B.R. Bhat, V. Sahajwalla, Activated carbon derived from non-metallic printed circuit board waste for supercapacitor application, Electrochim. Acta 211 (2016) 488-498. https://doi.org/10.1016/j.electacta.2016.06.077
[6] C. Meng, O.Z. Gall, P.P. Irazoqui, A flexible super-capacitive solid-state power supply for miniature implantable medical devices, Biomedical Microdevices 15 (2013) 973-983. https://doi.org/10.1007/s10544-013-9789-1
[7] Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes – A review, Journal of Materiomics 2 (2016) 37-54. https://doi.org/10.1016/j.jmat.2016.01.001
[8] M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes, Nano Lett. 9 (2009) 1872-1876. https://doi.org/10.1021/nl8038579
[9] S. Ruben, Electric condenser, in: U.S.P. Office (Ed.) USA, 1925.
[10] H. Becker, Low voltage electrolytic capacitor: US, 2800616, 1957.
[11] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nanoscience And Technology: A Collection of Reviews from Nature Journals, World Scientific2010, pp. 320-329. https://doi.org/10.1142/9789814287005_0033
[12] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, J. Power Sources 195 (2010) 7880-7903. https://doi.org/10.1016/j.jpowsour.2010.06.036
[13] S. Sarangapani, B.V. Tilak, C.P. Chen, Materials for electrochemical capacitors: Theoretical and experimental constraints, J. Electrochem. Soc. 143 (1996) 3791-3799. https://doi.org/10.1149/1.1837291
[14] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306 (2004) 666. https://doi.org/10.1126/science.1102896
[15] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Mater. 6 (2007) 183. https://doi.org/10.1038/nmat1849
[16] T.J. Booth, P. Blake, R.R. Nair, D. Jiang, E.W. Hill, U. Bangert, A. Bleloch, M. Gass, K.S. Novoselov, M.I. Katsnelson, A.K. Geim, Macroscopic graphene membranes and their extraordinary stiffness, Nano Lett. 8 (2008) 2442-2446. https://doi.org/10.1021/nl801412y
[17] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385. https://doi.org/10.1126/science.1157996
[18] J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene, Nat. Nanotechnol. 4 (2009) 505. https://doi.org/10.1038/nnano.2009.177
[19] Q. He, H.G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, H. Zhang, Centimeter-Long and Large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications, ACS Nano 4 (2010) 3201-3208. https://doi.org/10.1021/nn100780v
[20] D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources 196 (2011) 4873-4885. https://doi.org/10.1016/j.jpowsour.2011.02.022
[21] M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chem. Soc. Rev. 39 (2010) 4146-4157. https://doi.org/10.1039/c002690p
[22] X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41 (2012) 666-686. https://doi.org/10.1039/C1CS15078B
[23] N. Savage, Materials science: Super carbon, Nature 483 (2012) S30. https://doi.org/10.1038/483S30a
[24] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706. https://doi.org/10.1038/nature07719
[25] S. Park, J. An, J.W. Suk, R.S. Ruoff, Graphene-based actuators, Small 6 (2010) 210-212. https://doi.org/10.1002/smll.200901877
[26] A.C.H. Tsang, H.Y.H. Kwok, D.Y.C. Leung, The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials, Solid State Sci. 67 (2017) A1-A14. https://doi.org/10.1016/j.solidstatesciences.2017.03.015
[27] X. Cai, L. Lai, Z. Shen, J. Lin, Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells, J. Mater. Chem. A 5 (2017) 15423-15446. https://doi.org/10.1039/C7TA04354F
[28] N. Kheirabadi, A. Shafiekhani, Graphene/Li-ion battery, J. Appl. Phys. 112 (2012) 124323. https://doi.org/10.1063/1.4771923
[29] R.S. Dey, H.A. Hjuler, Q. Chi, Approaching the theoretical capacitance of graphene through copper foam integrated three-dimensional graphene networks, J. Mater. Chem. A 3 (2015) 6324-6329. https://doi.org/10.1039/C5TA01112D
[30] H. Huang, L. Xu, Y. Tang, S. Tang, Y. Du, Facile synthesis of nickel network supported three-dimensional graphene gel as a lightweight and binder-free electrode for high rate performance supercapacitor application, Nanoscale 6 (2014) 2426-2433. https://doi.org/10.1039/C3NR05952A
[31] T. Kuila, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials, Nanoscale 5 (2013) 52-71. https://doi.org/10.1039/C2NR32703A
[32] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034
[33] M. Beidaghi, C. Wang, Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance, Adv. Funct. Mater. 22 (2012) 4501-4510. https://doi.org/10.1002/adfm.201201292
[34] Y. Zhao, J. Liu, B. Wang, J. Sha, Y. Li, D. Zheng, M. Amjadipour, J. MacLeod, N. Motta, Supercapacitor Electrodes with Remarkable Specific Capacitance Converted from Hybrid Graphene Oxide/NaCl/Urea Films, ACS Appl. Mater. Interfaces 9 (2017) 22588-22596. https://doi.org/10.1021/acsami.7b05965
[35] K. Kakaei, M.D. Esrafili, A. Ehsani, Chapter 9 – Graphene-Based Electrochemical Supercapacitors, in: K. Kakaei, M.D. Esrafili, A. Ehsani (Eds.) Interface Science and Technology, Elsevier 2019, pp. 339-386. https://doi.org/10.1016/B978-0-12-814523-4.00009-5
[36] P.R. Wallace, The Band Theory of Graphite, Phys. Rev. 71 (1947) 622-634. https://doi.org/10.1103/PhysRev.71.622
[37] G. Ruess, F.J.M.f.C.u.v.T.a.W. Vogt, Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd, 78 (1948) 222-242. https://doi.org/10.1007/BF01141527
[38] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339-1339. https://doi.org/10.1021/ja01539a017
[39] H. Boehm, A. Clauss, G. Fischer, U.J.Z.F.N.B. Hofmann, Dünnste kohlenstoff-folien, 17 (1962) 150-153. https://doi.org/10.1515/znb-1962-0302
[40] H.-P. Boehm, A. Clauss, G. Fischer, U.J.Z.f.a.u.a.C. Hofmann, Das adsorptions verhalten sehr dünner kohlenstoff‐folien, 316 (1962) 119-127. https://doi.org/10.1002/zaac.19623160303
[41] S. Mouras, A. Hamm, D. Djurado, J.C. Cousseins, Synthesis of first stage graphite intercalation compounds with fluorides, J. Fluorine Chem. 24 (1987) 572-582.
[42] M. Bacon, S.J. Bradley, T. Nann, Graphene quantum dots, Part. Part. Syst. Char. 31 (2014) 415-428. https://doi.org/10.1002/ppsc.201300252
[43] T. Mahmoudi, Y. Wang, Y.-B. Hahn, Graphene and its derivatives for solar cells application, Nano Energy 47 (2018) 51-65. https://doi.org/10.1016/j.nanoen.2018.02.047
[44] R.S. Edwards, K.S. Coleman, Graphene synthesis: Relationship to applications, Nanoscale 5 (2013) 38-51. https://doi.org/10.1039/C2NR32629A
[45] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals, PNAS 102 (2005) 10451. https://doi.org/10.1073/pnas.0502848102
[46] R. Verdejo, M.M. Bernal, L.J. Romasanta, M.A. Lopez-Manchado, Graphene filled polymer nanocomposites, J. Mater. Chem. 21 (2011) 3301-3310. https://doi.org/10.1039/C0JM02708A
[47] P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov, Graphene-based liquid crystal device, Nano Lett. 8 (2008) 1704-1708. https://doi.org/10.1021/nl080649i
[48] Y.J.N.N. Hernandez, Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, IT McGovern, B. Holland, M. Byrne, YK Gun’Ko, JJ Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3 (2008) 563. https://doi.org/10.1038/nnano.2008.215
[49] Y. Hernandez, M. Lotya, D. Rickard, S.D. Bergin, J.N. Coleman, Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery, Langmuir 26 (2010) 3208-3213. https://doi.org/10.1021/la903188a
[50] U. Khan, A. O’Neill, M. Lotya, S. De, J.N. Coleman, High-concentration solvent exfoliation of graphene, Small 6 (2010) 864-871. https://doi.org/10.1002/smll.200902066
[51] U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, J.N. Coleman, Solvent-exfoliated graphene at extremely high concentration, Langmuir 27 (2011) 9077-9082. https://doi.org/10.1021/la201797h
[52] A. O’Neill, U. Khan, P.N. Nirmalraj, J. Boland, J.N. Coleman, Graphene dispersion and exfoliation in low boiling point solvents, J. Phys. Chem. C 115 (2011) 5422-5428. https://doi.org/10.1021/jp110942e
[53] M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid Phase production of graphene by exfoliation of graphite in surfactant/water solutions, J. Am. Chem. Soc. 131 (2009) 3611-3620. https://doi.org/10.1021/ja807449u
[54] M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, High-concentration, surfactant-stabilized graphene dispersions, ACS Nano 4 (2010) 3155-3162. https://doi.org/10.1021/nn1005304
[55] R.J. Smith, M. Lotya, J.N. Coleman, The importance of repulsive potential barriers for the dispersion of graphene using surfactants, New J. Phys. 12 (2010) 125008. https://doi.org/10.1088/1367-2630/12/12/125008
[56] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano 4 (2010) 4806-4814. https://doi.org/10.1021/nn1006368
[57] J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon 64 (2013) 225-229. https://doi.org/10.1016/j.carbon.2013.07.055
[58] S. Pei, H.-M. Cheng, The reduction of graphene oxide, Carbon 50 (2012) 3210-3228. https://doi.org/10.1016/j.carbon.2011.11.010
[59] C. Ogata, R. Kurogi, K. Awaya, K. Hatakeyama, T. Taniguchi, M. Koinuma, Y. Matsumoto, All-graphene oxide flexible solid-state supercapacitors with enhanced electrochemical performance, ACS Appl. Mater. Interfaces 9 (2017) 26151-26160. https://doi.org/10.1021/acsami.7b04180
[60] A.K. Das, S. Sahoo, P. Arunachalam, S. Zhang, J.-J. Shim, Facile synthesis of Fe3O4 nanorod decorated reduced graphene oxide (RGO) for supercapacitor application, RSC Advances 6 (2016) 107057-107064. https://doi.org/10.1039/C6RA23665K
[61] T. Purkait, G. Singh, D. Kumar, M. Singh, R.S. Dey, High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks, Sci. Rep. 8 (2018) 640. https://doi.org/10.1038/s41598-017-18593-3
[62] L.M. Viculis, J.J. Mack, R.B. Kaner, A Chemical route to carbon nanoscrolls, Science 299 (2003) 1361. https://doi.org/10.1126/science.1078842
[63] C. Vallés, C. Drummond, H. Saadaoui, C.A. Furtado, M. He, O. Roubeau, L. Ortolani, M. Monthioux, A. Pénicaud, Solutions of negatively charged graphene sheets and ribbons, J. Am. Chem. Soc. 130 (2008) 15802-15804. https://doi.org/10.1021/ja808001a
[64] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir–Blodgett films, Nat. Nanotechnol.3 (2008) 538. https://doi.org/10.1038/nnano.2008.210
[65] H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, W. Zhang, Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism, J. Mater. Chem. 22 (2012) 10452-10456. https://doi.org/10.1039/c2jm00092j
[66] L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R.B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets, J. Mater. Chem. 15 (2005) 974-978. https://doi.org/10.1039/b413029d
[67] D. Chung, Exfoliation of graphite, J. Mater. Sci. 22 (1987) 4190-4198. https://doi.org/10.1007/BF01132008
[68] T. Wei, Z. Fan, G. Luo, C. Zheng, D. Xie, A rapid and efficient method to prepare exfoliated graphite by microwave irradiation, Carbon 47 (2009) 337-339. https://doi.org/10.1016/j.carbon.2008.10.013
[69] S. Malik, A. Vijayaraghavan, R. Erni, K. Ariga, I. Khalakhan, J.P. Hill, High purity graphenes prepared by a chemical intercalation method, Nanoscale 2 (2010) 2139-2143. https://doi.org/10.1039/c0nr00248h
[70] W. Gu, W. Zhang, X. Li, H. Zhu, J. Wei, Z. Li, Q. Shu, C. Wang, K. Wang, W. Shen, F. Kang, D. Wu, Graphene sheets from worm-like exfoliated graphite, J. Mater. Chem. 19 (2009) 3367-3369. https://doi.org/10.1039/b904093p
[71] S.R. Dhakate, N. Chauhan, S. Sharma, J. Tawale, S. Singh, P.D. Sahare, R.B. Mathur, An approach to produce single and double layer graphene from re-exfoliation of expanded graphite, Carbon 49 (2011) 1946-1954. https://doi.org/10.1016/j.carbon.2010.12.068
[72] W. Fu, J. Kiggans, S.H. Overbury, V. Schwartz, C. Liang, Low-temperature exfoliation of multilayer-graphene material from FeCl3 and CH3NO2 co-intercalated graphite compound, Chem. Comm. 47 (2011) 5265-5267. https://doi.org/10.1039/c1cc10508f
[73] A. Safavi, M. Tohidi, F.A. Mahyari, H. Shahbaazi, One-pot synthesis of large scale graphene nanosheets from graphite–liquid crystal composite via thermal treatment, J. Mater. Chem. 22 (2012) 3825-3831. https://doi.org/10.1039/c2jm13929d
[74] N.-W. Pu, C.-A. Wang, Y. Sung, Y.-M. Liu, M.-D. Ger, Production of few-layer graphene by supercritical CO2 exfoliation of graphite, Mater. Lett. 63 (2009) 1987-1989. https://doi.org/10.1016/j.matlet.2009.06.031
[75] L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure, Berichte der deutschen chemischen Gesellschaft 31 (1898) 1481-1487. https://doi.org/10.1002/cber.18980310237
[76] Brodie, XIII. On the atomic weight of graphite, Trans. Royal Soc. London 149 (1859) 249-259. https://doi.org/10.1098/rstl.1859.0013
[77] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228-240. https://doi.org/10.1039/B917103G
[78] W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon 48 (2010) 1146-1152. https://doi.org/10.1016/j.carbon.2009.11.037
[79] X. Gao, J. Jang, S. Nagase, Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design, J. Phys. Chem. C 114 (2010) 832-842. https://doi.org/10.1021/jp909284g
[80] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2008) 101. https://doi.org/10.1038/nnano.2007.451
[81] H.-J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv. Funct. Mater. 19 (2009) 1987-1992. https://doi.org/10.1002/adfm.200900167
[82] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon 47 (2009) 145-152. https://doi.org/10.1016/j.carbon.2008.09.045
[83] H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano 2 (2008) 463-470. https://doi.org/10.1021/nn700375n
[84] X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8 (2008) 323-327. https://doi.org/10.1021/nl072838r
[85] W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide, Nat. Chem. 1 (2009) 403. https://doi.org/10.1038/nchem.281
[86] M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C 114 (2010) 6426-6432. https://doi.org/10.1021/jp100603h
[87] S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon 48 (2010) 4466-4474. https://doi.org/10.1016/j.carbon.2010.08.006
[88] M. Faraji, A. Abedini, Fabrication of electrochemically interconnected MoO3/GO/MWCNTs/graphite sheets for high performance all-solid-state symmetric supercapacitor, Int. J. Hydrogen Energy 44 (2019) 2741-2751. https://doi.org/10.1016/j.ijhydene.2018.12.015
[89] Y. Cheng, Y. Zhang, Q. Wang, C. Meng, Synthesis of amorphous MnSiO3/graphene oxide with excellent electrochemical performance as supercapacitor electrode, Colloids Surf. A: Physicochem. Eng. Aspects 562 (2019) 93-100. https://doi.org/10.1016/j.colsurfa.2018.11.011
[90] G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, J. Yao, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation, Carbon 47 (2009) 3242-3246. https://doi.org/10.1016/j.carbon.2009.07.040
[91] J.M. Englert, J. Röhrl, C.D. Schmidt, R. Graupner, M. Hundhausen, F. Hauke, A. Hirsch, Soluble graphene: generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile, Adv. Mater. 21 (2009) 4265-4269. https://doi.org/10.1002/adma.200901578
[92] D.A.C. Brownson, J.P. Metters, D.K. Kampouris, C.E. Banks, Graphene electrochemistry: Surfactants inherent to graphene can dramatically effect electrochemical processes, Electroanal. 23 (2011) 894-899. https://doi.org/10.1002/elan.201000708
[93] C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A.N. Khlobystov, L.-J. Li, High-quality thin graphene films from fast electrochemical exfoliation, ACS Nano 5 (2011) 2332-2339. https://doi.org/10.1021/nn200025p
[94] J. Wang, K.K. Manga, Q. Bao, K.P. Loh, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte, J. Am. Chem. Soc. 133 (2011) 8888-8891. https://doi.org/10.1021/ja203725d
[95] K. Suslick, G.J.A.R.M.S. Price, Interaction of acoustic waves and matter at a molecular or atomic level, J. Phys. D Appl. Phys. 29 (1999) 295-326. https://doi.org/10.1146/annurev.matsci.29.1.295
[96] S. Farhat, C.D. Scott, Review of the arc process modeling for fullerene and nanotube production, J. Nanosci. Nanotechnol. 6 (2006) 1189-1210. https://doi.org/10.1166/jnn.2006.331
[97] K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge Method, J. Phys. Chem. C 113 (2009) 4257-4259. https://doi.org/10.1021/jp900791y
[98] Y. Chen, H. Zhao, L. Sheng, L. Yu, K. An, J. Xu, Y. Ando, X. Zhao, Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2–inert gas mixtures, Chem. Phys. Lett. 538 (2012) 72-76. https://doi.org/10.1016/j.cplett.2012.04.020
[99] B. Shen, J. Ding, X. Yan, W. Feng, J. Li, Q. Xue, Influence of different buffer gases on synthesis of few-layered graphene by arc discharge method, Appl. Surf. Sci. 258 (2012) 4523-4531. https://doi.org/10.1016/j.apsusc.2012.01.019
[100] D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458 (2009) 872. https://doi.org/10.1038/nature07872
[101] P. Kumar, L.S. Panchakarla, C.N.R. Rao, Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons, Nanoscale 3 (2011) 2127-2129. https://doi.org/10.1039/c1nr10137d
[102] L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes, Nature 458 (2009) 877. https://doi.org/10.1038/nature07919
[103] L. Valentini, Formation of unzipped carbon nanotubes by CF4 plasma treatment, Diamond Rel. Mater. 20 (2011) 445-448. https://doi.org/10.1016/j.diamond.2011.01.038
[104] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54 (1996) 17954-17961. https://doi.org/10.1103/PhysRevB.54.17954
[105] L. Xie, H. Wang, C. Jin, X. Wang, L. Jiao, K. Suenaga, H. Dai, Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical Properties, J. Am. Chem. Soc. 133 (2011) 10394-10397. https://doi.org/10.1021/ja203860a
[106] S. Cho, K. Kikuchi, A. Kawasaki, Radial followed by longitudinal unzipping of multiwalled carbon nanotubes, Carbon 49 (2011) 3865-3872. https://doi.org/10.1016/j.carbon.2011.05.023
[107] Y.-R. Kang, Y.-L. Li, M.-Y. Deng, Precise unzipping of flattened carbon nanotubes to regular graphene nanoribbons by acid cutting along the folded edges, J. Mater. Chem. 22 (2012) 16283-16287. https://doi.org/10.1039/c2jm33385f
[108] J.H. Warner, F. Schaffel, M. Rummeli, A. Bachmatiuk, Graphene: Fundamentals and emergent applications, Newnes2012.
[109] E. Baddour Carole, C. Briens, Carbon nanotube synthesis: A review, Int. J. Chem. Reactor Eng. 3 (2005). https://doi.org/10.2202/1542-6580.1279
[110] B. Deng, Z. Liu, H. Peng, Toward mass production of CVD graphene films, Adv. Mater. 0 (2018) 1800996. https://doi.org/10.1002/adma.201800996
[111] X. Li, W. Cai, L. Colombo, R.S. Ruoff, Evolution of graphene growth on ni and cu by carbon isotope labeling, Nano Lett. 9 (2009) 4268-4272. https://doi.org/10.1021/nl902515k
[112] J. Wintterlin, M.L. Bocquet, Graphene on metal surfaces, Surf. Sci. 603 (2009) 1841-1852. https://doi.org/10.1016/j.susc.2008.08.037
[113] M. Batzill, The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects, Surf. Sci. Rep. 67 (2012) 83-115. https://doi.org/10.1016/j.surfrep.2011.12.001
[114] H. An, W.-J. Lee, J. Jung, Graphene synthesis on Fe foil using thermal CVD, Current Appl. Phys. 11 (2011) S81-S85. https://doi.org/10.1016/j.cap.2011.03.077
[115] D. Kondo, K. Yagi, M. Sato, M. Nihei, Y. Awano, S. Sato, N. Yokoyama, Selective synthesis of carbon nanotubes and multi-layer graphene by controlling catalyst thickness, Chem. Phys. Lett. 514 (2011) 294-300. https://doi.org/10.1016/j.cplett.2011.08.042
[116] E. Sutter, P. Albrecht, F.E. Camino, P. Sutter, Monolayer graphene as ultimate chemical passivation layer for arbitrarily shaped metal surfaces, Carbon 48 (2010) 4414-4420. https://doi.org/10.1016/j.carbon.2010.07.058
[117] E. Sutter, P. Albrecht, P.J.A.P.L. Sutter, Graphene growth on polycrystalline Ru thin films, Appl. Phys. Lett. 95 (2009) 133109. https://doi.org/10.1063/1.3224913
[118] P.W. Sutter, P.M. Albrecht, E.A. Sutter, Graphene growth on epitaxial Ru thin films on sapphire, Applied Physics Letters 97 (2010) 213101. https://doi.org/10.1063/1.3518490
[119] S. Wang, Y. Pei, X. Wang, H. Wang, Q. Meng, H. Tian, X. Zheng, W. Zheng, Y.J.J.o.P.D.A.P. Liu, Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition, J. Phys. D Appl. Phys. 43 (2010) 455402. https://doi.org/10.1088/0022-3727/43/45/455402
[120] M.E. Ramón, A. Gupta, C. Corbet, D.A. Ferrer, H.C. Movva, G. Carpenter, L. Colombo, G. Bourianoff, M. Doczy, D.J.A.N. Akinwande, CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films, ACS Nano 5 (2011) 7198-7204. https://doi.org/10.1021/nn202012m
[121] N. Zhan, G. Wang, J.J.A.P.A. Liu, Cobalt-assisted large-area epitaxial graphene growth in thermal cracker enhanced gas source molecular beam epitaxy, Appl. Phys. A 105 (2011) 341-345. https://doi.org/10.1007/s00339-011-6612-9
[122] H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C.M. Orofeo, M. Tsuji, K.-i. Ikeda, S. Mizuno, Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire, ACS Nano 4 (2010) 7407-7414. https://doi.org/10.1021/nn102519b
[123] E. Rut’kov, A.J.P.o.t.S.S. Kuz’michev, Carbon interaction with rhodium surface: Adsorption, dissolution, segregation, growth of graphene layers, Phys. Solid State 53 (2011) 1092-1098. https://doi.org/10.1134/S1063783411050246
[124] S. Roth, J. Osterwalder, T.J.S.S. Greber, Synthesis of epitaxial graphene on rhodium from 3-pentanone, Surf. Sci. 605 (2011) L17-L19. https://doi.org/10.1016/j.susc.2011.02.007
[125] F. Müller, S. Grandthyll, C. Zeitz, K. Jacobs, S. Hüfner, S. Gsell, M.J.P.R.B. Schreck, Epitaxial growth of graphene on Ir (111) by liquid precursor deposition, Phys. Rev. B 84 (2011) 075472. https://doi.org/10.1103/PhysRevB.84.075472
[126] C. Vo-Van, A. Kimouche, A. Reserbat-Plantey, O. Fruchart, P. Bayle-Guillemaud, N. Bendiab, J.J.A.p.l. Coraux, Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire, Appl. Phys. Lett. 98 (2011) 181903. https://doi.org/10.1063/1.3585126
[127] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J.J.N.l. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9 (2008) 30-35. https://doi.org/10.1021/nl801827v
[128] Y.Z. LG De Arco, CW Schlenker, K. Ryu, ME Thompson, C. Zhou Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano 4 (2010) 2865. https://doi.org/10.1021/nn901587x
[129] S.J. Chae, F. Güneş, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S.M. Yoon, J.Y. Choi, M.H.J.A.M. Park, Synthesis of large‐area graphene layers on poly‐nickel substrate by chemical vapor deposition: Wrinkle formation, Adv. Mater. 21 (2009) 2328-2333. https://doi.org/10.1002/adma.200803016
[130] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H.J.n. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706. https://doi.org/10.1038/nature07719
[131] S.-Y. Kwon, C.V. Ciobanu, V. Petrova, V.B. Shenoy, J. Bareno, V. Gambin, I. Petrov, S.J.N.l. Kodambaka, Growth of semiconducting graphene on palladium, Nano Lett. 9 (2009) 3985-3990. https://doi.org/10.1021/nl902140j
[132] Y. Murata, S. Nie, A. Ebnonnasir, E. Starodub, B. Kappes, K. McCarty, C. Ciobanu, S.J.P.R.B. Kodambaka, Growth structure and work function of bilayer graphene on Pd (111), Phys. Rev. B 85 (2012) 205443. https://doi.org/10.1103/PhysRevB.85.205443
[133] B.J. Kang, J.H. Mun, C.Y. Hwang, B.J.J.J.o.A.P. Cho, Monolayer graphene growth on sputtered thin film platinum, J. Appl. Phys. 106 (2009) 104309. https://doi.org/10.1063/1.3254193
[134] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E.J.s. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324 (2009) 1312-1314. https://doi.org/10.1126/science.1171245
[135] Y. Hao, M. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B.J.S. Fallahazad, The role of surface oxygen in the growth of large single-crystal graphene on copper, Science (2013) 1243879. https://doi.org/10.1126/science.1243879
[136] Q. Li, H. Chou, J.-H. Zhong, J.-Y. Liu, A. Dolocan, J. Zhang, Y. Zhou, R.S. Ruoff, S. Chen, W. Cai, Growth of adlayer graphene on Cu studied by carbon isotope labeling, Nano Lett.13 (2013) 486-490. https://doi.org/10.1021/nl303879k
[137] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett. 9 (2009) 4359-4363. https://doi.org/10.1021/nl902623y
[138] Z. Luo, Y. Lu, D.W. Singer, M.E. Berck, L.A. Somers, B.R. Goldsmith, A.C.J.C.o.M. Johnson, Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure, Chem. Mater. 23 (2011) 1441-1447. https://doi.org/10.1021/cm1028854
[139] T. Oznuluer, E. Pince, E.O. Polat, O. Balci, O. Salihoglu, C.J.A.P.L. Kocabas, Synthesis of graphene on gold, Applied Physics Letters 98 (2011) 183101. https://doi.org/10.1063/1.3584006
[140] T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q.J. Yu, Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys, Nat. Mater. 15 (2016) 43. https://doi.org/10.1038/nmat4477
[141] Y. Wu, H. Chou, H. Ji, Q. Wu, S. Chen, W. Jiang, Y. Hao, J. Kang, Y. Ren, R.D.J.A.N. Piner, Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu–Ni alloy foils, ACS Nano 6 (2012) 7731-7738. https://doi.org/10.1021/nn301689m
[142] S. Chen, W. Cai, R.D. Piner, J.W. Suk, Y. Wu, Y. Ren, J. Kang, R.S.J.N.l. Ruoff, Synthesis and characterization of large-area graphene and graphite films on commercial Cu–Ni alloy foils, Nano letters 11 (2011) 3519-3525. https://doi.org/10.1021/nl201699j
[143] R.S. Weatherup, B.C. Bayer, R. Blume, C. Ducati, C. Baehtz, R. Schlogl, S.J.N.l. Hofmann, In situ characterization of alloy catalysts for low-temperature graphene growth, Nano Lett. 11 (2011) 4154-4160. https://doi.org/10.1021/nl202036y
[144] M. Zeng, L. Tan, J. Wang, L. Chen, M.H. Rümmeli, L.J.C.o.M. Fu, Liquid metal: An innovative solution to uniform graphene films, Chem. Mater. 26 (2014) 3637-3643. https://doi.org/10.1021/cm501571h
[145] E.V. Lobiak, E.V. Shlyakhova, L.G. Bulusheva, P.E. Plyusnin, Y.V. Shubin, A.V. Okotrub, Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes, J. Alloys Compd. 621 (2015) 351-356. https://doi.org/10.1016/j.jallcom.2014.09.220
[146] B. Dai, L. Fu, Z. Zou, M. Wang, H. Xu, S. Wang, Z. Liu, Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene, Nat. Commun. 2 (2011) 522. https://doi.org/10.1038/ncomms1539
[147] R. John, A. Ashokreddy, C. Vijayan, T.J.N. Pradeep, Single-and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition, Nanotechnology 22 (2011) 165701. https://doi.org/10.1088/0957-4484/22/16/165701
[148] H. Gullapalli, A.L. Mohana Reddy, S. Kilpatrick, M. Dubey, P.M.J.S. Ajayan, Graphene growth via carburization of stainless steel and application in energy storage, Small 7 (2011) 1697-1700. https://doi.org/10.1002/smll.201100111
[149] L.F. Dumée, L. He, Z. Wang, P. Sheath, J. Xiong, C. Feng, M.Y. Tan, F. She, M. Duke, S. Gray, A. Pacheco, P. Hodgson, M. Majumder, L. Kong, Growth of nano-textured graphene coatings across highly porous stainless steel supports towards corrosion resistant coatings, Carbon 87 (2015) 395-408. https://doi.org/10.1016/j.carbon.2015.02.042
[150] S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5 (2010) 574. https://doi.org/10.1038/nnano.2010.132
[151] L. Baraton, Z. He, C.S. Lee, J.L. Maurice, C.S. Cojocaru, Y.H. Lee, D. Pribat, Study of Graphene Growth Mechanism on Nickel Thin Films, in: L. Ottaviano, V. Morandi (Eds.) GraphITA 2011, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 1-7. https://doi.org/10.1007/978-3-642-20644-3_1
[152] Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D.J. Wei, Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition, Nat. Mater. 10 (2011) 443. https://doi.org/10.1038/nmat3010
[153] Y. Zhang, L. Gomez, F.N. Ishikawa, A. Madaria, K. Ryu, C. Wang, A. Badmaev, C.W. Zhou, Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition, J. Phys. Chem. Lett. 1 (2010) 3101-3107. https://doi.org/10.1021/jz1011466
[154] S. Bhaviripudi, X. Jia, M.S. Dresselhaus, J. Kong, Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst, Nano Lett. 10 (2010) 4128-4133. https://doi.org/10.1021/nl102355e
[155] S. Kumar, N. McEvoy, T. Lutz, G.P. Keeley, V. Nicolosi, C.P. Murray, W.J. Blau, G.S. Duesberg, Gas phase controlled deposition of high quality large-area graphene films, Chem. Comm. 46 (2010) 1422-1424. https://doi.org/10.1039/b919725g
[156] B. Zhang, W.H. Lee, R. Piner, I. Kholmanov, Y. Wu, H. Li, H. Ji, R.S. Ruoff, Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils, ACS Nano 6 (2012) 2471-2476. https://doi.org/10.1021/nn204827h
[157] I. Vlassiouk, P. Fulvio, H. Meyer, N. Lavrik, S. Dai, P. Datskos, S. Smirnov, Large scale atmospheric pressure chemical vapor deposition of graphene, Carbon 54 (2013) 58-67. https://doi.org/10.1016/j.carbon.2012.11.003
[158] J. Xu, J. Hu, Q. Li, R. Wang, W. Li, Y. Guo, Y. Zhu, F. Liu, Z. Ullah, G. Dong, Z. Zeng, L. Liu, Fast batch production of high-quality graphene films in a sealed thermal molecular movement system, Small 13 (2017) 1700651. https://doi.org/10.1002/smll.201700651
[159] T. Hesjedal, Continuous roll-to-roll growth of graphene films by chemical vapor deposition, Appl. Phys. Lett. 98 (2011) 133106. https://doi.org/10.1063/1.3573866
[160] B. Deng, P.-C. Hsu, G. Chen, B.N. Chandrashekar, L. Liao, Z. Ayitimuda, J. Wu, Y. Guo, L. Lin, Y. Zhou, M. Aisijiang, Q. Xie, Y. Cui, Z. Liu, H. Peng, Roll-to-Roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes, Nano Lett. 15 (2015) 4206-4213. https://doi.org/10.1021/acs.nanolett.5b01531
[161] E.S. Polsen, D.Q. McNerny, B. Viswanath, S.W. Pattinson, A. John Hart, High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor, Sci. Rep. 5 (2015) 10257. https://doi.org/10.1038/srep10257
[162] G. Zhong, X. Wu, L. D’Arsie, K.B.K. Teo, N.L. Rupesinghe, A. Jouvray, J. Robertson, Growth of continuous graphene by open roll-to-roll chemical vapor deposition, Appl. Phys. Lett. 109 (2016) 193103. https://doi.org/10.1063/1.4967010
[163] R. Piner, H. Li, X. Kong, L. Tao, I.N. Kholmanov, H. Ji, W.H. Lee, J.W. Suk, J. Ye, Y. Hao, S. Chen, C.W. Magnuson, A.F. Ismach, D. Akinwande, R.S. Ruoff, Graphene synthesis via magnetic inductive heating of copper substrates, ACS Nano 7 (2013) 7495-7499. https://doi.org/10.1021/nn4031564
[164] T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, D. Hobara, Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process, Appl. Phys. Lett. 102 (2013) 023112. https://doi.org/10.1063/1.4776707
[165] J. Ryu, Y. Kim, D. Won, N. Kim, J.S. Park, E.K. Lee, D. Cho, S.P. Cho, S.J. Kim, G.H. Ryu, H.A.S. Shin, Z. Lee, B.H. Hong, S. Cho, Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition, ACS Nano 8 (2014) 950-956. https://doi.org/10.1021/nn405754d
[166] T.H. Bointon, M.D. Barnes, S. Russo, M.F. Craciun, High quality monolayer graphene synthesized by resistive heating cold wall chemical vapor deposition, Adv. Mater. 27 (2015) 4200-4206. https://doi.org/10.1002/adma.201501600
[167] R.S. Edwards, K.S. Coleman, Graphene film growth on polycrystalline metals, Acc. Chem. Res. 46 (2013) 23-30. https://doi.org/10.1021/ar3001266
[168] E. Auchter, J. Marquez, S.L. Yarbro, E. Dervishi, A facile alternative technique for large-area graphene transfer via sacrificial polymer, AIP Adv. 7 (2017) 125306. https://doi.org/10.1063/1.4986780
[169] X. Liang, B.A. Sperling, I. Calizo, G. Cheng, C.A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A.R. Hight Walker, Z. Liu, L.M. Peng, C.A. Richter, Toward clean and crackless transfer of graphene, ACS Nano 5 (2011) 9144-9153. https://doi.org/10.1021/nn203377t
[170] N. Liu, Z. Pan, L. Fu, C. Zhang, B. Dai, Z. Liu, The origin of wrinkles on transferred graphene, Nano Res. 4 (2011) 996. https://doi.org/10.1007/s12274-011-0156-3
[171] V.P. Verma, S. Das, I. Lahiri, W. Choi, Large-area graphene on polymer film for flexible and transparent anode in field emission device, Appl. Phys. Lett. 96 (2010) 203108. https://doi.org/10.1063/1.3431630
[172] Z.Y. Juang, C.Y. Wu, A.Y. Lu, C.Y. Su, K.C. Leou, F.R. Chen, C.H. Tsai, Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process, Carbon 48 (2010) 3169-3174. https://doi.org/10.1016/j.carbon.2010.05.001
[173] Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, K.P. Loh, Electrochemical delamination of CVD-Grown graphene film: Toward the recyclable use of copper catalyst, ACS Nano 5 (2011) 9927-9933. https://doi.org/10.1021/nn203700w
[174] M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y.-L. Chueh, Y. Zhang, R. Maboudian, A. Javey, Metal-catalyzed crystallization of amorphous carbon to graphene, Appl. Phys. Lett. 96 (2010) 063110. https://doi.org/10.1063/1.3318263
[175] J.M. García, R. He, M.P. Jiang, P. Kim, L.N. Pfeiffer, A. Pinczuk, Multilayer graphene grown by precipitation upon cooling of nickel on diamond, Carbon 49 (2011) 1006-1012. https://doi.org/10.1016/j.carbon.2010.11.008
[176] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Growth of graphene from solid carbon sources, Nature 468 (2010) 549. https://doi.org/10.1038/nature09579
[177] H.-J. Shin, W.M. Choi, S.M. Yoon, G.H. Han, Y.S. Woo, E.S. Kim, S.J. Chae, X.S. Li, A. Benayad, D.D. Loc, F. Gunes, Y.H. Lee, J.Y. Choi, Transfer-free growth of few-layer graphene by self-assembled monolayers, Advanced Materials 23 (2011) 4392-4397. https://doi.org/10.1002/adma.201102526
[178] G. Ruan, Z. Sun, Z. Peng, J.M. Tour, Growth of graphene from food, insects, and waste, ACS Nano 5 (2011) 7601-7607. https://doi.org/10.1021/nn202625c
[179] A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Substrate-free gas-phase synthesis of graphene sheets, Nano Lett. 8 (2008) 2012-2016. https://doi.org/10.1021/nl8011566
[180] A. Dato, M. Frenklach, Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors, New J. Phys. 12 (2010) 125013. https://doi.org/10.1088/1367-2630/12/12/125013
[181] C.R. Herron, K.S. Coleman, R.S. Edwards, B.G. Mendis, Simple and scalable route for the ‘bottom-up’ synthesis of few-layer graphene platelets and thin films, J. Mater. Chem. 21 (2011) 3378-3383. https://doi.org/10.1039/c0jm03437a
[182] Z.S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.M. Cheng, Synthesis of high-quality graphene with a pre-determined number of layers, Carbon 47 (2009) 493-499. https://doi.org/10.1016/j.carbon.2008.10.031
[183] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312 (2006) 1191. https://doi.org/10.1126/science.1125925
[184] E. Rollings, G.H. Gweon, S.Y. Zhou, B.S. Mun, J.L. McChesney, B.S. Hussain, A.V. Fedorov, P.N. First, W.A. de Heer, A. Lanzara, Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate, J. Phys. Chem. Solids 67 (2006) 2172-2177. https://doi.org/10.1016/j.jpcs.2006.05.010
[185] Y. Qi, S.H. Rhim, G.F. Sun, M. Weinert, L. Li, Epitaxial graphene on SiC(0001): More than just honeycombs, Phys. Rev. Lett. 105 (2010) 085502. https://doi.org/10.1103/PhysRevLett.105.085502
[186] T. Ohta, F. El Gabaly, A. Bostwick, J.L. McChesney, K.V. Emtsev, A.K. Schmid, T. Seyller, K. Horn, E. Rotenberg, Morphology of graphene thin film growth on SiC (0001), New J. Phys. 10 (2008) 023034. https://doi.org/10.1088/1367-2630/10/2/023034
[187] J. Hass, W.A. de Heer, E.H. Conrad, The growth and morphology of epitaxial multilayer graphene, J. Phys. Condensed Matter 20 (2008) 323202. https://doi.org/10.1088/0953-8984/20/32/323202
[188] Z.G. Cambaz, G. Yushin, S. Osswald, V. Mochalin, Y. Gogotsi, Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC, Carbon 46 (2008) 841-849. https://doi.org/10.1016/j.carbon.2008.02.013
[189] Z.Y. Juang, C.Y. Wu, C.W. Lo, W.Y. Chen, C.F. Huang, J.C. Hwang, F.R. Chen, K.C. Leou, C.H. Tsai, Synthesis of graphene on silicon carbide substrates at low temperature, Carbon 47 (2009) 2026-2031. https://doi.org/10.1016/j.carbon.2009.03.051
[190] K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nat. Mater. 8 (2009) 203. https://doi.org/10.1038/nmat2382
[191] A.L. Vázquez de Parga, F. Calleja, B. Borca, M.C.G. Passeggi, J.J. Hinarejos, F. Guinea, R. Miranda, Periodically rippled graphene: Growth and spatially resolved electronic structure, Phys. Rev. Lett.100 (2008) 056807. https://doi.org/10.1103/PhysRevLett.100.056807
[192] P.W. Sutter, J.-I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium, Nat. Mater. 7 (2008) 406. https://doi.org/10.1038/nmat2166