Fabrication Approaches for Graphene in Supercapacitors

$28.50

Fabrication Approaches for Graphene in Supercapacitors

Riya Thomas, B. Manoj

Supercapacitors are promising candidates with tremendous potential to replace conventional batteries because of their remarkable properties. The exceptional physical, mechanical and chemical features of 2D materials, such as graphene help to utilize the close relationship between the structure and its functional properties to deliver a high performance supercapacitor. The possibilities are vast, if a compatible synthesis route for graphene is feasible. In this chapter, the synthesis approach for graphene, outcomes and challenges involved are discussed.

Keywords
Fabrication, Electric Double Layer Capacitor, Advanced Electrode, Energy Storage, Energy Conversion, Free-Standing Graphene

Published online 12/1/2020, 24 pages

Citation: Riya Thomas, B. Manoj, Fabrication Approaches for Graphene in Supercapacitors, Materials Research Foundations, Vol. 64, pp 1-24, 2020

DOI: https://doi.org/10.21741/9781644900550-1

Part of the book on Graphene as Energy Storage Material for Supercapacitors

References
[1] T. Purkait, G. Singh, D. Kumar, M. Singh, R.S. Dey, High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks, Sci. Rep. 8 (2018) 640. https://doi.org/10.1038/s41598-017-18593-3.
[2] H. Yang, S. Kannappan, A.S. Pandian, J.H. Jang, Y.S. Lee, W. Lu, Graphene supercapacitor with both high power and energy density, Nanotechnology 44 (2017) 445401. https://doi.org/10.1088/1361-6528/aa8948.
[3] M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes, Nano Lett. 5 (2009) 1872-1876. https://doi.org/10.1021/nl8038579
[4] Y. Lei, Z.H. Huang, Y. Yang, W. Shen, Y. Zheng, H. Sun, F. Kang, Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor, Sci. Rep. 3 (2013) 2477. https://doi.org/10.1038/srep02477
[5] D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage, Nat. Nanotechnol. 7 (2014) 555-562. https://doi.org/10.1038/nnano.2014.93
[6] S. Zhai, W. Jiang, L. Wei, H.E. Karahan, Y. Yuan, A.K. Ng, Y. Chen, All-carbon solid-state yarn supercapacitors from activated carbon and carbon fibers for smart textiles, Mater. Horiz. 6 (2015) 598-605. https://doi.org/10.1039/C5MH00108K
[7] J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene, Nat. Nanotechnol. 8 (2009) 505-509. https://doi.org/10.1038/nnano.2009.177
[8] T. Upreti, V. Gupta, S. Chand, Graphene-Based Solar Cells, In Graph. Sci. Handb, CRC press (2016) 376-340.
[9] X. Wang, I. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 1 (2008) 323-327. https://doi.org/10.1021/nl072838r
[10] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals, PNAS 30 (2005) 10451-10453. https://doi.org/10.1073/pnas.0502848102
[11] Y. Zhang, J.P. Small, W.V. Pontius, P. Kim, Fabrication and electric-field dependent transport measurements of mesoscopic graphite devices, Appl. Phys. Lett. 86 (2005) 073104. https://doi.org/10.1063/1.1862334
[12] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666–669. DOI: 10.1126/science.1102896
[13] N.A. Sidorov, M.M. Yazdanpanah, R. Jalilian, P.J. Ouseph, R.W. Cohn, G.U. Sumanasekera, Electrostatic deposition of graphene, Nanotechnology 13 (2007) 135301. https://doi.org/10.1088/0957-4484/18/13/135301
[14] X. Liang, A.S.P. Chang, Y. Zhang, B.D. Harteneck, H. Choo, D.L. Olynick, S. Cabrini, Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites, Nano Lett. 1 (2008) 467-472. https://doi.org/10.1021/nl803512z
[15] Y.H. Wu, T. Yu, Z.X. Shen, Two-dimensional carbon nanostructures: fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 108, (2010) 071301. https://doi.org/10.1063/1.3460809
[16] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 6 (1958) 1339-1339. https://doi.org/10.1021/ja01539a017
[17] N. I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater. 11 (1999) 771–778. https://doi.org/10.1021/cm981085u
[18] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 5 (2008) 270-274. https://doi.org/10.1038/nnano.2008.83
[19] I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R.S. Ruoff, Simple approach for high-contrast optical imaging and characterization of graphene-based sheets, Nano Lett. 12 (2007) 3569-3575. https://doi.org/10.1021/nl0714177
[20] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace. Processable aqueous dispersions of graphene Nanosheets, Nat. Nanotechnol. 2 (2008) 101-105. https://doi.org/10.1038/nnano.2007.451
[21] S. Park, J. An, R.D. Piner, I. Jung, D. Yang, A. Velamakanni, S.T. Nguyen, R.S. Ruoff, Aqueous suspension and characterization of chemically modified graphene sheets, Chem. Mater. 21 (2008) 6592-6594. https://doi.org/10.1021/cm801932u
[22] H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li. Mechanically strong, electrically conductive, and biocompatible graphene paper, Adv. Mater. 18 (2008) 3557-3561. https://doi.org/10.1002/adma.200800757
[23] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 7152 (2007) 457-460. https://doi.org/10.1038/nature06016
[24] X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation, Adv. Mater. 23 (2008) 4490-4493.https://doi.org/10.1002/adma.200801306
[25] J. Wu, W. Pisula, K. Mu¨llen, Graphenes as potential material for electronics, Chem. Rev. 107 (2007) 718–747. https://doi.org/10.1021/cr068010r
[26] J. Cai, P. Ruffieux, R.B. Jaafar, T. Braun, S. Blankenburg, M. Matthias, A.P. Seitsonen, S. Moussa, X. Feng, K. Mu¨llen, R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466 (2010) 470–473. https://doi.org/10.1038/nature09211
[27] L. Zhi, K. Müllen, A bottom-up approach from molecular nanographenes to unconventional carbon materials, J. Mater. Chem. 13 (2008) 1472-1484. DOI:10.1039/B717585J
[28] C.E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour, A.R. Barron, High-yield organic dispersions of unfunctionalized graphene, Nano Lett. 10 (2009) 3460-3462. https://doi.org/10.1021/nl9016623
[29] A. O’Neill, U. Khan, P.N. Nirmalraj, J. Boland, J. N. Coleman, Graphene dispersion and exfoliation in low boiling point solvents, J. Phys. Chem.13 (2011) 5422-5428. https://doi.org/10.1021/jp110942e
[30] A.B. Bourlinos, V. Georgakilas, R. Zboril, T.A. Steriotis, A.K. Stubos, Liquid-phase exfoliation of graphite towards solubilized graphenes, Small 16 (2009) 1841-1845. https://doi.org/10.1002/smll.200900242
[31] Q. Ke, Y. Liu, H. Liu, Y. Zhang, Y. Hu, J. Wang, Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors, RSC Adv. 50 (2014) 26398-26406. DOI:10.1039/C4RA03826F
[32] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 4 (2009) 217-224. https://doi.org/10.1038/nnano.2009.58
[33] E.J.C Amieva, J.L. Barroso, A.L.M. Hernández, C.V. Santos, Graphene-based materials functionalization with natural polymeric biomolecules, In recent advances in graphene research. InTech, 2016.DOI:10.5772/64001
[34] S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite-and graphene oxide, Carbon 9 (2011) 3019-3023. https://doi.org/10.1016/j.carbon.2011.02.071
[35] R. Kumar, A. Kaur, Charge transport mechanism of hydrazine hydrate reduced graphene oxide, IET Circuits Devices & Systems 6 (2015) 392-396. https://doi.org/10.1049/iet-cds.2015.0034
[36] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 10 (2008) 3498-3502. https://doi.org/10.1021/nl802558y
[37] W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide, Nat. Chem. 5 (2009) 403-408. https://doi.org/10.1038/nchem.281
[38] C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene Nanosheets, ACS Nano 4 (2010) 2429-2437. https://doi.org/10.1021/nn1002387
[39] M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascon, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C 14 (2010) 6426-6432. https://doi.org/10.1021/jp100603h
[40] O. Akhavan, M. Kalaee, Z.S. Alavi, S.M.A. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide, Carbon 50 (2012) 3015-3025. https://doi.org/10.1016/j.carbon.2012.02.087
[41] G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites UV assisted photocatalytic reduction of graphene oxide, ACS Nano 2 (2008) 1487-1491. https://doi.org/10.1021/nn800251f
[42] W. Shi, J. Zhu, D.H. Sim, H.H. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H.H. Hnga, Q. Yan, Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites, J Mater Chem. 21 (2011) 3422-3427. https://doi.org/10.1039/C0JM03175E
[43] I. Forbeaux, J.M. Themlin, J.M. Debever, Heteroepitaxial graphite on 6 H−SiC (0001): Interface formation through conduction-band electronic structure, Phys. Rev. B 24 (1998) 16396. https://doi.org/10.1103/PhysRevB.58.16396
[44] C. Enderlein, Graphene and its interaction with different substrates studied by angular-resolved photoemission spectroscopy, PhD diss., Freie Universität Berlin, 2010.
[45] W. Norimatsu, M. Kusunoki, Epitaxial graphene on SiC {0001}: Advances and perspectives, Phys. Chem. Chem. Phys. 8 (2014) 3501-3511. https://doi.org/10.1039/C3CP54523G
[46] S. Tanabe, Y. Sekine, H. Kageshima, M. Nagase, H. Hibino, Carrier transport mechanism in graphene on SiC (0001), Phys. Rev. 11 (2011) 115458-115463. https://doi.org/10.1103/PhysRevB.84.115458
[47] H.R. Byon, S.W. Lee, S. Chen, P.T. Hammond, S.Y. Horn, Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical microcapacitors, Carbon 49 (2011) 457-467. https://doi.org/10.1016/j.carbon.2010.09.042
[48] S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, R. Kim, Y.I. Song, Y.J. Kim, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5 (2010) 574-578. https://doi.org/10.1038/nnano.2010.132
[49] W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, Flexible graphene based supercapacitors: a review, J. Phys. Chem. C 120 (2016) 4153-4172.https://doi.org/10.1021/acs.jpcc.5b10187
[50] K.S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 7230 (2009) 706-710. https://doi.org/10.1038/nature07719
[51] M.E. Ramón, A. Gupta, C. Corbet, D. A. Ferrer, H.C.P Movva, G. Carpenter, L. Colombo, CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films, ACS Nano 9 (2011) 7198-7204. https://doi.org/10.1021/nn202012m
[52] S.Y. Kwon, C.V. Ciobanu, V. Petrova, V.B. Shenoy, J. Bareno, V. Gambin, I. Petrov, S. Kodambaka, Growth of semiconducting graphene on palladium, Nano Lett. 12 (2009) 3985-3990. https://doi.org/10.1021/nl902140j
[53] B.J. Kang, J.H. Mun, C.Y. Hwang, B.J. Cho, Monolayer graphene growth on sputtered thin film platinum, J. App. Phys. 10 (2009)104309. https://doi.org/10.1063/1.3254193
[54] Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, H.J. Gao, Highly ordered, millimeter scale, continuous, single‐crystalline graphene monolayer formed on Ru (0001), Adv. Mater. 27 (2009) 2777-2780. https://doi.org/10.1002/adma.200800761
[55] E. Miniussi, M. Pozzo, T.O. Menteş, M.A. Niño, A. Locatelli, E. Vesselli, G. Comelli, S. Lizzit, D. Alfè, A. Baraldi, The competition for graphene formation on Re (0 0 0 1): A complex interplay between carbon segregation, dissolution and carburization, Carbon 73 (2014) 389-402. https://doi.org/10.1016/j.carbon.2014.02.081
[56] A.B. Preobrajenski, M.L. Ng, A.S. Vinogradov, N. Mårtensson, Controlling graphene corrugation on lattice-mismatched substrates, Phys. Rev. B 78 (2008) 073401-173405. https://doi.org/10.1103/PhysRevB.78.073401
[57] J. Coraux, T.N. Alpha ‘Diaye, C. Busse, T. Michely, Structural coherency of graphene on Ir (111), Nano Lett. 2 (2008) 565-570. https://doi.org/10.1021/nl0728874
[58] T. Oznuluer, E. Pince, E. O. Polat, O. Balci, O. Salihoglu, C. Kocabas, Synthesis of graphene on gold, App. Phys. Lett. 18 (2011) 183101. https://doi.org/10.1063/1.3584006
[59] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 5932 (2009) 1312-1314. DOI: 10.1126/science.1171245
[60] Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, The role of surface oxygen in the growth of large single-crystal graphene on copper, Science 6159 (2013) 720-723. DOI: 10.1126/science.1243879
[61] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Graphene segregated on Ni surfaces and transferred to insulators, App. Phys. Lett. 11 (2008) 113103. https://doi.org/10.1063/1.2982585
[62] P. Zhao, A. Kumamoto, S. Kim, X. Chen, B. Hou, S. Chiashi, E. Einarsson, Y. Ikuhara, S. Maruyama, Self-limiting chemical vapor deposition growth of monolayer graphene from ethanol, J. Phys. Chem. C 20 (2013) 10755-10763. https://doi.org/10.1021/jp400996s
[63] S. M. Kim, J.H. Kim, K.S. Kim, Y. Hwangbo, J.H. Yoon, E.K. Lee, J. Ryu, H. Joo Lee, S. Cho, S.M. Lee, Synthesis of CVD-graphene on rapidly heated copper foils, Nanoscale 9 (2014) 4728-4734. DOI:10.1039/C3NR06434D
[64] X. Liu, L. Fu, N. Liu, T. Gao, Y. Zhang, L. Liao, Z. Liu, Segregation growth of graphene on Cu–Ni alloy for precise layer control, J. Phys. Chem. C 24 (2011) 11976-11982. https://doi.org/10.1021/jp202933u
[65] B. Dai, L. Fu, Z. Zou, M. Wang, H. Xu, S. Wang, Z. Liu, Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene, Nat. Commun. 2 (2011) 522. https://doi.org/10.1038/ncomms1539
[66] M.H. Rummeli, A. Bachmatiuk, A. Scott, F. Borrnert, J.H. Warner, V. Hoffman, J.H. Lin, G. Cuniberti, B. Buchner, Direct low-temperature nanographene CVD synthesis over a dielectric insulator, ACS Nano 7 (2010) 4206-4210.https://doi.org/10.1021/nn100971s
[67] H. Medina, Y.C. Lin, C. Jin, C.C Lu, C.H. Yeh, K.P. Huang, K. Suenaga, J. Robertson, P.W. Chiu, Metal free growth of nanographene on silicon oxides for transparent conducting applications, Adv. Funct. Mater. 10 (2012) 2123-2128. https://doi.org/10.1002/adfm.201102423
[68] H.J. Song, M. Son, C. Park, H. Lim, M.P. Levendorf, A.W. Tsen, J. Park, H.C. Choi, Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication, Nanoscale 10 (2012) 3050-3054. https://doi.org/10.1039/C2NR30330B
[69] M. Wang, S.K. Jang, W.J. Jang, M. Kim, S.Y. Park, S.W. Kim, S.J. Kahng, A Platform for Large scale graphene electronics–CVD growth of single layer graphene on CVD grown hexagonal boron nitride, Adv. Mater. 19 (2013) 2746-2752. https://doi.org/10.1002/adma.201204904
[70] H. Kim, I. Song, C. Park, M. Son, M. Hong, Y. Kim, J.S. Kim, H.J. Shin, J. Baik, H.C. Choi, Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate, ACS Nano 8 (2013) 6575-6582. https://doi.org/10.1021/nn402847w
[71] U. Cotul, E.D.S. Parmak, C. Kaykilarli, O. Saray, O. Colak, D. Uzunsoy, Development of High Purity, Few-Layer Graphene synthesis by electric arc discharge technique, Acta Phys. Polo.134 (1) (2018). https://doi.org/10.12693/APhysPolA.134.289
[72] X. Fang, A. Shashurin, M. Keidar, Role of substrate temperature at graphene synthesis in an arc discharge, J. App. Phys. 10 (2015) 103304. https://doi.org/10.1063/1.4930177
[73] H.M.A. Hassan, V. Abdelsayed, S.K.A. El Rahman, K.M. AbouZeid, J. Terner, M. S. El-Shall, S.I. Al-Resayes, A.A. El-Azhary, Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media, J. Mater. Chem. 23 (2009) 3832-3837. https://doi.org/10.1039/B906253J
[74] Z. Li, Y. Yao, Z. Lin, K.S. Moon, W. Lin, C. Wong, Ultrafast dry microwave synthesis of graphene sheets, J. Mater. Chem. 23 (2010) 4781-4783. https://doi.org/10.1039/C0JM00168F
[75] X. Wang, H. Tang, S. Huang, L. Zhu, Fast and facile microwave-assisted synthesis of graphene oxide Nanosheets, RSC Adv. 104 (2014) 60102-60105. https://doi.org/10.1039/C4RA12022A
[76] F.S. Al Hazmi, G.H. Al-Harbi, G.W. Beall, A.A. Al-Ghamdi, A.Y. Obaid, W.E. Mahmoud, One pot synthesis of graphene based on microwave assisted solvothermal technique, Synth. Met. 200 (2015) 54-57. https://doi.org/10.1016/j.synthmet.2014.12.028
[77] F. Jiang, Y. Yu, Y. Wang, A. Feng, L. Song, A novel synthesis route of graphene via microwave assisted intercalation-exfoliation of graphite, Mater. Lett. 200 (2017) 39-42. https://doi.org/10.1016/j.matlet.2017.04.048
[78] M. Choucair, P. Thordarson, J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication, Nat. Nanotechnol. 4 (2009) 30–33. https://doi.org/10.1038/nnano.2008.365
[79] N. Hong, W. Yang, C. Bao, S. Jiang, L. Song, Y. Hu, Facile synthesis of graphene by pyrolysis of poly (methyl methacrylate) on nickel particles in the confined microzones, Mater. Res. Bull.12 (2012) 4082-4088.https://doi.org/10.1016/j.materresbull.2012.08.049
[80] L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes, Nature 7240 (2009) 877-880.https://doi.org/10.1038/nature07919
[81] J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light, New J. Chem. 1 (2012) 97-101. https://doi.org/10.1039/C1NJ20658C
[82] R. Thomas, E. Jayaseeli, N.M.S. Sharma, B. Manoj, Opto-electric property relationship in phosphorus embedded nanocarbon, Results Phys. 10 (2018) 633-639. https://doi.org/10.1016/j.rinp.2018.07.018
[83] R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N.P. Cook, Coal as an abundant source of graphene quantum dots, Nat. Commun. 4 (2013) 2943.https://doi.org/10.1038/ncomms3943
[84] K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, A study of graphenes prepared by different methods: characterization, properties and solubilization, J. Mater. Chem. 13 (2008) 1517-1523. https://doi.org/10.1039/B716536F
[85] A.G. Cano-Marquez, F.J. Rodríguez-Macías, J.C. Delgado, C.G. Espinosa-González, F. Tristán-López, D. Ramírez-González, D.A. Cullen, D.J. Smith, M. Terrones, Y.I. Vega-Cantú, Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes, Nano Lett. 4 (2009) 1527-1533. https://doi.org/10.1021/nl803585s
[86] S. Mohammadi, Z. Kolahdouz, S. Darbari, S. Mohajerzadeh, N. Masoumi, Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing, Carbon 52 (2013) 451-463.https://doi.org/10.1016/j.carbon.2012.09.056
[87] K. Kim, A. Sussman, A. Zettl, Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes, ACS Nano 3 (2010) 1362-1366.https://doi.org/10.1021/nn901782g
[88] Y. Zhu, G. Wang, H. Jiang, L. Chen, X. Zhang, One-step ultrasonic synthesis of graphene quantum dots with high quantum yield and their application in sensing alkaline phosphatase, Chem. Comm. 5 (2015) 948-951. https://doi.org/10.1039/C4CC07449A