S. Vadivel, S. Hariganesh, Pothu Ramyakrishna, Rajender Boddula

In this modern technology-based world, the consumption of electric energy has increased as most part of our day to day life is connected with electricity simply starting from telecommunication devices to laptops and computers. As energy demand increased the energy production needs to be increased but unfortunately as the fossil fuels are being depleted we are in the situation to turn to more renewable energy sources, especially solar energy could be utilised and transformed to electric energy via solar powered cells. However, the problems arise related to the fluctuation of sunlight and its unmatched energy production. Hence, energy produced by solar cells should be stored using energy storage devices. This thought sparked the idea of integrating a solar cell with a supercapacitor, where energy produced by the solar cell will be stored by the capacitor and so it was termed as photo-supercapacitor. In this chapter we discussed basic working, progressive timeline and the future scope in this fascinating field.

Photosupercapacitor, Dye sentisied Solar Cell, Supercapacitor, Pervoskite Solar Cell

Published online 11/5/2019, 10 pages

Citation: S. Vadivel, S. Hariganesh, Pothu Ramyakrishna, Rajender Boddula, Photo-Supercapacitor, Materials Research Foundations, Vol. 61, pp 223-232, 2019


Part of the book on Supercapacitor Technology

[1] C.H. Ng, H.N. Lim, S. Hayase, I. Harrison, A. Pandikumar, N.M. Huang, Potential active materials for photo-supercapacitor: A review, J. Power Sources. 296 (2015) 169–185.
[2] N.S. Lewis, Introduction: Solar energy conversion, Chem. Rev. 115 (2015) 12631–12632.
[3] Q. Zhang, G. Cao, Nanostructured photoelectrodes for dye-sensitized solar cells, Nano Today 6 (2011) 91–109.
[4] J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials, Renew. Sustain. Energy Rev. 16 (2012) 5848–5860.
[5] M. Grätzel, Solar cells to dye for, Nature 421 (2003) 586.
[6] E.W. McFarland, J. Tang, A photovoltaic device structure based on internal electron emission, Nature. 421 (2003) 616.
[7] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (Version 45), Prog. Photovoltaics Res. Appl. 23 (2015) 1–9.
[8] P.J. Kulesza, M. Skunik-Nuckowska, K. Grzejszczyk, N. Vlachopoulos, L. Yang, L. Häggman, A. Hagfeldt, Development of solid-state photo-supercapacitor by coupling dye-sensitized solar cell utilizing conducting polymer charge relay with proton-conducting membrane based electrochemical capacitor, ECS Trans. 50 (2013) 235–244. .
[9] Q. Wang, Y. Xie, F. Soltani-Kordshuli, M. Eslamian, Progress in emerging solution-processed thin film solar cells – Part I: Polymer solar cells, Renew. Sustain. Energy Rev. 56 (2016) 347–361.
[10] A. Fakharuddin, R. Jose, T.M. Brown, F. Fabregat-Santiago, J. Bisquert, A perspective on the production of dye-sensitized solar modules, Energy Environ. Sci. 7 (2014) 3952–3981.
[11] S. Vadivel, B. Saravanakumar, M. Kumaravel, D. Maruthamani, N. Balasubramanian, A. Manikandan, G. Ramadoss, B. Paul, S. Hariganesh, Facile solvothermal synthesis of BiOI microsquares as a novel electrode material for supercapacitor applications, Mater. Lett. 210 (2018) 109–112.
[12] M. Yassine, D. Fabris, Performance of commercially available supercapacitors, Energies . 10 (2017) 1340-1352.
[13] Z. Gao, C. Bumgardner, N. Song, Y. Zhang, J. Li, X. Li, Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication, Nat. Commun. 7 (2016) 11586.
[14] B. Liu, B. Liu, X. Wang, X. Wu, W. Zhao, Z. Xu, D. Chen, G. Shen, Memristor-integrated voltage-stabilizing supercapacitor system, Adv. Mater. 26 (2014) 4999–5004.
[15] S.C. Lau, H.N. Lim, T.B.S.A. Ravoof, M.H. Yaacob, D.M. Grant, R.C.I. MacKenzie, I. Harrison, N.M. Huang, A three-electrode integrated photo-supercapacitor utilizing graphene-based intermediate bifunctional electrode, Electrochim. Acta. 238 (2017) 178–184.
[16] T. Miyasaka, T.N. Murakami, The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy, Appl. Phys. Lett. 85 (2004) 3932–3934.
[17] N.-G. Park, K.M. Kim, M.G. Kang, K.S. Ryu, S.H. Chang, Y.-J. Shin, Chemical sintering of nanoparticles: A methodology for low-temperature fabrication of dye-sensitized TiO2 films, Adv. Mater. 17 (2005) 2349–2353.
[18] Y. Kijitori, M. Ikegami, T. Miyasaka, Highly efficient plastic dye-sensitized photoelectrodes prepared by low-temperature binder-free coating of mesoscopic titania pastes, Chem. Lett. 36 (2007) 190–191.
[19] A. Mishra, M.K.R. Fischer, P. Bäuerle, Metal-free organic dyes for dye-sensitized solar cells: From structure, property relationships to design rules, Angew. Chemie Int. Ed. 48 (2009) 2474–2499.
[20] N. Heo, Y. Jun, J.H. Park, Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells, Sci. Rep. 3 (2013) 1712.
[21] J. van de Lagemaat, N.-G. Park, A.J. Frank, Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells:  A study by electrical impedance and optical modulation techniques, J. Phys. Chem. B. 104 (2000) 2044–2052.
[22] P. Calandra, G. Calogero, A. Sinopoli, P.G. Gucciardi, Metal Nanoparticles and carbon-based nanostructures as advanced materials for cathode application in dye-sensitized solar cells, Int. J. Photoenergy 2010 (2010).
[23] Y. Sun, X. Yan, Recent advances in dual-functional devices integrating solar cells and supercapacitors, Solar RRL. 1 (2017) 1700002.
[24] T.N. Murakami, N. Kawashima, T. Miyasaka, A high-voltage dye-sensitized photocapacitor of a three-electrode system, Chem. Commun. (2005) 3346–3348.
[25] H.-W. Chen, C.-Y. Hsu, J.-G. Chen, K.-M. Lee, C.-C. Wang, K.-C. Huang, K.-C. Ho, Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods, J. Power Sources. 195 (2010) 6225–6231.
[26] C.-Y. Hsu, H.-W. Chen, K.-M. Lee, C.-W. Hu, K.-C. Ho, A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films, J. Power Sources. 195 (2010) 6232–6238.
[27] G. Wee, T. Salim, Y.M. Lam, S.G. Mhaisalkar, M. Srinivasan, Printable photo-supercapacitor using single-walled carbon nanotubes, Energy Environ. Sci. 4 (2011) 413–416.
[28] Z. Yang, L. Li, Y. Luo, R. He, L. Qiu, H. Lin, H. Peng, An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film, J. Mater. Chem. A. 1 (2013) 954–958.
[29] M. Skunik-Nuckowska, K. Grzejszczyk, P.J. Kulesza, L. Yang, N. Vlachopoulos, L. Häggman, E. Johansson, A. Hagfeldt, Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor, J. Power Sources. 234 (2013) 91–99.
[30] N. Bagheri, A. Aghaei, M.Y. Ghotbi, E. Marzbanrad, N. Vlachopoulos, L. Häggman, M. Wang, G. Boschloo, A. Hagfeldt, M. Skunik-Nuckowska, P.J. Kulesza, Combination of asymmetric supercapacitor utilizing activated carbon and nickel oxide with cobalt polypyridyl-based dye-sensitized solar cell, Electrochim. Acta. 143 (2014) 390–397.
[31] F. Zhou, Z. Ren, Y. Zhao, X. Shen, A. Wang, Y.Y. Li, C. Surya, Y. Chai, Perovskite photovoltachromic supercapacitor with all-transparent electrodes, ACS Nano. 10 (2016) 5900–5908.
[32] A. Das, S. Deshagani, R. Kumar, M. Deepa, Bifunctional photo-supercapacitor with a new architecture converts and stores solar energy as charge, ACS Appl. Mater. Interfaces. 10 (2018) 35932–35945.
[33] C.H. Ng, H.N. Lim, S. Hayase, Z. Zainal, S. Shafie, H.W. Lee, N.M. Huang, Cesium lead halide inorganic-based perovskite-sensitized solar cell for photo-supercapacitor application under high humidity condition, ACS Appl. Energy Mater. 1 (2018) 692–699.
[34] B.P. Lechene, R. Clerc, A.C. Arias, Theoretical analysis and characterization of the energy conversion and storage efficiency of photo-supercapacitors, Sol. Energy Mater. Sol. Cells. 172 (2017) 202–212.