Carbon Nanoarchitectures for Supercapacitor Applications


Carbon Nanoarchitectures for Supercapacitor Applications

T. Manovah David and Tom Mathews

Presently, carbon nano-architectures have received an elevated position to be attractive candidates for advanced energy storage applications. Carbon has been a material of choice in its various forms because of inherent properties such as high surface-area, inter-linked pores, large electrical conductivity and superior wettability towards the electrolyte ions. This chapter summarizes carbon materials as supercapacitor electrodes based on their architecture. Carbon materials have been broadly classified into three distinct categories viz. activated materials, non-activated materials and graphene-structured materials. The discussion is confined only to pristine carbon nano-architectures that display electrical double layer capacitance.

Carbon, Electrical Double Layer Capacitance, Activated Carbon, Fibres, Aerogels, Glassy Carbon, Carbon Black, Carbide Derived, Graphene, Fullerenes, Nanotubes, Nanowalls

Published online 11/5/2019, 52 pages

Citation: T. Manovah David and Tom Mathews, Carbon Nanoarchitectures for Supercapacitor Applications, Materials Research Foundations, Vol. 61, pp 171-222, 2019


Part of the book on Supercapacitor Technology

[1] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev. 104 (2004) 4245-4269.
[2] X. Li, B. Wei, Supercapacitors based on nanostructured carbon, Nano Energy 2 (2013) 159-173.
[3] B.E. Conway, Electrochemical supercapacitors: Scientific fundamentals and technological applications, Springer Science & Business Media, 2013.
[4] B. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, J. Power Sources 66 (1997) 1-14.
[5] J. Miller, A brief history of supercapacitors, Battery Energ. Storage Technol. (2007) 61.
[6] H.I. Becker, Low voltage electrolytic capacitor, United States Patent, 1957.
[7] D. Boos, S. Argade, International Seminar on Double Layer Supercapacitors and Similar Energy Storage Devices, Florida Educational Seminars, Deerfield Beach, FL, 1991, pp. 1.
[8] D.L. Boos, Electrolytic capacitor having carbon paste electrodes, United States Patent, 1970.
[9] M. Endo, T. Takeda, Y. Kim, K. Koshiba, K. Ishii, High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons, Carbon Sci. 1 (2001) 117-128.
[10] T. Christen, M.W. Carlen, Theory of Ragone plots, J. Power Sources 91 (2000) 210-216.
[11] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828.
[12] A. Pandolfo, A. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 157 (2006) 11-27.
[13] J.R. Miller, A.F. Burke, Electrochemical capacitors: challenges and opportunities for real-world applications, Electrochem. Soc. Interface 17 (2008) 53.
[14] L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531.
[15] S. Faraji, F.N. Ani, The development supercapacitor from activated carbon by electroless plating—A review, Renew. Sust. Energ. Rev. 42 (2015) 823-834.
[16] B. Conway, W. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices, J. Solid State Electrochem. 7 (2003) 637-644.
[17] C.M. Chuang, C.W. Huang, H. Teng, J.M. Ting, Effects of carbon nanotube grafting on the performance of electric double layer capacitors, Energ. Fuel 24 (2010) 6476-6482.
[18] X. Andrieu, Energy Storage Syst., Electron. New Trends Electrochem. Technol. 1 (2000) 521.
[19] D. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors, J. Power Sources 74 (1998) 99-107.
[20] P. Sharma, T. Bhatti, A review on electrochemical double-layer capacitors, Energ. Convers. Manage. 51 (2010) 2901-2912.
[21] J. Fernández, T. Morishita, M. Toyoda, M. Inagaki, F. Stoeckli, T.A. Centeno, Performance of mesoporous carbons derived from poly (vinyl alcohol) in electrochemical capacitors, J. Power Sources 175 (2008) 675-679.
[22] X. Du, W. Zhao, Y. Wang, C. Wang, M. Chen, T. Qi, C. Hua, M. Ma, Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications, Bioresource Technol. 149 (2013) 31-37.
[23] F.M. Delnick, Proceedings of the Symposium on Electrochemical Capacitors II, The Electrochemical Society, 1997.
[24] K. Kinoshita, Carbon: Electrochemical and physicochemical properties, Wiley Interscience, New York, 1988.
[25] S. Biniak, A. Swiatkowski, M. Pakula, L. Radovic, Electrochemical studies of phenomena at active carbon-electrolyte solution interfaces, Marcel Dekker, New York, 2001.
[26] A. Espinola, P.M. Miguel, M.R. Salles, A.R. Pinto, Electrical properties of carbons—resistance of powder materials, Carbon 24 (1986) 337-341.
[27] K. Radeke, K. Backhaus, A. Swiatkowski, Electrical conductivity of activated carbons, Carbon 29 (1991) 122-123.
[28] X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.Z. Qiao, G.Q. Lu, Preparation of capacitor’s electrode from sunflower seed shell, Bioresource Technol. 102 (2011) 1118-1123.
[29] V. Khomenko, E. Raymundo-Pinero, F. Béguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium, J. Power Sources 153 (2006) 183-190.
[30] S.M. Chen, R. Ramachandran, V. Mani, R. Saraswathi, Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: A review, Int. J. Electrochem. Sci. 9 (2014) 4072-4085.
[31] D. Adinata, W.M.A.W. Daud, M.K. Aroua, Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3, Bioresource Technol. 98 (2007) 145-149.
[32] L. Zhang, C.C. Xu, P. Champagne, Overview of recent advances in thermo-chemical conversion of biomass, Energ. Convers Manage. 51 (2010) 969-982.
[33] A.M. Abioye, F.N. Ani, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review, Renew. Sust. Energ. Rev. 52 (2015) 1282-1293.
[34] J.L. Figueiredo, M. Pereira, M. Freitas, J. Orfao, Modification of the surface chemistry of activated carbons, Carbon 37 (1999) 1379-1389.
[35] M. Endo, T. Maeda, T. Takeda, Y. Kim, K. Koshiba, H. Hara, M. Dresselhaus, Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes, J. Electrochem. Soc. 148 (2001) A910-A914.
[36] E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes, Carbon 44 (2006) 2498-2507.
[37] R. Farma, M. Deraman, A. Awitdrus, I. Talib, E. Taer, N. Basri, J. Manjunatha, M. Ishak, B. Dollah, S. Hashmi, Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors, Bioresource Technol. 132 (2013) 254-261.
[38] T.E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu, G.Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J. Power Sources 195 (2010) 912-918.
[39] B. Xu, Y. Chen, G. Wei, G. Cao, H. Zhang, Y. Yang, Activated carbon with high capacitance prepared by NaOH activation for supercapacitors, Mater. Chem. Phys. 124 (2010) 504-509.
[40] H. Deng, G. Li, H. Yang, J. Tang, J. Tang, Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation, Chem. Eng. J. 163 (2010) 373-381.
[41] B.D. Zdravkov, J.J. Cermak, M. Sefara, J. Janku, Pore classification in the characterization of porous materials: A perspective, Cent. Eur. J. Chem. 5 (2007) 385-395.
[42] S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mat. Sci. 58 (2013) 1388-1442.
[43] E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys. 9 (2007) 1774-1785.
[44] G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach, Carbon electrodes for double‐layer capacitors I. Relations between ion and pore dimensions, J. Electrochem. Soc. 147 (2000) 2486-2493.
[45] O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon 43 (2005) 1303-1310.
[46] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, J. Power Sources 195 (2010) 7880-7903.
[47] C.O. Ania, V. Khomenko, E. Raymundo‐Piñero, J.B. Parra, F. Beguin, The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template, Adv. Funct. Mater. 17 (2007) 1828-1836.
[48] K. Babel, K. Jurewicz, KOH activated carbon fabrics as supercapacitor material, J. Phys. Chem. Solids 65 (2004) 275-280.
[49] K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, J. Patarin, F. Béguin, Capacitance properties of ordered porous carbon materials prepared by a templating procedure, J. Phys. Chem. Solids 65 (2004) 287-293.
[50] P. Simon, A. Burke, Nanostructured carbons: Double-layer capacitance and more, Electrochem. Soc. Interface 17 (2008) 38.
[51] A. Yoshida, I. Tanahashi, A. Nishino, Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon 28 (1990) 611-615.
[52] M. Inagaki, Pores in carbon materials-importance of their control, New Carbon Mater. 24 (2009) 193-232.
[53] Y. Soneda, J. Yamashita, M. Kodama, H. Hatori, M. Toyoda, M. Inagaki, Pseudo-capacitance on exfoliated carbon fiber in sulfuric acid electrolyte, Appl. Phys. A 82 (2006) 575-578.
[54] M. Toyoda, Y. Tani, Y. Soneda, Exfoliated carbon fibers as an electrode for electric double layer capacitors in a 1 mol/dm3 H2SO4 electrolyte, Carbon 42 (2004) 2833-2837.
[55] R. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci. 24 (1989) 3221-3227.
[56] H. Pröbstle, M. Wiener, J. Fricke, Carbon aerogels for electrochemical double layer capacitors, J. Porous Mat. 10 (2003) 213-222.
[57] U. Fischer, R. Saliger, V. Bock, R. Petricevic, J. Fricke, Carbon aerogels as electrode material in supercapacitors, J. Porous Mater. 4 (1997) 281-285.
[58] B. Fang, Y. Wei, K. Maruyama, M. Kumagai, High capacity supercapacitors based on modified activated carbon aerogel, J. Appl. Electrochem. 35 (2005) 229-233.
[59] C. Lin, J.A. Ritter, B.N. Popov, Correlation of double-layer capacitance with the pore structure of sol-gel derived carbon xerogels, J. Electrochem. Soc. 146 (1999) 3639-3643.
[60] C. Schmitt, H. Pröbstle, J. Fricke, Carbon cloth-reinforced and activated aerogel films for supercapacitors, J. Non-Cryst. Sol. 285 (2001) 277-282.
[61] R. Petričević, M. Glora, J. Fricke, Planar fibre reinforced carbon aerogels for application in PEM fuel cells, Carbon 39 (2001) 857-867.
[62] H. Wang, Q. Gao, Synthesis, characterization and energy-related applications of carbide-derived carbons obtained by the chlorination of boron carbide, Carbon 47 (2009) 820-828.
[63] A. Braun, M. Bärtsch, B. Schnyder, R. Kötz, O. Haas, H.-G. Haubold, G. Goerigk, X-ray scattering and adsorption studies of thermally oxidized glassy carbon, J. Non-Cryst. Solids 260 (1999) 1-14.
[64] A. Braun, M. Bärtsch, B. Schnyder, R. Kötz, O. Haas, A. Wokaun, Evolution of BET internal surface area in glassy carbon powder during thermal oxidation, Carbon 40 (2002) 375-382.
[65] D. Alliata, P. Häring, O. Haas, R. Kötz, H. Siegenthaler, In situ atomic force microscopy of electrochemically activated glassy carbon, Electrochem. Solid-State Lett. 2 (1999) 33-35.
[66] A. Braun, M. Bärtsch, O. Merlo, B. Schnyder, B. Schaffner, R. Kötz, O. Haas, A. Wokaun, Exponential growth of electrochemical double layer capacitance in glassy carbon during thermal oxidation, Carbon 41 (2003) 759-765.
[67] M. Noked, A. Soffer, D. Aurbach, The electrochemistry of activated carbonaceous materials: past, present, and future, J. Solid State Electrochem. 15 (2011) 1563.
[68] A. Clague, J. Donnet, T. Wang, J. Peng, A comparison of diesel engine soot with carbon black, Carbon 37 (1999) 1553-1565.
[69] J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, F. Wei, Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors, Carbon 48 (2010) 1731-1737.
[70] M. Toupin, D. Bélanger, I.R. Hill, D. Quinn, Performance of experimental carbon blacks in aqueous supercapacitors, J. Power Sources 140 (2005) 203-210.
[71] P. Kossyrev, Carbon black supercapacitors employing thin electrodes, J. Power Sources 201 (2012) 347-352.
[72] F. Beck, M. Dolata, E. Grivei, N. Probst, Electrochemical supercapacitors based on industrial carbon blacks in aqueous H2SO4, J. Appl. Electrochem. 31 (2001) 845-853.
[73] R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J. Fischer, S. Kucheyev, Titanium carbide derived nanoporous carbon for energy-related applications, Carbon 44 (2006) 2489-2497.
[74] L. Permann, M. Lätt, J. Leis, M. Arulepp, Electrical double layer characteristics of nanoporous carbon derived from titanium carbide, Electrochim. Acta 51 (2006) 1274-1281.
[75] R. Lin, P.-L. Taberna, J. Chmiola, D. Guay, Y. Gogotsi, P. Simon, Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors, J. Electrochem. Soc. 156 (2009) A7-A12.
[76] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313 (2006) 1760-1763.
[77] J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources 158 (2006) 765-772.
[78] Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J.E. Fischer, B. Yi, H.C. Foley, M.W. Barsoum, Nanoporous carbide-derived carbon with tunable pore size, Nature Mater. 2 (2003) 591.
[79] D.A. Ersoy, M.J. McNallan, Y. Gogotsi, Carbon coatings produced by high temperature chlorination of silicon carbide ceramics, Mater. Res. Innov. 5 (2001) 55-62.
[80] A. Jänes, L. Permann, M. Arulepp, E. Lust, Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions, Electrochem. Commun. 6 (2004) 313-318.
[81] J. Chmiola, G. Yushin, R.K. Dash, E.N. Hoffman, J.E. Fischer, M.W. Barsoum, Y. Gogotsi, Double-layer capacitance of carbide derived carbons in sulfuric acid, Electrochem. Solid-State Lett. 8 (2005) A357-A360.
[82] A. Kravchik, J.A. Kukushkina, V. Sokolov, G. Tereshchenko, Structure of nanoporous carbon produced from boron carbide, Carbon 44 (2006) 3263-3268.
[83] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sust. Energ. Rev. 58 (2016) 1189-1206.
[84] L.L. Zhang, R. Zhou, X. Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem. 20 (2010) 5983-5992.
[85] Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes–A review, J. Materiomics 2 (2016) 37-54.
[86] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Graphene segregated on Ni surfaces and transferred to insulators, Appl. Phys. Lett. 93 (2008) 113103.
[87] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924.
[88] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.
[89] A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Substrate-free gas-phase synthesis of graphene sheets, Nano Lett. 8 (2008) 2012-2016.
[90] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, High-yield production of graphene by liquid-phase exfoliation of graphite, Nature Nanotechnol. 3 (2008) 563.
[91] K. Zhang, L.L. Zhang, X. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater. 22 (2010) 1392-1401.
[92] A.K. Geim, K.S. Novoselov, The rise of graphene, Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific, Oxford, 2010, pp. 11-19.
[93] E. Bae, N.D. Kim, B.K. Kwak, J. Park, J. Lee, Y. Kim, K. Choi, J. Yi, The effects of fullerene (C60) crystal structure on its electrochemical capacitance, Carbon 48 (2010) 3676-3681.
[94] J.K. McDonough, A.I. Frolov, V. Presser, J. Niu, C.H. Miller, T. Ubieto, M.V. Fedorov, Y. Gogotsi, Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes, Carbon 50 (2012) 3298-3309.
[95] H. Wang, X. Yan, G. Piao, A high-performance supercapacitor based on fullerene C60 whisker and polyaniline emeraldine base composite, Electrochim. Acta 231 (2017) 264-271.
[96] S. Xiong, F. Yang, H. Jiang, J. Ma, X. Lu, Covalently bonded polyaniline/fullerene hybrids with coral-like morphology for high-performance supercapacitor, Electrochim. Acta 85 (2012) 235-242.
[97] J. Ma, Q. Guo, H.L. Gao, X. Qin, Synthesis of C60/graphene composite as electrode in supercapacitors, Fuller. Nanotub. Carbon 23 (2015) 477-482.
[98] M.V.K. Azhagan, M.V. Vaishampayan, M.V. Shelke, Synthesis and electrochemistry of pseudocapacitive multilayer fullerenes and MnO2 nanocomposites, J. Mater. Chem. A 2 (2014) 2152-2159.
[99] K. Winkler, E. Grodzka, F. D’Souza, A.L. Balch, Two-component films of fullerene and palladium as materials for electrochemical capacitors, J. Electrochem. Soc. 154 (2007) K1-K10.
[100] P. Bairi, R.G. Shrestha, J.P. Hill, T. Nishimura, K. Ariga, L.K. Shrestha, Mesoporous graphitic carbon microtubes derived from fullerene C70 tubes as a high performance electrode material for advanced supercapacitors, J. Mater. Chem. A 4 (2016) 13899-13906.
[101] S. Zheng, H. Ju, X. Lu, A High-Performance Supercapacitor Based on KOH Activated 1D C70 Microstructures, Adv. Energ. Mater. 5 (2015) 1500871.
[102] Q. Xie, E. Perez-Cordero, L. Echegoyen, Electrochemical detection of C606-and C706-: Enhanced stability of fullerides in solution, J. Am. Chem. Soc. 114 (1992) 3978-3980.
[103] C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon 45 (2007) 2511-2518.
[104] J. Huang, B.G. Sumpter, V. Meunier, G. Yushin, C. Portet, Y. Gogotsi, Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors, J. Mater. Res. 25 (2010) 1525-1531.
[105] D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nature Mater. 5 (2006) 987.
[106] O. Kimizuka, O. Tanaike, J. Yamashita, T. Hiraoka, D.N. Futaba, K. Hata, K. Machida, S. Suematsu, K. Tamamitsu, S. Saeki, Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes, Carbon 46 (2008) 1999-2001.
[107] C.y. Liu, A.J. Bard, F. Wudl, I. Weitz, J.R. Heath, Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors, Electrochem. Solid-State Lett. 2 (1999) 577-578.
[108] Y. Honda, M. Takeshige, H. Shiozaki, T. Kitamura, K. Yoshikawa, S. Chakrabarti, O. Suekane, L. Pan, Y. Nakayama, M. Yamagata, Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor, J. Power Sources 185 (2008) 1580-1584.
[109] T. Bordjiba, M. Mohamedi, L.H. Dao, New class of carbon-nanotube aerogel electrodes for electrochemical power sources, Adv. Mater. 20 (2008) 815-819.
[110] M. Chhowalla, K. Teo, C. Ducati, N. Rupesinghe, G. Amaratunga, A. Ferrari, D. Roy, J. Robertson, W. Milne, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, J. Appl. Phys. 90 (2001) 5308-5317.
[111] C.G. Liu, H.T. Fang, F. Li, M. Liu, H.M. Cheng, Single-walled carbon nanotubes modified by electrochemical treatment for application in electrochemical capacitors, J. Power Sources 160 (2006) 758-761.
[112] O. Tanaike, D.N. Futaba, K. Hata, H. Hatori, Supercapacitors using pure single-walled carbon nanotubes, Carbon Lett. 10 (2009) 90-93.
[113] Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage, Nano Energ. 1 (2012) 107-131.
[114] K.S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, K. Kim, A roadmap for graphene, Nature 490 (2012) 192.
[115] T. Chen, L. Dai, Carbon nanomaterials for high-performance supercapacitors, Mater. Today 16 (2013) 272-280.
[116] Z. Lei, N. Christov, X. Zhao, Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes, Energ. Environ. Sci. 4 (2011) 1866-1873.
[117] J.L. Vickery, A.J. Patil, S. Mann, Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures, Adv. Mater. 21 (2009) 2180-2184.
[118] G. Wang, X. Sun, F. Lu, H. Sun, M. Yu, W. Jiang, C. Liu, J. Lian, Flexible pillared graphene‐paper electrodes for high-performance electrochemical supercapacitors, Small 8 (2012) 452-459.
[119] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498-3502.
[120] A. Nishino, Capacitors: operating principles, current market and technical trends, J. Power Sources 60 (1996) 137-147.
[121] H. Yang, J. Yang, Z. Bo, S. Zhang, J. Yan, K. Cen, Edge effects in vertically-oriented graphene based electric double-layer capacitors, J. Power Sources 324 (2016) 309-316.
[122] D. Wang, H. Tian, Y. Yang, D. Xie, T.-L. Ren, Y. Zhang, Scalable and direct growth of graphene micro ribbons on dielectric substrates, Sci. Rep. 3 (2013) 1348.
[123] Z. Bo, W. Zhu, W. Ma, Z. Wen, X. Shuai, J. Chen, J. Yan, Z. Wang, K. Cen, X. Feng, Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors, Adv. Mater. 25 (2013) 5799-5806.
[124] G. Sahoo, S. Polaki, S. Ghosh, N. Krishna, M. Kamruddin, K.K. Ostrikov, Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance, Energ. Storage Mater. 14 (2018) 297-305.
[125] J.R. Miller, R. Outlaw, B. Holloway, Graphene double-layer capacitor with ac line-filtering performance, Science 329 (2010) 1637-1639.
[126] S. Ghosh, G. Sahoo, S. Polaki, N.G. Krishna, M. Kamruddin, T. Mathews, Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte, J. Appl. Phys. 122 (2017) 214902.
[127] S. Ghosh, K. Ganesan, S.R. Polaki, T. Ravindran, N.G. Krishna, M. Kamruddin, A. Tyagi, Evolution and defect analysis of vertical graphene nanosheets, J. Raman Spectrosc. 45 (2014) 642-649.
[128] S. Ghosh, T. Mathews, B. Gupta, A. Das, N.G. Krishna, M. Kamruddin, Supercapacitive vertical graphene nanosheets in aqueous electrolytes, Nano-Struct. Nano-Objects 10 (2017) 42-50.
[129] S. Ghosh, B. Gupta, K. Ganesan, A. Das, M. Kamruddin, S. Dash, A. Tyagi, MnO2-vertical graphene nanosheets composite electrodes for energy storage devices, Mater. Today: Proc. 3 (2016) 1686-1692.
[130] R. Farma, M. Deraman, A. Awitdrus, I. Talib, E. Taer, N. Basri, J. Manjunatha, M. Ishak, B. Dollah, S. Hashmi, Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors, Bioresour.Technol. 132 (2013) 254-261.
[131] P. González-García, T. Centeno, E. Urones-Garrote, D. Ávila-Brande, L. Otero-Díaz, Microstructure and surface properties of lignocellulosic-based activated carbons, Appl. Surf. Sci 265 (2013) 731-737.
[132] A.E. Ismanto, S. Wang, F.E. Soetaredjo, S. Ismadji, Preparation of capacitor’s electrode from cassava peel waste, Bioresour.Technol. 101 (2010) 3534-3540.
[133] X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.-Z. Qiao, G.-Q. Lu, Preparation of capacitor’s electrode from sunflower seed shell, Bioresour.Technol. 102 (2011) 1118-1123.
[134] J.V. Nabais, J.G. Teixeira, I. Almeida, Development of easy made low cost bindless monolithic electrodes from biomass with controlled properties to be used as electrochemical capacitors, Bioresour. Technol. 102 (2011) 2781-2787.
[135] A. Elmouwahidi, Z. Zapata-Benabithe, F. Carrasco-Marín, C. Moreno-Castilla, Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes, Bioresour.Technol. 111 (2012) 185-190.
[136] H. Jin, X. Wang, Z. Gu, J. Polin, Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation, J. Power Sources 236 (2013) 285-292.
[137] C. Peng, X.-b. Yan, R.-t. Wang, J.-w. Lang, Y.-j. Ou, Q.-j. Xue, Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes, Electrochim. Acta 87 (2013) 401-408.
[138] K. Denshchikov, M. Izmaylova, A. Zhuk, Y. Vygodskii, V. Novikov, A. Gerasimov, 1-Methyl-3-butylimidazolium tetraflouroborate with activated carbon for electrochemical double layer supercapacitors, Electrochim. Acta 55 (2010) 7506-7510.
[139] F.-C. Wu, R.-L. Tseng, C.-C. Hu, C.-C. Wang, Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors, J. Power Sources 138 (2004) 351-359.
[140] L. Wei, G. Yushin, Electrical double layer capacitors with activated sucrose-derived carbon electrodes, Carbon 49 (2011) 4830-4838.
[141] L. Wei, G. Yushin, Electrical double layer capacitors with sucrose derived carbon electrodes in ionic liquid electrolytes, J. Power Sources 196 (2011) 4072-4079.
[142] X. He, P. Ling, J. Qiu, M. Yu, X. Zhang, C. Yu, M. Zheng, Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density, J. Power Sources 240 (2013) 109-113.
[143] V. Subramanian, C. Luo, A.M. Stephan, K. Nahm, S. Thomas, B. Wei, Supercapacitors from activated carbon derived from banana fibers, J. Phys. Chem. C 111 (2007) 7527-7531.
[144] K. Jost, D. Stenger, C.R. Perez, J.K. McDonough, K. Lian, Y. Gogotsi, G. Dion, Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics, Energ. Environ. Sci. 6 (2013) 2698-2705.
[145] J. Ren, L. Li, C. Chen, X. Chen, Z. Cai, L. Qiu, Y. Wang, X. Zhu, H. Peng, Twisting carbon nanotube fibers for both wire‐shaped micro‐supercapacitor and micro‐battery, Adv. Mater. 25 (2013) 1155-1159.
[146] V.T. Le, H. Kim, A. Ghosh, J. Kim, J. Chang, Q.A. Vu, D.T. Pham, J.H. Lee, S.W. Kim, Y.H. Lee, Coaxial fiber supercapacitor using all-carbon material electrodes, ACS Nano 7 (2013) 5940-5947.
[147] S. Hu, S. Zhang, N. Pan, Y.L. Hsieh, High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes, J. Power Sources 270 (2014) 106-112.
[148] G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, Y. Li, Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability, Adv. Mater. 26 (2014) 2676-2682.
[149] C. Kim, Y.O. Choi, W.J. Lee, K.S. Yang, Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions, Electrochim. Acta 50 (2004) 883-887.
[150] V. Barranco, M. Lillo-Rodenas, A. Linares-Solano, A. Oya, F. Pico, J. Ibáñez, F. Agullo-Rueda, J.M. Amarilla, J. Rojo, Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes, J. Phys. Chem. C 114 (2010) 10302-10307.
[151] Z. Jin, X. Yan, Y. Yu, G. Zhao, Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors, J. Mater. Chem. A 2 (2014) 11706-11715.
[152] G. Zu, J. Shen, L. Zou, F. Wang, X. Wang, Y. Zhang, X. Yao, Nanocellulose-derived highly porous carbon aerogels for supercapacitors, Carbon 99 (2016) 203-211.
[153] R. Saliger, U. Fischer, C. Herta, J. Fricke, High surface area carbon aerogels for supercapacitors, J. Non Cryst. Solids 225 (1998) 81-85.
[154] J. Li, X. Wang, Q. Huang, S. Gamboa, P. Sebastian, Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor, J. Power Sources 158 (2006) 784-788.
[155] S.J. Kim, S. Hwang, S. Hyun, Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics, J. Mater. Sci. 40 (2005) 725-731.
[156] X.L. Wu, T. Wen, H.L. Guo, S. Yang, X. Wang, A.-W. Xu, Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors, ACS Nano 7 (2013) 3589-3597.
[157] J. Zheng, T. Jow, High energy and high power density electrochemical capacitors, J. Power Sources 62 (1996) 155-159.
[158] T. Osaka, X. Liu, M. Nojima, Acetylene black/poly(vinylidene fluoride) gel electrolyte composite electrode for an electric double-layer capacitor, J. Power Sources 74 (1998) 122-128.
[159] D.A. Ersoy, M.J. McNallan, Y. Gogotsi, Carbon coatings produced by high temperature chlorination of silicon carbide ceramics, Mater. Res. Innovations 5 (2001) 55-62.
[160] P. Bairi, R.G. Shrestha, J.P. Hill, T. Nishimura, K. Ariga, L.K. Shrestha, Mesoporous graphitic carbon microtubes derived from fullerene C70 tubes as a high performance electrode material for advanced supercapacitors, J. Mater. Chem. A 4 (2016) 13899-13906.
[161] J. Ma, Q. Guo, H.-L. Gao, X. Qin, Synthesis of C60/graphene composite as electrode in supercapacitors, Fullerenes, Nanotubes and Carbon Nanostructures 23 (2015) 477-482.
[162] V. Yong, H.T. Hahn, Synergistic effect of fullerene-capped gold nanoparticles on graphene electrochemical supercapacitors, (2013).
[163] S. Zheng, H. Ju, X. Lu, A High‐performance supercapacitor based on KOH activated 1D C70 microstructures, Adv. Energy Mater. 5 (2015) 1500871.
[164] T. Hiraoka, A. Izadi‐Najafabadi, T. Yamada, D.N. Futaba, S. Yasuda, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, K. Hata, Compact and light supercapacitor electrodes from a surface‐only solid by opened carbon nanotubes with 200 m2 g−1 surface area, Adv. Funct. Mater. 20 (2010) 422-428.
[165] S. Shiraishi, H. Kurihara, K. Okabe, D. Hulicova, A. Oya, Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco™ Buckytubes™) in propylene carbonate electrolytes, Electrochem. Commun. 4 (2002) 593-598.
[166] C.y. Liu, A.J. Bard, F. Wudl, I. Weitz, J.R. Heath, Electrochemical characterization of films of single‐walled carbon nanotubes and their possible application in supercapacitors, Electrochem. Solid-State Lett. 2 (1999) 577-578.
[167] W. Lu, L. Qu, K. Henry, L. Dai, High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes, J. Power Sources 189 (2009) 1270-1277.
[168] T. Bordjiba, M. Mohamedi, L.H. Dao, New class of carbon‐nanotube aerogel electrodes for electrochemical power sources, Adv. mater. 20 (2008) 815-819.
[169] C. Emmenegger, P. Mauron, P. Sudan, P. Wenger, V. Hermann, R. Gallay, A. Züttel, Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials, J. Power Sources 124 (2003) 321-329.
[170] Y. Li, M. Van Zijll, S. Chiang, N. Pan, KOH modified graphene nanosheets for supercapacitor electrodes, J. Power Sources 196 (2011) 6003-6006.
[171] Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes, Carbon 49 (2011) 573-580.
[172] S. Bose, T. Kuila, A.K. Mishra, N.H. Kim, J.H. Lee, Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid, Nanotechnology 22 (2011) 405603.
[173] N. Li, S. Tang, Y. Dai, X. Meng, The synthesis of graphene oxide nanostructures for supercapacitors: a simple route, J. Mater. Sci. 49 (2014) 2802-2809.
[174] Z. Lin, Y. Liu, Y. Yao, O.J. Hildreth, Z. Li, K. Moon, C. Wong, Superior capacitance of functionalized graphene, J. Phys. Chem. C 115 (2011) 7120-7125.
[175] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (2010) 4863-4868.
[176] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113 (2009) 13103-13107.
[177] J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene, Nat. Nanotechnol. 4 (2009) 505.
[178] J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L. Mohana Reddy, J. Yu, R. Vajtai, Ultrathin planar graphene supercapacitors, Nano Lett. 11 (2011) 1423-1427.
[179] A. Yu, I. Roes, A. Davies, Z. Chen, Ultrathin, transparent, and flexible graphene films for supercapacitor application, Appl. Phys. Lett. 96 (2010) 253105.
[180] L. Zhang, G. Shi, Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability, J. Phys. Chem. C 115 (2011) 17206-17212.
[181] H. Yang, J. Yang, Z. Bo, S. Zhang, J. Yan, K. Cen, Edge effects in vertically-oriented graphene based electric double-layer capacitors, J. Power Sources 324 (2016) 309-316.
[182] S. Ghosh, S. Polaki, M. Kamruddin, S.M. Jeong, K.K. Ostrikov, Plasma-electric field controlled growth of oriented graphene for energy storage applications, J. Phys.D: Appl. Phys. 51 (2018) 145303.
[183] G. Sahoo, S. Ghosh, S. Polaki, T. Mathews, M. Kamruddin, Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications, Nanotechnology 28 (2017) 415702.