Redox Electrolytes/Mediators for Supercapacitors


Redox Electrolytes/Mediators for Supercapacitors

X. Zhou, Y. Wang, C. Zhang, and X. Qiao

This chapter is intended to summarize research progress of relatively new supercapacitors, redox electrolyte/mediator supercapacitors using other types of supercapacitors as references. The chapter will articulate the most important milestones of the research and development. Much of the efforts have been on important fundamental issues including the mechanisms, electron shuttling effect, simulation approaches, and metrics for evaluating the specific capacitance, energy, and power. The aim of this chapter is to view the mediator supercapacitor as a hybrid of electric double layer capacitor or EDLC and rechargeable battery. In the end, the authors’ visions for future research and development are provided.

Redox Electrolyte, Mediator, Supercapacitor, Simulation, Nanomaterials

Published online 11/5/2019, 50 pages

Citation: X. Zhou, Y. Wang, C. Zhang, and X. Qiao, Redox Electrolytes/Mediators for Supercapacitors, Materials Research Foundations, Vol. 61, pp 45-94, 2019


Part of the book on Supercapacitor Technology

[1] L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, B. Wang, Metal–organic frameworks for energy storage: Batteries and supercapacitors, Coord. Chem. Rev. 307 (2016) 361–381.
[2] Mustafa Inci, Omer Türksoy, Review of fuel cells to grid interface: Configurations, technical challenges and trends, J. Clean. Prod. 213 (2019) 1353-1370.
[3] P. Alotto, M. Guarnieri, F. Moro, Redox flow batteries for the storage of renewable energy: A review, Renew. Sust. Energ. Rev. 29 (2014) 325–335.
[4] Mi. Horn, J. MacLeod, M. Liu, J.Webb, Nunzio Motta, Supercapacitors: A new source of power for electric cars? Econ. Anal. Pol. 61 (2019) 93–103.
[5] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7 (2008) 845–854.
[6] B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York, 1999.
[7] M. Wohlfahrt-Mehrens, J. Schenk, P.M. Wilde, E. Abdelmula, P. Axmann, J. Garche, New materials for supercapacitors, J. Power Sources 105 (2002) 182–188.
[8] A. Muzaffara, M. Basheer Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renew. Sust. Energ. Rev 101 (2019) 123–145.
[9] A. González, E. Goikolea, J. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sust. Energ. Rev 58 (2016) 1189–1206.
[10] W. Yang, M. Ni, X. Ren, Y. Tian, N. Li, Y. Su, X. Zhang, Graphene in Supercapacitor Applications, ‎Curr. Opin. Colloid Interface Sci. 20 (2015) 416–428.
[11] Qingqing Ke, John Wang, Graphene-based materials for supercapacitor electrodes: A review, J. Materiomics 2 (2016) 37-54.
[12] C. Portet, P.L. Taberna, P. Simon, E. Flahaut, Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte, J. Power Sources 139 (2005) 371–378.
[13] C. Portet, P.L. Taberna, P. Simon, E. Flahaut, C. Laberty-Robert, High power density electrodes for Carbon supercapacitor applications, Electrochim. Acta 50 (2005) 4174–4181.
[14] G. Lota, E. Frackowiak, Striking capacitance of carbon/iodide interface, Electrochem. Commun. 11 (2009) 87–90.
[15] G. Lota, K. Fic, E. Frackowiak, Alkali metal iodide/carbon interface as a source of pseudocapacitance, Electrochem. Commun. 12 (2011) 38–41.
[16] Juanjuan Zhou, Yijing Yin, Azzam N. Mansour, and Xiangyang Zhou, Experimental studies of mediator-enhanced polymer electrolyte supercapacitors, Electrochem. Solid-State Lett. 14 (2011) A25-A28.
[17] X. Zhou, X. Qiao, C. Zhang, Y. Wang, A. N. Mansour, G. H. Waller, C.A. Martin, “The Effects of Potassium Ferrocyanide/Potassium Ferricyanide and their Derivatives on the Performance of Solid-State Supercapacitor”, 48th Power Sources Conference, Denver, Colorado, June 11-14, 2018, 292-295.
[18] B. Akinwolemiwa, C. Peng, G. Z. Chen, Redox electrolytes in supercapacitors, J. Electrochem. Soc. 162 (2015) A5054-A5059.
[19] J. P. Zheng, P. J. Cygan, and T. R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc.142 (1995) 2699-2703.
[20] W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40 (2011) 1697–1721.
[21] M. Sawangphruk, P. Srimuk, P. Chiochan, A. Krittayavathananon, S. Luanwuthi, J. Limtrakul, High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper, Carbon 60 (2013) 109-116.
[22] S. Hassan, M. Suzuki, A. Abd El-Moneim, Capacitive Behavior of Manganese Dioxide/Stainless Steel Electrodes at Different Deposition Currents, Am. J. Mater. Sc. 2 (2012) 11-14.
[23] S. Devaraj, N. Munichandraiah, Electrochemical supercapacitor studies of nanostructured/MnO2 synthesized by microemulsion method and the effect of annealing, J Electrochem. Soc. 154 (2007) A80-A88.
[24] P. Ragupathy, D. H. Park, G.Campet, H. N. Vasan, S.J. Hwang, J.H. Choy, N. Munichandraiah , Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor, J. Phys. Chem. C, 113 (2009) 6303–6309.
[25] J. Cheng, B. Zhao, W. Zhang, F. Shi, G. Zheng, D. Zhang, J. Yang, High-performance supercapacitor applications of NiO-nanoparticle-decorated millimeter-long vertically aligned carbon nanotube arrays via an effective supercritical CO2-assisted method, Adv. Funct. Mater. 25 (2015) 7381–7391.
[26] Y. Zhu, C. Cao, S.Tao, W. Chu, Z. Wu, Y. Li, Ultrathin nickel hydroxide and oxide nanosheets: Synthesis, Characterizations and excellent supercapacitor performances, Sci. Rep. 4 (2014) 1-7.
[27] C. Xiang, M. Li, M. Zhi, A. Manivannan. N. Wu, Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects, J. Mater. Chem. 22 (2012) 19161–19167.
[28] M. Fukuhara, T. Kuroda, F. Hasegawa, Amorphous titanium-oxide supercapacitors, Sci. Rep. 6(35870) (2016) 1-5.
[29] D. Choi, G. E. Blomgren, P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors, Adv. Mater. 18 (2016) 1178–1182.
[30] S. Boukhalfa, K.Evanoff, G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes, Energy Environ. Sci. 5 (2012) 6872–6879.
[31] M. Yu, Y. Zeng, Y. Han, X. Cheng, W. Zhao, C. Liang, Y. Tong, H. Tang, X. Lu, Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100 000 cycles, Adv. Funct. Mater. 1 (2015) 1-5.
[32] R. Thangappan, S. Kalaiselvam, A. Elayaperumal, R. Jayavel, Synthesis of graphene oxide/vanadium pentoxide composite nanofibers by electrospinning for supercapacitor applications, Solid State Ionics 268 (2014) 321–325.
[33] D. Shu, C. Lv, F. Cheng, C. He, K. Yang, J. Nan, Lu Long, Enhanced capacitance and rate capability of nanocrystalline VN as electrode materials for supercapacitors, Int. J. Electrochem. Sci. 8 (2013) 1209 – 1225.
[34] C. Guan, J. Liu, Y. Wang, L. Mao, Z. Fan, Z. Shen, H. Zhang, J. Wang, Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability, ACS Nano 9 (2015) 5198–5207.
[35] Q. Xia, M. Xu, H. Xia, J. Xie, Nanostructured iron oxide/hydroxide-based electrode materials for supercapacitors, ChemNanoMat 2 (2016) 588–600.
[36] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J Power Sources 196 (2001) 1–12.
[37] Y. Liu Y, K. Ai, L. Lu, Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields, Chem. Rev. 114 (2014) 5057–5115.
[38] G. Ciric-Marjanovic, Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications, Synth. Met. 177 (2013) 1–47.
[39] H. Tang, J. Wang, H. Yin, Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes, Adv. Mater. 27 (2015) 1117–1123.
[40] A. Laforgue, P. Simon, C. Sarrazin, J. Fauvarque, Polythiophene-based supercapacitors, J. Power Sources 80 (1999)142–148.
[41] H-P Cong, X-C Ren, P. Wang, S-H Yu, Flexible graphene-polyaniline composite paper for high-performance supercapacitor, Energy Environ. Sci. 6 (2013) 1185–1191.
[42] Y. Meng, K. Wang, Y. Zhang, Z. Wei, Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors, Adv. Mater. 25 (2013) 6985–6990.
[43] J. Yan, T. Wei, Z. Fan, Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors, J. Power Sources 195 (2010) 3041–3045.
[44] Q. Hao, X. Xia, W. Lei, Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors, Carbon 81 (2015) 552–563.
[45] K. Zhang, LL Zhang, XS Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater. 22 (2010) 1392–1401.
[46] H. Wang, Q. Hao, X.Yang, Graphene oxide doped polyaniline for supercapacitors, Electrochem. Commun. 11 (2009) 1158–1161.
[47] K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors, J. Phys. Chem. C 114 (2010) 8062–8067.
[48] K. Wang, Q. Meng, Y. Zhang, High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays, Adv. Mater. 25 (2013) 1494–1498.
[49] A. Muzaffar, M. Basheer Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renew. Sust. Energy Rev. 101 (2019) 123–145.
[50] S.R. Sivakkumar, A.G. Pandolfo, Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode, Electrochim. Acta 65 (2012) 280– 287.
[51] Sheng S. Zhang, Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor, J. Power Sources 343 (2017) 322-328.
[52] A. Shellikeri, S. Yturriaga, J.S. Zheng, W. Cao, M. Hagen, J.A. Read, T.R. Jow, J.P. Zheng, Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode – Long term cycle life study, rate effect and charge sharing analysis, J. Power Sources 392 (2018) 285–295.
[53] L. Jin, J. Zheng, Q. Wu, A. Shellikeri, S. Yturriaga, R. Gong, J. Huang, Jim P. Zheng, Exploiting a hybrid lithium ion power source with a high energy density over 30 Wh/kg, Mater. Today Energy 7 (2018) 51-57.
[54] J. Zhang, J. Wang, Z. Shi, Z. Xu, Electrochemical behavior of lithium ion capacitor under low temperature, J Electroanal. Chem. 817 (2018) 195–201.
[55] X. Zhang, C. Lu, H. Peng, X. Wang, Y. Zhang, Z. Wang, Y. Zhong, G. Wang, Influence of sintering temperature and graphene additives on the electrochemical performance of porous Li4Ti 5O12 anode for lithium ion capacitor, Electrochim. Acta 246 (2017) 1237-1247.
[56] N.W. Li, X. Du, J. L. Shi, X. Zhang, W. Fan, J. Wang, S. Zhao, Y. Liu, W. Xu, M. Li, Y.G. Guo, C. Li, Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors, Electrochim. Acta 281 (2018) 459-465.
[57] B. E. Conway, Two-dimensional and quasi-two-dimensional isothermals for Li intercalation and UPD processes at surface, Electrochim. Acta 38 (1993) 1249-1258.
[58] B. E. Conway, Transition from “Supercapacitor” to “Battery” behavior in electrochemical energy storage, J. Electrochem. Soc. 38 (1991) 1537-1547.
[59] H. Angerstein-Kozlowska, B.E. Conway, Evaluation of rate constants and reversibility parameters for surface reactions by the potential-sweep method, J. Electroanal. Chem. 95 (1979) 1-28.
[60] B.E. Conway, E. Gileadi, Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage, Transaction of The Faraday Society 58 (1963) 2493-2508.
[61] S. Hadzi-Jordanov, H. Angerstein-Kozlowska, M. Vukoviff, B. E. Conway, Reversibility and growth behavior of surface oxide films at ruthenium electrodes, J. Electrochem. Soc. 125 (1978) 1471-1480.
[62] R. P. Simpraga, B. E. Conway, The real-area scaling factor in electrocatalysisand in charge storage by supercapacitors, Electrochim. Acta 43 (1998) 3045–3058.
[63] W. G. Pell, B. E. Conway, Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes, J. Power Sources 136 (2004) 334–345.
[64] B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, J. Power Sources 66 (1997) 1-14.
[65] MTI Corp.
[66] C. Zhang, PhD Dissertation, University of Miami, 2018.
[67] S.E. Chun, B. Evanko, X. Wang, D. Vonlanthen, X. Ji, G. D. Stucky, S. W. Boettcher, Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge, Nature Commun. 6 (2015) 7818-7828.
[68] K. Chen, D. Xue, YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance, J. Colloid Inter. Sci. 424 (2014) 84–89.
[69] J. Zhou, J. Cai, S. Cai, X. Zhou, A. N. Mansour, Development of all-solid-state mediator-enhanced supercapacitors with polyvinylidene fluoride/lithium trifluoromethanesulfonate separators, J. Power Sources 196 (2011) 10479– 10483.
[70] J.P. Zheng, J.Huang, R. Jow, The Limitations of Energy Density for Electrochemical Capacitors, J. Electrochem. Soc. 144 (1997) 2027-2031.
[71] J. P. Zheng, Theoretical energy density for electrochemical capacitors with intercalation electrodes, J. Electrochem. Soc. 152 (2005) A1864-A1869.
[72] N. Papageorgiou, P. Liska, A. Kay, and M. Grätzel, Mediator transport in multilayer nanocrystalline photoelectrochemical cell configurations, J. Electrochem. Soc. 146 (1999) 898-907.
[73] J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends, Renew. Sust. Energy Rev. 68 (2017) 234–246.
[74] B. Kannan, D. E. Williams, M. A. Booth, J. Travas-Sejdic, High-sensitivity, label-free DNA sensors using electrochemically active conducting polymers, Anal. Chem. 83 (2011) 3415–3421.
[75] I. Ruff, V. J. Friedrich, Transfer Diffusion. I. Theoretical, J. Phys. Chem. 75 (1971) 3297-3301.
[76] I. Ruff, V. J. Friedrich, K. Demeter, K. Csillag, Transfer diffusion. II. Kinetics of electron exchange reaction between ferrocene and ferricinium ion in alcohols, J. Phys. Chem. 75 (1971) 3303-3309.
[77] P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, M. Gratzel, Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells, J. Am. Chem. Soc. 125 (2003) 1166-1167.
[78] R. Kawano, M. Watanabe, Equilibrium potentials and charge transport of an I2 /I3- redox couple in an ionic liquid, Chem. Commun. 3 (2003) 330–331.
[79] H. Dahms, Electronic conduction in aqueous solution, J. Phys.Chem. 78 (1968) 362-364.
[80] E. Frackowiak, M. Meller, J. Menzel, D. Gastol, K. Fic, Redox-active electrolyte for supercapacitor application, Faraday Discuss. 172 (2014) 179- 198.
[81] S. T. Senthilkumar, R. Kalai Selvan, Y. S. Lee, J. S. Melo, Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte, J. Mater. Chem. A, 1 (2013) 1086–1095.
[82] S. T. Senthilkumar, R. Kalai Selvan, J. S. Melo, Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors, J. Mater. Chem. A 1 (2013) 12386–12394.
[83] Z. Gao, L. Zhang, J. Chang, Z. Wang, D. Wu, F. Xu, Y. Guo, K. Jiang, Catalytic electrode-redox electrolyte supercapacitor system with enhanced capacitive performance, Chem. Eng. J. 335 (2018) 590–599.
[84] E. Frackowiak, K. Fic, M. Meller, G. Lota, electrochemistry serving people and nature: high-energy supercapacitors based on redox-active electrolytes, ChemSusChem 5 (2012) 1181-1185.
[85] J. Lee, S. Choudhury, D. Weingarth, D. Kim, V. Presser, High performance hybrid energy storage with potassium ferricyanide redox electrolyte, ACS Appl. Mater. Interfaces, 8 (2016) 23676−23687.
[86] L. Su, L. Gong, Y. Zhao, A new strategy to enhance low-temperature capacitance: combination of two charge-storage mechanisms, Phys. Chem. Chem. Phys. 16 (2014) 681-684.
[87] L.H. Su, X.G. Zhang, C.H. Mi, B. Gao, Y. Liu, Improvement of the capacitive performances for Co–Al layered double hydroxide by adding hexacyanoferrate into the electrolyte, Phys. Chem. Chem. Phys. 11 (2009) 2195–2202.
[88] K. Chen, S. Song, D. Xue, An ionic aqueous pseudocapacitor system: electroactive ions in both a salt electrode and redox electrolyte, RSC Adv., 4 (2014) 23338–23343.
[89] K. Chen, S. Song, K. Li, D. Xue, Water-soluble inorganic salts with ultrahigh specific capacitance: crystallization transformation investigation of CuCl2 electrodes, CrystEngComm. 15 (2013)10367–10373.
[90] K. Chen, Y. Yang, K. Li, Z. Ma, Y. Zhou, D. Xue, CoCl2 Designed as excellent pseudocapacitor electrode materials, ACS Sustainable Chem. Eng. 2 (2014) 440−444.
[91] H. J. Xie, B. Gélinas, D. Rochefort, Redox-active electrolyte supercapacitors using electroactive ionic liquids, Electrochem. Commun. 66 (2016) 42–45.
[92] S.Yamazaki, T. Ito, M. Yamagata, M. Ishikawa, Non-aqueous electrochemical capacitor utilizing electrolytic redox reactions of bromide species in ionic liquid, Electrochim. Acta 86 (2012) 294–297.
[93] Y. Wang, Z. Chang, M. Qian, Z. Zhang, J. Lin, F. Huang, Enhanced specific capacitance by a new dual redox-active electrolyte in activated carbon-based supercapacitors, Carbon 143 (2019) 300-308.
[94] P. Navalpotro, J. Palma, M. Anderson, R, Marcilla, High performance hybrid supercapacitors by using para-Benzoquinone ionic liquid redox electrolyte, J. Power Sources 306 (2016) 711-717.
[95] Z.J. Zhang, Y. Q. Zhu, X.Y. Chen, Y. Cao, Pronounced improvement of supercapacitor capacitance by using redox active electrolyte of p-phenylenediamine, Electrochim. Acta 176 (2015) 941-948.
[96] D. Komatsu, T. Tomai, I. Honma, Enhancement of energy density in organic redox capacitor by improvement of electric conduction network, J. Power Sources 274 (2015) 412-416.
[97] L. Ren, G. Zhang, Z. Yan, L. Kang, H. Xu, F. Shi, Z. Lei, Z.H. Liu , High capacitive property for supercapacitor using Fe3+/Fe2+ redox couple additive electrolyte, Electrochim. Acta 231 (2017) 705–712.
[98] T.T. Liu, Y.H. Zhu, E.H. Liu, Z.Y. Luo, T.T. Hu, Z.P. Li, R. Ding, Fe3+/Fe2+ redox electrolyte for high-performance polyaniline/SnO2 supercapacitors, Trans. Nonferrous Met. Soc. China 25 (2015) 2661−2665.
[99] Y. Zhu, E. Liu, Z. Luo, T.T. Hu, T.T. Liu, Z.P. Li, Q.L. Zhao, A hydroquinone redox electrolyte for polyaniline/SnO2 supercapacitors, Electrochim. Acta 118 (2014) 106–111.
[100] H.H. Zhang, J. Li, C. Gu, M. Yao, B. Yang, P. Lu, Y. Ma, High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes, J. Power Sources 332 (2016) 413-419.
[101] L. Liu, R. Feng, Y. Pan, X.P. Zheng, L. Bai, Nanoporous carbons derived from poplar catkins for high performance supercapacitors with a redox active electrolyte of p-phenylenediamine, J. Alloys Compd. 748 (2018) 473-480.
[102] D. D. Potphode, L. Sinha, P. M. Shirage, Redox additive enhanced capacitance: Multi-walled carbon nanotubes/polyaniline nanocomposite based symmetric supercapacitors for rapid charge storage, Appl. Surf. Sci. 469 (2019) 162–172.
[103] Z.J. Zhang, J.X. Li, T.T. Huang, M.R. Liu, X.Y. Chen, Large performance improvement of carbon-based supercapacitors using dual-redox additives phosphotungstic acid and potassium ferricyanide, J. Alloys Compd. 768 (2018) 756-765.
[104] M. Jana, P. Samanta, N. C. Murmu, T. Kuila, Surface modification of reduced graphene oxide through successive ionic layer adsorption and reaction method for redox dominant supercapacitor electrodes, Chem. Eng. J. 330 (2017) 914–925.
[105] Y.C. Chen, L.Y. Lin, Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte, J. Colloid Interface Sci. 537 (2019) 295–305.
[106] S. Roldn, C. Blanco, M. Granda, R. Menndez, R. Santamar, Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes, Angew. Chem. Int. Ed. 50 (2011) 1699–1701.
[107] Y. Zhang, X. Cui, L. Zu, X. Cai, Y. Liu, X. Wang, H. Lian, New supercapacitors based on the synergetic redox effect between electrode and electrolyte, Materials 734 (2016) 1-13.
[108] Y. Wang, C. Zhang, X. Qiao, A. N. Mansour, X. Zhou, Three-dimensional modeling of mediator-enhanced solid-state supercapacitors, J. Power Sources 423 (2019) 18-25.
[109] A. N. Mansour, J.J. Zhou, X.Y. Zhou, X-ray absorption spectroscopic study of sodium iodide and iodine mediators in a solid-state supercapacitor, J. Power Sources 245 (2014) 270-276.
[110] LQ Fan, J. Zhong, J. Wu, J. Lin, Y. Huang, Improving the energy density of quasi-solid-state electric double-layer capacitors by introducing redox additives into gel polymer electrolytes, J. Mater. Chem. A 2 (2014) 9011−9014.
[111] S.K. Tripathi, A. Jain, A. Gupta, M. Kumari, Studies on redox supercapacitor using electrochemically synthesized polypyrrole as electrode material using blend polymer gel electrolyte, Indian J. Pure Ap. Phys. 50 (2013) 315-319.
[112] Q.M. Tu, L.Q.Fan, F. Pan, J.L. Huang, Y. Gu, J.M. Lin, M.L. Huang, Y.F. Huang, J.H. Wu, Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors, Electrochim. Acta 268 (2018) 562-568.
[113] I. Ike I. Sigalas, S. Iyuke, The effects of self-discharge on the performance of asymmetric/hybrid electrochemical capacitors with redox-active electrolytes: Insights from modeling and simulation, J. Electron. Mater. 47 (2018) 470-492.
[114] Y.F. Huang, W. H. Ruan, D. L. Lin, M. Q. Zhang, Bridging redox species-coated graphene oxide sheets to electrode for extending battery life using nanocomposite electrolyte, ACS Appl. Mater. Interfaces, 9 (2017) 909−918.
[115] M. Jana, P. Samanta, N. C. Murmu, T. Kuila, Surface modification of reduced graphene oxide through successive ionic layer adsorption and reaction method for redox dominant supercapacitor electrodes, Chem. Eng. J. 330 (2017) 914–925.