Gel Polymer Electrolytes for Supercapacitor Applications

$28.50

Gel Polymer Electrolytes for Supercapacitor Applications

K.K. Purushothaman, B. Saravanakumar, S. Vadivel, N. Krishna Chandar, Mohd Imran Ahamed

Flexible supercapacitors are emerging as potential energy storage devices for advanced mobile electronic devices. The gel polymer electrolytes are considered as the potential electrolyte for future advanced flexible electrical energy storage systems owing to their elastic polymeric nature with higher redox capacitance. The use of these gel polymer electrolytes in a supercapacitor system facilitates the reduction in size, reliability, weight, better flexibility and extended operating window with high range of operating temperature. The use of gel polymer electrolytes holds a greater hope for fabrication of new generation mobile electronics. In this chapter, we intend to discuss the advancement in design and types of gel-based polymer electrolyte towards supercapacitor device applications in detail.

Keywords
Supercapacitor, Flexible Electrode, Composite, Electrolyte, Gel Polymer

Published online 11/5/2019, 14 pages

Citation: K.K. Purushothaman, B. Saravanakumar, S. Vadivel, N. Krishna Chandar, Mohd Imran Ahamed, Gel Polymer Electrolytes for Supercapacitor Applications, Materials Research Foundations, Vol. 61, pp 31-44, 2019

DOI: https://doi.org/10.21741/9781644900499-3

Part of the book on Supercapacitor Technology

References
[1] A. K. Akella, R. P. Saini, M. P. Sharma, Social, economical and environmental impacts of renewable energy systems, Renew. Energy. 34 (2009) 390-396. https://doi.org/10.1016/j.renene.2008.05.002
[2] B. V. Mathiesen, H. Lund, K. Karlsson, 100% Renewable energy systems, climate mitigation and economic growth, Appl. Energy. 88 (2011) 488-501. https://doi.org/10.1016/j.apenergy.2010.03.001
[3] A. N. Menegaki, A social marketing mix for renewable energy in europe based on consumer stated preference surveys, Renew. Energy. 39 (2012)30-39. https://doi.org/10.1016/j.renene.2011.08.042
[4] M. Cao, Z. H. Li, J. Wang, W. Ge, T. Yue, R. Li, V. L. Colvin, W. W.Yu, Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis, Mater. Sci. and Eng. Tech. 27 (2012) 47-56. https://doi.org/10.1016/j.tifs.2012.04.003
[5] S. Kim, H. J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee and S. Y. Lee, Low-power flexible organic light-emitting diode display device, Adv. Mater. 23 (2011) 3511-3516. https://doi.org/10.1002/adma.201101066
[6] M. Koo, K. I. Park, S. H. Lee, M. Suh, D. Y. Jeon, J. W. Choi, K. Kang, K. J. Lee, Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12 (2012) 4810-4816. https://doi.org/10.1021/nl302254v
[7] Y. G. Wang, Z. D. Wang, Y. Y. Xia, An asymmetric supercapacitor using RuO2/ TiO2 nanotube composite and activated carbon electrodes, Electrochim. Acta. 50 (2005) 5641-5646. https://doi.org/10.1016/j.electacta.2005.03.042
[8] A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud, J. W. Long, Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:  implications for electrochemical capacitors, Nano Lett. 7 (2007) 281-286. https://doi.org/10.1021/nl062263i
[9] D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide), Polymer. 14 (1973) 589–589. https://doi.org/10.1016/0032-3861(73)90146-8
[10] S. Ramesh, C. W. Liew, Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA-LiCF3SO3-SiO2, Ionics. 16 (2010) 255–262. https://doi.org/10.1007/s11581-009-0388-3
[11] D. F. Shriver, P. G. Bruce, Solid State Electrochemistry, second ed., Cambridge University Press, Cambridge, New York, 1995.
[12] A. M. Stephan, Review on gel polymer electrolytes for lithium batteries, Eur. Polym. J. 42 (2006) 21–42. https://doi.org/10.1016/j.eurpolymj.2005.09.017
[13] N. R. Chodankar, D. P. Dubal, A. C. Lokhande, C. D. Lokhande, Ionically conducting PVA–LiClO4 gel electrolyte for high performance flexible solid-state supercapacitors, J. Colloid. Interf. Sci. 460 (2015)370-376. https://doi.org/10.1016/j.jcis.2015.08.046
[14] M. Jiang, J. Zhu, C. Chen, Y. Lu, Y. Ge, X. Zhang, Poly (vinyl Alcohol) borate gel polymer electrolytes prepared by electrodeposition and their application in electrochemical supercapacitors, ACS Appl. Mater. Interfaces. 8 (5) (2016) 3473–3481. https://doi.org/10.1021/acsami.5b11984
[15] S. A. Hashmi, H. M. Upadhyaya, MnO2-polypyrrole conducting polymer composite electrodes for electrochemical redox supercapacitors, Ionics. 8, (2002) 272-277. https://doi.org/10.1007/BF02376079
[16] M. J. Deng, K. W. Chen, Y. C. Che, I. J. Wang, C. M. Lin, J. M. Chen, K. T. Lu, Y. F. Liao, H. Ishii, Cheap, High-performance, and wearable Mn oxide supercapacitors with urea-LiClO4 based gel electrolytes, ACS Appl. Mater. Interfaces 9 (1) (2017) 479–486. https://doi.org/10.1021/acsami.6b13575
[17] G. M. Wang, X. H. Lu, Y. C. Ling, T. Zhai, H. Y. Wang, Y. X. Tong, Y. Li, LiCl/ PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors, ACS Nano. 6 (2012) 10296-10302. https://doi.org/10.1021/nn304178b
[18] P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, Z. L. Wang, Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems, ACS Nano 7(3) (2013) 2617-2626. https://doi.org/10.1021/nn306044d
[19] J. Duay, E. Gillette, R. Liu, S. B. Lee, Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays, Phys. Chem. Chem. Phys. 14 (2012) 3329-3337. https://doi.org/10.1039/c2cp00019a
[20] S. Slade, S. Campbell, T. Ralph, Ionic conductivity of an extruded nafion 1100 EW series of membranes. J. Electrochem. Soc. 149 (2002) A1556- A1564. https://doi.org/10.1149/1.1517281
[21] P. Staiti, F. Lufrano. Design, fabrication, and evaluation of a 1.5 F and 5 V prototype of solid-state electrochemical supercapacitor. J. Electrochem. Soc. 152 (2005) A617-A621. https://doi.org/10.1149/1.1859614
[22] B. G. Choi, J. Hong, W. H. Hong, P. T. Hammond, H. Park, Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5 (2011) 7205-7213. https://doi.org/10.1021/nn202020w
[23] S. Sarangapani, P. Lessner, J. Forchione, A. Griffith, A. B. Laconti, Advanced double layer capacitors, J. Power Sources 29(1990) 355-364. https://doi.org/10.1016/0378-7753(90)85010-A
[24] K.W. Park, H. J. Ahn and Y. E. Sung, All-solid-state supercapacitor using a Nafion®polymer membrane and its hybridization with a direct methanol fuel cell. J. Power Sources 109 (2002) 500-506. https://doi.org/10.1016/S0378-7753(02)00165-9
[25] J. Sumner, S. Creager, J. Ma, D. D. Marteau, Proton Conductivity in nafion® 117 and in a novel bis [(perfluoroalkyl) sulfonyl ] imide ionomer membrane, J. Electrochem. Soc.145 (1998) 107-110. https://doi.org/10.1149/1.1838220
[26] P. Sivaraman, S. K. Rath, V. R. Hande, A. P. Thakur, M. Patri, A. B. Samui, All-solid-supercapacitor based on polyaniline and sulfonated polymers, Synth. Mat.156 (2006) 1057-1064. https://doi.org/10.1016/j.synthmet.2006.06.017
[27] P. Colomban, Proton Conductors: Solids, membranes and gels-materials and devices, first ed., Cambridge University Press, Cambridge, USA, 1992. https://doi.org/10.1017/CBO9780511524806
[28] D. P. Dubal, G. S. Gund, R. Holze, H. S. Jadhav, C. D. Lokhande, C.J. Park, Solution-based binder-free synthetic approach of RuO2 thin films for all solid state supercapacitors, Electrochim. Acta. 103 (2013) 103-109. https://doi.org/10.1016/j.electacta.2013.04.055
[29] Z. S. Wu, K. Parvez, X. Feng, K. Mullen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4 (2013) 1-8. https://doi.org/10.1038/ncomms3487
[30] C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly flexible and all-solid-state paper like polymer supercapacitors, Nano Lett.10 (2010) 4025-4031. https://doi.org/10.1021/nl1019672
[31] C. Yuan, X. Zhang, Q. Wu, B. Gao, Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte, Solid-State Ionics 177 (2006) 1237-1242. https://doi.org/10.1016/j.ssi.2006.04.052
[32] D. Kalpana, N. G. Renganathan, S. Pitchumani, A new class of alkaline polymer gel electrolyte for carbon aerogel supercapacitors, J. Power Sources. 157 (2006) 621–623. https://doi.org/10.1016/j.jpowsour.2005.07.057
[33] G. Ma, J. Li, K. Sun, H. Peng, J. Mu, Z. Lei, High-performance solid-state supercapacitor with PVA–KOH–K3 [Fe(CN)6] gel polymer as electrolyte and separator, J. Power Sources 256 (2014) 281-287. https://doi.org/10.1016/j.jpowsour.2014.01.062
[34] Z. Fadakar, N. Nasirizadeh, S. M. Bidoki, Z. Shekari, V. Mottaghitalab, Fabrication of a supercapacitor with a PVA–KOH–KI electrolyte and nano silver flexible electrodes, Microelectronic Eng. 140 (2015) 29-32. https://doi.org/10.1016/j.mee.2015.05.004
[35] H. Yu, J. Wu, L. Fan, K. Xu, X. Zhong, Y. Lin, J. Lin, Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte, Electrochim. Acta. 56 (20) (2011) 6881-6886. https://doi.org/10.1016/j.electacta.2011.06.039
[36] P. Walden, On the molecular size and electrical conductivity of some molten salts, Bull. Acad. Sci. 8(6) (1914) 405–422.
[37] R. Muchakayala, S. Song, J. Wang, Y. Fan, M. Bengeppagari, J. Chen, M. Tan, Development and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films, J. Ind. Engg. Chem, 59 (2018) 79-89. https://doi.org/10.1016/j.jiec.2017.10.009
[38] Q. M. Tu, L.Q. Fan, F. Pan, J. L. Haung , Y. Gu, J. M. Lin, M. L Huang, Y. F. Huang, J. H. Wu, Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors, Electrochim. Acta. 268 (2018) 562-568. https://doi.org/10.1016/j.electacta.2018.02.008
[39] G. A. Tiruye, D. M. Torrero, J. Palma, M. Anderson, R. Marcilla, All-solid-state supercapacitors operating at 3.5 V by using ionic liquid-based polymer electrolytes, J. Power Sources. 279 (2015) 472-480. https://doi.org/10.1016/j.jpowsour.2015.01.039
[40] G. P. Pandey, S. A. Hashmi, Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition, J. Power Sources 243 (2013) 211-218. https://doi.org/10.1016/j.jpowsour.2013.05.183
[41] A. M. Obeidat, M. A. Gharaibeh, M. Obaidat, Solid-state supercapacitors with ionic liquid gel polymer electrolyte and polypyrrole electrodes for electrical energy storage J. Energy Storage 13 (2017) 123-128. https://doi.org/10.1016/j.est.2017.07.010