Inorganic Electrolytes in Supercapacitor


Inorganic Electrolytes in Supercapacitor

P.E. Lokhande, U.S. Chavan

Supercapacitors are considered promising energy storage systems due to their high power density, fast charge-discharge, long service lifetime, wide operating temperature range and excellent capacitance retention. The electrochemical performance of the supercapacitors depends upon numerous factors such as nature of electrode materials, type of electrolyte and separator thickness, etc. Among these factors, electrolyte used in supercapacitor plays an important role in deciding final characteristics of supercapacitors. In recent decades, tremendous research work has been on the development of novel electrolytes and electrode/electrolyte configurations. In this chapter, we aimed to focus on the role of inorganic electrolytes used in supercapacitors.

Supercapacitor, Electrolyte, Metal Oxide, Carbon-Based Material

Published online 11/5/2019, 20 pages

Citation: P.E. Lokhande, U.S. Chavan, Inorganic Electrolytes in Supercapacitor, Materials Research Foundations, Vol. 61, pp 11-30, 2019


Part of the book on Supercapacitor Technology

[1] Q. Du, L. Su, L. Hou, G. Sun, M. Feng, X. Yin, Z. Ma, G. Shao, W. Gao, Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor, J. Alloys Compd. 740 (2018) 1051–1059.
[2] R.R. Salunkhe, Y. V. Kaneti, Y. Yamauchi, Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects, ACS Nano. 11 (2017) 5293–5308.
[3] G.Z. Chen, Supercapacitor and supercapattery as emerging electrochemical energy stores, Int. Mater. Rev. 62 (2017) 173–202.
[4] D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics, Chem. Soc. Rev. 47 (2018) 2065-2129.
[5] Y. Li, H. Ye, J. Chen, N. Wang, R. Sun, C.P. Wong, Flexible β-Ni(OH)2/graphene electrode with high areal capacitance enhanced by conductive interconnection, J. Alloys Compd. 737 (2018) 731–739.
[6] R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review, J. Alloys Compd. 734 (2018) 89–111.
[7] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531.
[8] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sustain. Energy Rev. 58 (2016) 1189–1206.
[9] P.E. Lokhande, U.S. Chavan, Surfactant-assisted cabbage rose-like CuO deposition on Cu foam by for supercapacitor applications, Inorg. Nano-Metal Chem. 0 (2019) 1–7.
[10] P.E. Lokhande, U.S. Chavan, Conventional chemical precipitation route to anchoring Ni(OH)2for improving flame retardancy of PVA, Mater. Today Proc. 5 (2018) 16352–16357.
[11] Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci. 11 (2016) 10628–10643.
[12] P.E. Lokhande, H.S. Panda, Synthesis and Characterization of Ni.Co(OH)2 Material for Supercapacitor Application, IARJSET. 2 (2015) 10–13.
[13] M. Vangari, T. Pryor, L. Jiang, Supercapacitors: Review of Materials and Fabrication Methods, J. Energy Eng. 139 (2012) 72–79.
[14] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845–854.
[15] V.C. Lokhande, A.C. Lokhande, C.D. Lokhande, J.H. Kim, T. Ji, Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers, J. Alloys Compd. 682 (2016) 381–403.
[16] H.E. Density, R. Oxides, New materials and new configurations for advanced electrochemical capacitors, Electrochem. Soc. Interface. (2008) 35.
[17] C.D. Lokhande, D.P. Dubal, O.S. Joo, Metal oxide thin film based supercapacitors, Curr. Appl. Phys. 11 (2011) 255–270.
[18] G. Moreno-Fernandez, J. Ibañez, J.M. Rojo, M. Kunowsky, Activated Carbon Fiber Monoliths as Supercapacitor Electrodes, Adv. Mater. Sci. Eng. 2017 (2017) 1–8.
[19] W. Lei, H. Liu, J. Xiao, Y. Wang, L. Lin, Moss-Derived Mesoporous Carbon as Bi-Functional Electrode Materials for Lithium–Sulfur Batteries and Supercapacitors, Nanomaterials. 9 (2019) 84.
[20] P. Zhao, M. Yao, H. Ren, N. Wang, S. Komarneni, Nanocomposites of hierarchical ultrathin MnO2 nanosheets/hollow carbon nanofibers for high-performance asymmetric supercapacitors, Appl. Surf. Sci. 463 (2018) 931-938. .
[21] H. Zheng, J. Wang, Y. Jia, C. Ma, In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors, J. Power Sources. 216 (2012) 508–514.
[22] S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)*, Graphene. 6 (2017) 1–18.
[23] V.D. Patake, C.D. Lokhande, O.S. Joo, Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments, Appl. Surf. Sci. 255 (2009) 4192–4196.
[24] M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review, Nanoscale. 5 (2013) 72–88.
[25] J.C. Icaza, R.K. Guduru, Electrochemical characterization of nanocrystalline RuO2 with aqueous multivalent (Be2+ and Al3+ ) sulfate electrolytes for asymmetric supercapacitors, J. Alloys Compd. 735 (2018) 735–740.
[26] A.J. Paleo, P. Staiti, A. Brigandì, F.N. Ferreira, A.M. Rocha, F. Lufrano, Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes, Energy Storage Mater. 12 (2018) 204–215.
[27] Y. Tan, Y. Liu, L. Kong, L. Kang, F. Ran, Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method, J. Power Sources. 363 (2017) 1–8.
[28] P.E. Lokhande, U.S. Chavan, Nanoflower-like Ni(OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications, Mater. Lett. 218 (2018) 225–228.
[29] V. Gupta, T. Kusahara, H. Toyama, S. Gupta, N. Miura, Potentiostatically deposited nanostructured α-Co(OH)2: A high performance electrode material for redox-capacitors, Electrochem. Commun. 9 (2007) 2315–2319.
[30] J. Ma, X. Guo, Y. Yan, H. Xue, H. Pang, FeOx -Based Materials for Electrochemical Energy Storage, Adv. Sci. 5 (2018) 1700986.
[31] Y. Qian, J. Du, D.J. Kang, Enhanced electrochemical performance of porous Co-doped TiO2 nanomaterials prepared by a solvothermal method, Microporous Mesoporous Mater. 273 (2019) 148–155.
[32] Y. Zhou, Z.Y. Qin, L. Li, Y. Zhang, Y.L. Wei, L.F. Wang, M.F. Zhu, Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials, Electrochim. Acta. 55 (2010) 3904–3908.
[33] A. Afzal, F.A. Abuilaiwi, A. Habib, M. Awais, S.B. Waje, M.A. Atieh, Polypyrrole/carbon nanotube supercapacitorsTechnological advances and challenges, J. Power Sources. 352 (2017) 174–186.
[34] H. Zhang, Z. Hu, M. Li, L. Hu, S. Jiao, A high-performance supercapacitor based on a polythiophene/multiwalled carbon nanotube composite by electropolymerization in an ionic liquid microemulsion, J. Mater. Chem. A. 2 (2014) 17024–17030.
[35] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources. 157 (2006) 11–27.
[36] P. Simon, Y. Gogotsi, Capacitive Energy storage in nanostructured carbon–electrolyte systems, Acc. Chem. Res. 46 (2013) 1094–1103.
[37] W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy Environ. Sci. 8 (2015) 1837–1866.
[38] P.E. Lokhande, U.S. Chavan, Materials science for energy technologies nanostructured Ni(OH)2/rGO composite chemically deposited on Ni foam for high performance of supercapacitor applications, Mater. Sci. Energy Technol. 2 (2019) 52–56.
[39] P.E. Lokhande, K. Pawar, U.S. Chavan, Chemically deposited ultrathin α-Ni(OH)2 nanosheet using surfactant on Ni foam for high performance supercapacitor application, Mater. Sci. Energy Technol. 1 (2018) 166–170.
[40] H. Pan, J. Li, Y.P. Feng, Carbon nanotubes for supercapacitor, Nanoscale Res. Lett. 5 (2010) 654–668.
[41] J. Yan, Q. Wang, T. Wei, Z. Fan, Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities, Adv. Energy Mater. 4 (2014) 1300816.
[42] W. Sun, X. Rui, M. Ulaganathan, S. Madhavi, Q. Yan, Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors, J. Power Sources. 295 (2015) 323–328.
[43] Halper, S. Marin, J.C. Ellenbogen, Supercapacitors : A Brief Overview, Mitre Nanosyst. Gr. (2006).
[44] W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Recent advancements in supercapacitor technology, Nano Energy. 52 (2018) 441–473.
[45] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484–7539.
[46] L. Soserov, T. Boyadzhieva, V. Koleva, C. Girginov, A. Stoyanova, R. Stoyanova, Effect of the electrolyte alkaline ions on the electrochemical performance of α-Ni(OH)2/activated carbon composites in the hybrid supercapacitor cell, ChemistrySelect. 2 (2017) 6693–6698.
[47] S. Schweizer, J. Landwehr, B.J.M. Etzold, R.H. Meißner, M. Amkreutz, P. Schiffels, J.-R. Hill, Combined computational and experimental study on the influence of surface chemistry of carbon-based electrodes on electrode–electrolyte interactions in supercapacitors, J. Phys. Chem. C. (2019) acs.jpcc.8b07617.
[48] A. Lewandowski, A. Olejniczak, M. Galinski, I. Stepniak, Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes, J. Power Sources. 195 (2010) 5814–5819.
[49] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797–828.
[50] N. Blomquist, T. Wells, B. Andres, J. Bäckström, S. Forsberg, H. Olin, Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials, Sci. Rep. 7 (2017) 1–7.
[51] X. Fang, D. Yao, An Overview of Solid-Like Electrolytes for Supercapacitors, in: Vol. 6A Energy, ASME, 2013: p. V06AT07A071.
[52] X. Wang, Y. Li, F. Lou, M.E. Melandsø Buan, E. Sheridan, D. Chen, Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon, RSC Adv. 7 (2017) 23859–23865.
[53] F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv. Mater. 26 (2014) 2219–2251.
[54] E. Frackowiak, M. Meller, J. Menzel, D. Gastol, K. Fic, Redox-active electrolyte for supercapacitor application, Faraday Discuss. 172 (2014) 179–198.
[55] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater. 8 (2009) 621–629.
[56] M.Y. Kiriukhin, K.D. Collins, Dynamic hydration numbers for biologically important ions, Biophys. Chem. 99 (2002) 155–168. 00153-9.
[57] A. Brandt, S. Pohlmann, A. Varzi, A. Balducci, S. Passerini, Ionic liquids in supercapacitors, MRS Bull. 38 (2013) 554–559.
[58] M. Galiński, A. Lewandowski, I. Stepniak, Ionic liquids as electrolytes, Electrochim. Acta. 51 (2006) 5567–5580.
[59] A. Lewandowski, M. Galinski, Practical and theoretical limits for electrochemical double-layer capacitors, J. Power Sources. 173 (2007) 822–828.
[60] A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plée, M. Mastragostino, S. Passerini, High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte, J. Power Sources. 165 (2007) 922–927.
[61] R.C. Agrawal, G.P. Pandey, Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview, J. Phys. D. Appl. Phys. 41 (2008) 223001.
[62] H. Gao, K. Lian, Proton-conducting polymer electrolytes and their applications in solid supercapacitors: A review, RSC Adv. 4 (2014) 33091–33113.
[63] G.G. Cameron, Solid polymer electrolytes: Fundamentals and technological Applications. Fiona M. Gray. VCH Publishers Inc., New York 1991. pp. x + 245, price £44.00. ISBN 0–89573–772–8, Polym. Int. 32 (1993) 436–436.
[64] L.-Q. Fan, J. Zhong, J.-H. Wu, J.-M. Lin, Y.-F. Huang, Improving the energy density of quasi-solid-state electric double-layer capacitors by introducing redox additives into gel polymer electrolytes, J. Mater. Chem. A. 2 (2014) 9011-9014..
[65] M.L. Verma, M. Minakshi, N.K. Singh, Synthesis and characterization of solid polymer electrolyte based on activated carbon for solid state capacitor, Electrochim. Acta. 137 (2014) 497–503.
[66] N.A. Choudhury, S. Sampath, A.K. Shukla, Hydrogel-polymer electrolytes for electrochemical capacitors: an overview, Energy Environ. Sci. 2 (2009) 55–67.
[67] S. Chintapalli, R. Frech, Effect of plasticizers on high molecular weight PEO-LiCF3SO3 complexes, Solid State Ionics. 86–88 (1996) 341–346.
[68] E. Tsuchida, H. Ohno, K. Tsunemi, Conduction of lithium ions in polyvinylidene fluoride and its derivatives-I, Electrochim. Acta. 28 (1983) 591–595.
[69] M. Watanabe, M. Kanba, K. Nagaoka, I. Shinohara, Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application, J. Appl. Polym. Sci. 27 (1982) 4191–4198.
[70] G.B. Appetecchi, F. Croce, B. Scrosati, Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes, Electrochim. Acta. 40 (1995) 991–997.
[71] X. Wen, T. Dong, A. Liu, S. Zheng, S. Chen, Y. Han, S. Zhang, A new solid-state electrolyte based on polymeric ionic liquid for high-performance supercapacitor, Ionics (Kiel). (2018) 1–11.
[72] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy. 1 (2016) 16030.
[73] B.E. Francisco, C.M. Jones, S.-H. Lee, C.R. Stoldt, Nanostructured all-solid-state supercapacitor based on Li 2 S-P 2 S 5 glass-ceramic electrolyte, Appl. Phys. Lett. 100 (2012) 103902.
[74] A.S. Ulihin, Y.G. Mateyshina, N.F. Uvarov, All-solid-state asymmetric supercapacitors with solid composite electrolytes, Solid State Ionics. 251 (2013) 62–65.
[75] Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, High ionic conductivity in lithium lanthanum titanate, Solid State Commun. 86 (1993) 689–693.
[76] X. Hu, Y. Chen, Z. Hu, Y. Li, Z. Ling, All-Solid-State Supercapacitors Based on a Carbon-Filled Porous/Dense/Porous Layered Ceramic Electrolyte, J. Electrochem. Soc. 165 (2018) A1269–A1274.
[77] C. Ogata, R. Kurogi, K. Awaya, K. Hatakeyama, T. Taniguchi, M. Koinuma, Y. Matsumoto, All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance, ACS Appl. Mater. Interfaces. 9 (2017) 26151–26160.
[78] W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P.M. Ajayan, Direct laser writing of micro-supercapacitors on hydrated graphite oxide films, Nat. Nanotechnol. 6 (2011) 496–500.
[79] Q. Zhang, K. Scrafford, M. Li, Z. Cao, Z. Xia, P.M. Ajayan, B. Wei, Anomalous capacitive behaviors of graphene oxide based solid-state supercapacitors, Nano Lett. 14 (2014) 1938–1943.
[80] M. Vangari, T. Pryor, L. Jiang, Supercapacitors : Review of materials and fabrication methods, J. Energy Eng. 139 (2013) 72–79.