Application of Prussian Blue Analogues and Related Compounds for Water Splitting


Application of Prussian Blue Analogues and Related Compounds for Water Splitting

Próspero Acevedo-Peña, Edilso Reguera

This chapter summarizes state-of-the-art regarding the reported application of Prussian blue analogues and related coordination polymers for water splitting. This family of materials has been evaluated as redox mediator coupled with metal sulfides and/or metal oxides based semiconductors, under neutral conditions (pH 7), with promising results for the oxygen evolution reaction (oxidation of the water molecule). The hydrogen evolution reaction (water reduction) has received less attention. Moreover, according to their electronic and crystal structures, these materials have promising potentialities for applications on chemical energy production from sunlight. The discussion emphasizes supporting such a hypothesis.

Prussian Blue Analogues, Porous Cyanometallates, Water Splitting, Oxygen Evolution Reaction, Hydrogen Evolution Reaction, Artificial Photosynthesis, Coordination Polymers

Published online 10/5/2019, 36 pages

Citation: Próspero Acevedo-Peña, Edilso Reguera, Application of Prussian Blue Analogues and Related Compounds for Water Splitting, Materials Research Foundations, Vol. 59, pp 179-214, 2019


Part of the book on Electrochemical Water Splitting

[1] U.N. Deparment of Economics and Social Affaris, 2018 Energy statistics pocketbook, United Nations Publication, New York, 2018.
[2] J. Barber, P.D. Tran, J. Barber, From natural to artificial photosynthesis, J. R. Soc. Interface. 10 (2013).
[3] A.F. Collings, C. Critchley, Artificial photosynthesis, 1st ed., Wiley-VCH, 2005.
[4] J. Kern, G. Renger, Photosystem II : Structure and mechanism of the water : plastoquinone oxidoreductase, Photosynth. Res. 94 (2007) 183–202.
[5] S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting – A critical review, Energy Enviromen. Sci. 8 (2015) 731–759.
[6] D.G. Nocera, The artificial leaf, Acc. Chem. Res. 45 (2012) 767–776.
[7] D.R. Whang, D. Hazar, Artificial photosynthesis : Learning from nature, Chem. Photo. Chem. 2 (2018) 148–160.
[8] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem. Soc. Rev. 46 (2017) 337–365.
[9] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature. 238 (1972) 37–38.
[10] K. Maeda, K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light, J. Phys. Chem. B. 111 (2007) 7851–7861.
[11] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253–278.
[12] T. Kato, Y. Hakari, S. Ikeda, Q. Jia, A. Iwase, A. Kudo, Utilization of metal sulfide material of (cuga)1-xzn2xs2 solid solution with visible light response in photocatalytic and photoelectrochemical solar water splitting systems, J. Phys. Chem. Lett. 6 (2015) 1042–1047.
[13] F. Le Formal, K. Sivula, M. Gra, The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the in fl uence of surface treatments, J. Phys. Chem. C. 116 (2012) 26707–26720.
[14] L. Reguera, N.L. López, J. Rodríguez-hernández, N.H. De Leeuw, E. Reguera, Synthesis , crystal structures , and properties of zeolite-like T3(H3O)2[M(CN)6]2·uH2O(T=Co, Zn ; M = Ru , Os), Eur. J. Inorg. Chem. 3 (2017) 2980–2989.
[15] S. Rahut, A. Bharti, J.K. Basu, Optical and electronic configuration of a novel semiconductor-silver nitroprusside for enhanced electrocatalytic and photocatalytic performance, Catal. Sci. Technol. 7 (2017) 6092–6100.
[16] C.J. Ballhausen, Introduction to ligand field theory, McGraw Hill, New-York, 1962.
[17] A.M. Chippindale, S.J. Hibble, E.J. Bilbe, E. Marelli, A.C. Hannon, Mixed copper, silver, and gold cyanides, (MxM’1-x)CN: Tailoring chain structures to influence physical properties, J. Am. Chem. Soc. 134 (2012) 16387–16400.
[18] R. Martínez-Garcia, M. Knobel, E. Reguera, Thermal-induced changes in molecular magnets based on prussian blue analogues, J. Phys. Chem. B. 110 (2006) 7296–7303.
[19] K. Nakamoto, Infrared spectra of inorganic and coordination compounds, 4th ed., Wiley, 1986.
[20] A. Cano, L. Lartundo-rojas, A. Shchukarev, E. Reguera, Contribution to the coordination chemistry of transition metal nitroprussides : A cryo-XPS study, New J. Chem. 43 (2019) 4835-4848.
[21] J. Rodríguez-Hernández, E. Reguera, E. Lima, J. Balmaseda, R. Martínez-García, H. Yee-Madeira, An atypical coordination in hexacyanometallates : Structure and properties of hexagonal zinc phases, J. Phys. Chem. Solids. 68 (2007) 1630–1642.
[22] J. Rodríguez-Hernández, A.A. Lemus-Santana, C.N. Vargas, E. Reguera, Three structural modifications in the series of layered solids T(H2O)2[Ni(CN)4]·xH2O with T = Mn, Co, Ni: Their nature and crystal structures, Comptes Rendus Chim. 15 (2012) 350–355.
[23] E. Reguera, A. Dago, A. Gómez, J.F. Bertrán, Structural changes in insoluble metal nitroprussides on ageing, polyhedron, 15 (1996) 3139–3145.
[24] E. Reguera, Unique coordination in metal nitroprussides : The structure of Cu[Fe(CN )5NO ]·2H2O and Cu[Fe(CN)5NO], J. Chem. Crystallogr. 34 (2004).
[25] J. Rodríguez-hernández, L. Reguera, A.A. Lemus-santana, E. Reguera, Silver nitroprusside : Atypical coordination within the metal nitroprussides series, Inorganica Chim. Acta. 428 (2015) 51–56.
[26] O. Sato, Y. Einaga, A. Fujishima, K. Hashimoto, Photoinduced long-range magnetic ordering of a cobalt – iron cyanide, Inorg. Chem. 38 (1999) 4405–4412.
[27] N. Ozaki, H. Tokoro, Y. Hamada, A. Namai, T. Matsuda, Photoinduced magnetization with a high curie temperature and a large coercive field in a Co-W bimetallic assembly, Adv. Funct. Mater. 22 (2012) 2089–2093.
[28] Z. Gu, O. Sato, T. Iyoda, K. Hashimoto, A. Fujishima, Spin switching effect in nickel nitroprusside : design of a molecular spin device based on spin exchange interaction, Chem. Mater. 4756 (1997) 1092–1097.
[29] V.D. Neff, Electrochemical oxidation and reduction of thin films of prussian blue, J. Electrochem. Soc. 125 (1978) 886–887.
[30] D. Ellis, M. Eckhoff, V.D. Neff, Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue, J. Phys. Chem. 85 (1981) 1225–1231.
[31] K. Itaya, I. Uchida, V.D. Neff, Electrochemistry of polynuclear transition metal cyanides: prussian blue and its analogues a p a n structure and properties of the transition metal hexacyanides, Acc. Chem. Res. 19 (1986) 162–168.
[32] C.A. Lundgren, R.W. Murray, Observations on the composition of prussian blue films and their electrochemistry, Inorg. Chem. 27 (1988) 933–939.
[33] P.J. Kulesza, M. a Malik, M. Berrettoni, M. Giorgetti, S. Zamponi, R. Schmidt, R. Marassi, Electrochemical charging, countercation accommodation , and spectrochemical identity of microcrystalline solid cobalt hexacyanoferrate, J. Phys. Chem. B. 5647 (1998) 1870–1876.
[34] A. Roig, R. Navarro, R. Tamarit, F. Vicente, Stability of Prussian Blue films on ito electrodes: Effect of different anions, J. Electroanal. Chem. 360 (1993) 55–69.
[35] T. Abe, G. Toda, A. Tajiri, M. Kaneko, Electrochemistry of ferric ruthenocyanide (ruthenium purple), and its electrocatalysis for proton reduction, J. Electroanal. Chem. 510 (2001) 35–42.
[36] B.J. Feldman, O.R. Merloy, Ion Flux During Electrochemical Charging of Prussian Blue Films, J. Electroanal. Chem. 234 (1987) 213–227.
[37] C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc. 135 (2013) 16977–16987.
[38] J.R. Galán-Mascarós, Water oxidation at electrodes modified with earth-abundant transition-metal catalysts, Chem. Electro. Chem. 2 (2015) 37–50.
[39] L. Catala, T. Mallah, Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications, Coord. Chem. Rev. 346 (2017) 32–61.
[40] S. Pintado, S. Goberna-Ferrón, E.C. Escudero-Adán, J.R. Galán-Mascarós, Fast and persistent electrocatalytic water oxidation by Co-Fe Prussian blue coordination polymers, J. Am. Chem. Soc. 135 (2013) 13270–13273.
[41] H.T. Bui, D.Y. Ahn, N.K. Shrestha, M.M. Sung, J.K. Lee, S. Han, Self-assembly of cobalt hexacyanoferrate crystals in 1-D array using ion exchange transformation alkaline and neutral water, J. Mater. Chem. (2016) 9781–9788.
[42] L. Han, P. Tang, A. Reyes-carmona, J.R. Morante, J. Arbiol, J.R. Galan-mascaros, Enhanced Activity and Acid pH Stability of prussian blue-type oxygen evolution electrocatalysts processed by chemical etching, J. Am. Chem. Soc. 138 (2016) 16037–16045.
[43] M. Aksoy, S.V.K. Nune, F. Karadas, A novel synthetic route for the preparation of an amorphous co/fe prussian blue coordination compound with high electrocatalytic water oxidation activity, Inorg. Chem. 55 (2016) 4301–4307.
[44] L. Zhang, T. Meng, B. Mao, D. Guo, J. Qin, M. Cao, Multifunctional Prussian blue analogous@polyaniline core–shell nanocubes for lithium storage and overall water splitting, RSC Adv. 7 (2017) 50812–50821.
[45] B. Rodríguez-García, Á. Reyes-Carmona, I. Jiménez-Morales, M. Blasco-Ahicart, S. Cavaliere, M. Dupont, D. Jones, J. Rozière, J.R. Galán-Mascarós, F. Jaouen, Cobalt hexacyanoferrate supported on Sb-doped SnO 2 as a non-noble catalyst for oxygen evolution in acidic medium, Sustain. Energy Fuels. (2018).
[46] E.P. Alsaç, E. Ülker, S.V.K. Nune, Y. Dede, F. Karadas, Tuning electronic properties of prussian blue analogues for efficient water oxidation electrocatalysis: experimental and computational studies, Chem. A Eur. J. (2017) 1–22.
[47] A. Indra, U. Paik, T. Song, Boosting electrochemical water oxidation with metal hydroxide carbonate templated prussian blue analogues, Angew. Chemie – Int. Ed. 57 (2018) 1241–1245.
[48] J. Su, G. Xia, R. Li, Y. Yang, J. Chen, R. Shi, P. Jiang, Q. Chen, Co3ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts, J. Mater. Chem. A. 4 (2016) 9204–9212.
[49] B.K. Kang, M.H. Woo, J. Lee, Y.H. Song, W. Zhongli, Y. Guo, Y. Yamauchi, J.H. Kim, B. Lim, D.H. Yoon, Mesoporous Ni–Fe oxide multi-composite hollow nanocages for efficient electrocatalytic water oxidation reactions, J. Mater. Chem. A. 5 (2017) 4320–4324.
[50] J. Nai, Y. Lu, L. Yu, X. Wang, X. Wen, D. Lou, Formation of Ni–Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst, Adv. Mater. 29 (2017) 1703870.
[51] P. Cai, J. Huang, J. Chen, Z. Wen, Oxygen-incorporated amorphous cobalt sulfide porous nanocubes as high-activity electrocatalysts for the oxygen evolution reaction in an alkaline / neutral medium zuschriften angewandte, Angewante Chemie. 129 (2017) 4936–4939.
[52] S.V.K. Nune, A.T. Basaran, E. Ülker, R. Mishra, F. Karadas, Metal dicyanamides as efficient and robust water-oxidation catalysts, Chem. Cat. Chem. 9 (2017) 300–307.
[53] S. Rahut, S.K. Patra, J.K. Basu, Surfactant assisted self assembly of novel ultrathin Cu[Fe(CN)5NO] nanosheets for enhanced electrocatalytic oxygen evolution: Effect of nanosheet thickness, Electrochim. Acta. 265 (2018) 202–208.
[54] R.L. Doyle, M.E.G. Lyons, The oxygen evolution reaction : Mechanistic concepts and catalyst design, in: S. Giménez, J. Bisquert (Eds.), Photoelectrichemical Sol. Fuel Prod. from Basic Princ. to Adv. Devices, Springer International Publishing, 2016: pp. 41–104.
[55] S. Goberna-Ferrón, W.Y. Hernández, B. Rodríguez-García, J.R. Galán-Mascarós, Light-driven water oxidation with metal hexacyanometallate heterogeneous catalysts, ACS Catal. 4 (2014) 1637–1641.
[56] Y. Yamada, K. Oyama, R. Gates, S. Fukuzumi, High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: Visible-light driven water oxidation, Angew. Chemie – Int. Ed. 54 (2015) 5613–5617.
[57] Y. Yamada, K. Oyama, T. Suenobu, S. Fukuzumi, Photocatalytic water oxidation by persulphate with a Ca2+ ion-incorporated polymeric cobalt cyanide complex affording O2 with 200% quantum efficiency, Chem. Commun. 53 (2017) 3418–3421.
[58] T. Abe, F. Taguchi, S. Tokita, M. Kaneko, Prussian White as a highly active molecular catalyst for proton reduction, J. Mol. Catal. A Chem. 126 (1997) 89–92.
[59] E.P. Alsaç, E. Ulker, S.V.K. Nune, F. Karadas, A cyanide-based coordination polymer for hydrogen evolution electrocatalysis, Catal. Letters. 148 (2018) 531–538.
[60] H.T. Bui, N.K. Shrestha, S. Khadtare, C.D. Bathula, L. Giebeler, Y.Y. Noh, S.H. Han, Anodically grown binder-free nickel hexacyanoferrate film: toward efficient water reduction and hexacyanoferrate film based full device for overall water splitting, ACS Appl. Mater. Interfaces. 9 (2017) 18015–18021.
[61] N.K.A. Venugopal, S. Yin, Y. Li, H. Xue, Y. Xu, X. Li, H. Wang, L. Wang, Prussian Blue-derived iron phosphide nanoparticles in a porous graphene aerogel as efficient electrocatalyst for hydrogen evolution reaction, Chem. – An Asian J. 13 (2018) 679–685.
[62] A.V. Narendra Kumar, Y. Li, H. Yu, S. Yin, H. Xue, Y. Xu, X. Li, H. Wang, L. Wang, 3D graphene aerogel supported FeNi-P derived from electroactive nickel hexacyanoferrate as efficient oxygen evolution catalyst, Electrochim. Acta. 292 (2018) 107–114.
[63] X. Xu, H. Liang, F. Ming, Z. Qi, Y. Xie, Z. Wang, Prussian blue analogues derived penroseite (ni,co)se2 nanocages anchored on 3d graphene aerogel for efficient water splitting, ACS Catal. 7 (2017) 6394–6399.
[64] C. Ding, J. Shi, Z. Wang, C. Li, Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces, ACS Catal. 7 (2017) 675–688.
[65] D. Guerrero-Araque, P. Acevedo-Peña, D. Ramírez-Ortega, H. Calderón, R. Gómez, Charge transfer processes involved in photocatalytic hydrogen production over CuO/ZrO2-TiO2 materials, Int. Jounal Hydrog. Energy. 42 (2017) 9744–9753.
[66] D. Guerrero-araque, P. Acevedo-Peña, D. Ramírez-Ortega, L. Lartundo-Rojas, R. Gómez, SnO 2 -TiO 2 Structures and the effect of CuO, CoO metal oxide in the photocatalytic hydrogen production, J. Chem. Technol. Biotechnol. 92 (2017) 1531–1539.
[67] J.P. Ziegler, Spectroscopic and electrochemical characterization of the photochromic behavior of prussian blue films on n-SrTiO3, J. Electrochem. Soc. 134 (1987) 358.
[68] N.R. De Tacconi, K. Rajeshwar, R.O. Lezna, Preparation, photoelectrochemical characterization, and photoelectrochromic behavior of metal hexacyanoferrate-titanium dioxide composite films, Electrochim. Acta. 45 (2000) 3403–3411.
[69] N.R. De Tacconi, K. Rajeshwar, R.O. Lezna, Photoelectrochemistry of indium hexacyanoferrate-titania composite films, J. Electroanal. Chem. 500 (2001) 270–278.
[70] K. Szaciłowski, W. Macyk, M. Hebda, G. Stochel, Redox-controlled photosensitization of nanocrystalline titanium dioxide, Chem. Phys. Chem. 7 (2006) 2384–2391.
[71] K. Szaciłowski, W. Macyk, G. Stochel, Synthesis, structure and photoelectrochemical properties of the TiO 2-Prussian blue nanocomposite, J. Mater. Chem. 16 (2006) 4603–4611.
[72] K. Tennakone, A.R. Kumarasinghe, P.M. Sirimanne, Photocurrent enhancement in a cadmium sulphide anode coated with prussian blue, Thin Solid Films. 238 (1994) 101–103.
[73] K. Siuzdak, M. Szkoda, J. Karczewski, J. Ryl, A. Lisowska-Oleksiak, Titania nanotubes infiltrated with the conducting polymer PEDOT modified by Prussian blue-a novel type of organic-inorganic heterojunction characterised with enhanced photoactivity, RSC Adv. 6 (2016) 76246–76250.
[74] F.S. Hegner, I. Herraiz-Cardona, D. Cardenas-Morcoso, N. López, J.R. Galán-Mascarós, S. Gimenez, Cobalt hexacyanoferrate on bivo4 photoanodes for robust water splitting, ACS Appl. Mater. Interfaces. 9 (2017) 37671–37681.
[75] F.S. Hegner, D. Cardenas-Morcoso, S. Giménez, N. López, J.R. Galan-Mascaros, Level alignment as descriptor for semiconductor/catalyst systems in water splitting: The case of hematite/cobalt hexacyanoferrate photoanodes, Chem. Sus. Chem. 10 (2017) 4552–4560.
[76] K. Trzciński, M. Szkoda, K. Szulc, M. Sawczak, A. Lisowska-Oleksiak, The bismuth vanadate thin layers modified by cobalt hexacyanocobaltate as visible-light active photoanodes for photoelectrochemical water oxidation, Electrochim. Acta. 295 (2019) 410–417.