Interface-Engineered Electrocatalysts for Water Splitting


Interface-Engineered Electrocatalysts for Water Splitting

Nur Azimah Abd Samad, Chin Wei Lai, Mohd Rafie Johan

Three critical points in tailoring the surface/interface of electrocatalyst are (a) light harvest, (b) charge kinetics, and (c) active sites. In improving light harvesting capability, we need always to remember that we want to harvest all three regions of the solar spectrum; ultraviolet rays (10-5 to 400 nm), visible light (400 to 800 nm), and infrared (800 to 1060 nm) so as to completely utilise the solar energy. Enhanced photoelectrochemical (PEC) water splitting performance by interface-engineered electrocatalysts can best be improved by implementing impurity doped-electrocatalyst, creating the surface plasmon resonance (SPR) effect at the surface/interface of electrocatalyst, and building Z-scheme water splitting system.

Surface/Interface, Electrocatalyst, Photocatalyst, Photoelectrochemical (PEC), Water Splitting

Published online 10/5/2019, 10 pages

Citation: Nur Azimah Abd Samad, Chin Wei Lai, Mohd Rafie Johan, Interface-Engineered Electrocatalysts for Water Splitting, Materials Research Foundations, Vol. 59, pp 169-178, 2019


Part of the book on Electrochemical Water Splitting

[1] Y. Hu, C. Gao, Y. Xiong, Surface and interface design for photocatalytic water splitting, Dalton Trans. 47 (2018) 12035-12040.
[2] X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, Science China Materials 57 (2014) 70-100.
[3] Z. Wang, Y. Liu, B. Huang, Y. Dai, Z. Lou, G. Wang, X. Zhang, X. Qin, Progress on extending the light absorption spectra of photocatalysts, Phys. Chem. Chem. Phys. 16 (2014) 2758-2774.
[4] S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, J. Sun, RSC Adv. 2015, 5, 14610–14630.
[5] W.D. Callister, D.G. Rethwisch, Materials science and engineering: an introduction, John Wiley & Sons New York2007.
[6] H. Yan, X. Wang, M. Yao, X. Yao, Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2, Prog. Nat. Sci. Mater. 23 (2013) 402-407.
[7] H. Dong, Z. Wu, Y. Gao, A. El-Shafei, B. Jiao, Y. Dai, X. Hou, A nanostructure-based counter electrode for dye-sensitized solar cells by assembly of silver nanoparticles, Org. Electron. 15 (2014) 1641-1649.
[8] B.E. Saleh, M.C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., Canada (1991).
[9] S.C. Warren, E. Thimsen, Plasmonic solar water splitting, Energy Environ. Sci. 5 (2012) 5133-5146.
[10] J. Nie, J. Schneider, F. Sieland, L. Zhou, S. Xia, D.W. Bahnemann, New insights into the surface plasmon resonance (SPR) driven photocatalytic H 2 production of Au–TiO 2, RSC Adv. 8 (2018) 25881-25887.
[11] K. Maeda, Z-scheme water splitting using two different semiconductor photocatalysts, ACS Catalysis 3 (2013) 1486-1503.
[12] Q. Wang, Y. Li, T. Hisatomi, M. Nakabayashi, N. Shibata, J. Kubota, K. Domen, Z- scheme water splitting using particulate semiconductors immobilized onto metal layers for efficient electron relay, J. Catal. 328 (2015) 308-315.
[13] S. Okunaka, H. Tokudome, R. Abe, Z-scheme water splitting into H2 and O2 under visible light over photocatalyst panels consisting of Rh-doped SrTiO3 and BiVO4 fine particles, Chem. Lett. 45 (2015) 57-59.
[14] Y. Chang, Y. Xuan, C. Zhang, H. Hao, K. Yu, S. Liu, Z-Scheme Pt@ CdS/3DOM-SrTiO3 composite with enhanced photocatalytic hydrogen evolution from water splitting, Catal.Today 327 (2019) 315-322.
[15] R. Abe, Development of a new system for photocatalytic water splitting into H2 and O2 under visible light irradiation, Bull. Chem. Soc. Jpn 84 (2011) 1000-1030.
[16] AA Ismail, W. Bahnemann, Sol. Energy Mater. Sol. C 128 (2014) 85.
[17] H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation, Chem. Lett. 33 (2004) 1348-1349.
[18] H. Kato, Y. Sasaki, A. Iwase, A. Kudo, Role of iron ion electron mediator on photocatalytic overall water splitting under visible light irradiation using Z-scheme systems, Bull. Chem. Soc. Jpn. 80 (2007) 2457-2464.
[19] Y. Sasaki, A. Iwase, H. Kato, A. Kudo, The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation, J. Catal. 259 (2008) 133-137.
[20] H. Kato, Y. Sasaki, N. Shirakura, A. Kudo, Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting, J. Mater. Chem. A 1 (2013) 12327-12333.
[21] Y. Sasaki, H. Kato, A. Kudo, [Co (bpy) 3] 3+/2+ and [Co (phen) 3] 3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system, J. Am. Chem. Soc. 135 (2013) 5441-5449.
[22] A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light, J. Am. Chem. Soc. 133 (2011) 11054-11057.
[23] Y. Sasaki, H. Nemoto, K. Saito, A. Kudo, Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator, J. Phys. Chem. C 113 (2009) 17536-17542.
[24] Q. Jia, A. Iwase, A. Kudo, BiVO4–Ru/SrTiO3: Rh composite Z-scheme photocatalyst for solar water splitting, Chem. Sci. 5 (2014) 1513-1519.
[25] T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting, ACS Catalysis 8 (2018) 2253-2276.
[26] D. Jiang, J. Li, C. Xing, Z. Zhang, S. Meng, M. Chen, Two-dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced visible-light photocatalytic activities: interfacial engineering and mechanism insight, ACS appl. mater.interfaces 7 (2015) 19234-19242.
[27] L. Xu, W.Q. Huang, L.L. Wang, Z.A. Tian, W. Hu, Y. Ma, X. Wang, A. Pan, G.F. Huang, Insights into enhanced visible-light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: the role of oxygen, Chem. Mat. 27 (2015) 1612-1621.
[28] S.J. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting–a critical review, Energy Environ. Sci. 8 (2015) 731-759.
[29] R. Peng, L. Liang, Z.D. Hood, A. Boulesbaa, A. Puretzky, A.V. Ievlev, J. Come, O.S. Ovchinnikova, H. Wang, C. Ma, In-plane heterojunctions enable multiphasic two-dimensional (2D) MoS2 nanosheets as efficient photocatalysts for hydrogen evolution from water reduction, ACS Catalysis 6 (2016) 6723-6729.
[30] J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting, Chem. Soc. Rev. 43 (2014) 7787-7812.
[31] J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nature commun. 8 (2017) 13907.
[32] H. Wang, R. Peng, Z.D. Hood, M. Naguib, S.P. Adhikari, Z. Wu, Titania composites with 2 D transition metal carbides as photocatalysts for hydrogen production under visible‐light irradiation, Chem. Sus .Chem. 9 (2016) 1490-1497.