Co-Based Electrocatalysts for Hydrogen-Evolution Reaction


Co-Based Electrocatalysts for Hydrogen-Evolution Reaction

Xiumin Li, Guoqing Guan

Among the transition metals based electrocatalysts, cobalt based ones have been extensively studied for hydrogen evolution reaction (HER). Herein, the state-of-the-art of Co based electrocatalysts including Co metal, Co-N-C composites, Co based alloys, nitrides, phosphides, oxides, sulfides, selenides and binary nonmetal compounds for HER is introduced. The strategies for the synthesis of highly efficient Co based catalysts are summarized. Besides, the effective tactics including adjusting the bond strength of the catalyst-reactant, optimizing the electronic structure, and designing rational nanostructure for improving performance of electrocatalysts are reviewed and discussed.

Hydrogen Evolution Reaction, Co-Based Material, Synthesis Tactic, Electrocatalysis, Water Splitting

Published online 10/5/2019, 38 pages

Citation: Xiumin Li, Guoqing Guan, Co-Based Electrocatalysts for Hydrogen-Evolution Reaction, Materials Research Foundations, Vol. 59, pp 59-96, 2019


Part of the book on Electrochemical Water Splitting

[1] J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobalt‐based heterogeneous catalysts for electrochemical water splitting, Adv. Mater. 28 (2016) 215-230.
[2] M. Zeng, Y. Li, Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction, J. Mater. Chem. A 3 (2015) 14942-14962.
[3] X. Li, X. Hao, A. Abudula, G. Guan, Nanostructured catalysts for electrochemical water splitting: current state and prospects, J. Mater. Chem. A 4 (2016) 11973-12000.
[4] T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion, Sci. Reports 5 (2015) 13801.
[5] S. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions, J. Electroanal. Chem. Interfacial Electrochem. 39 (1972) 163-184.
[6] J.K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc.152 (2005) J23-J26.
[7] M. Miles, M. Thomason, Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric studies, J. Electrochem. Soc. 123 (1976) 1459-1461.
[8] B. Liu, L. Zhang, W. Xiong, M. Ma, Cobalt‐nanocrystal‐assembled hollow nanoparticles for electrocatalytic hydrogen generation from neutral‐pH water, Angew. Chem. Int. Ed. 55 (2016) 6725-6729.
[9] B. Lassalle-Kaiser, A. Zitolo, E. Fonda, M. Robert, E. Anxolabéhère-Mallart, In situ observation of the formation and structure of hydrogen-evolving amorphous cobalt electrocatalysts, ACS Energy Lett. 2 (2017) 2545-2551.
[10] B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx, Nature Chem. 3 (2011) 634.
[11] H. Liu, X. Peng, X. Liu, Single atom catalysts for the hydrogen evolution reaction, Chem. Electro. Chem. 5 (2018) 2963-2974.
[12] H. Fei, J. Dong, M. J. Arellano-Jiménez, G. Ye, N. D. Kim, E. L. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M. J. Yacaman, P. M. Ajayan, D. Chen, J. M. Tour,Atomic cobalt on nitrogen-doped graphene for hydrogen generation, Nature Commun. 6 (2015) 8668.
[13] Y. Zhang, W. Li, L. Lu, W. Song, C. Wang, L. Zhou, J. Liu, Y. Chen, H. Jin, Y. Zhang, Tuning active sites on cobalt/nitrogen doped graphene for electrocatalytic hydrogen and oxygen evolution, Electrochim. Acta 265 (2018) 497-506.
[14] X. Zou, X. Huang, A. Goswami, R. Silva, B.R. Sathe, E. Mikmeková, T. Asefa, Cobalt‐embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values, Angew. Chem. Int. Ed. 53 (2014) 4372-4376.
[15] J. Wang, D. Gao, G. Wang, S. Miao, H. Wu, J. Li, X. Bao, Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis, J. Mater. Chem. A 2 (2014) 20067-20074.
[16] J. Deng, P. Ren, D. Deng, L. Yu, F. Yang, X. Bao, Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction, Energy Environ. Sci. 7 (2014) 1919-1923.
[17] J. Deng, P. Ren, D. Deng, X. Bao, Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction, Angew. Chem. Int. Ed. 54 (2015) 2100-2104.
[18] Y. Yang, Z. Lun, G. Xia, F. Zheng, M. He, Q. Chen, Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst, Energy Environ. Sci. 8 (2015) 3563-3571.
[19] M. Jakšić, Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory, Int. J. Hydrogen Energy 12 (1987) 727-752.
[20] S.E. Fosdick, S.P. Berglund, C.B. Mullins, R.M. Crooks, Evaluating electrocatalysts for the hydrogen evolution reaction using bipolar electrode arrays: bi-and trimetallic combinations of Co, Fe, Ni, Mo, and W, ACS Catal. 4 (2014) 1332-1339.
[21] J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nature Mater. 5 (2006) 909.
[22] X. Feng, X. Bo, L. Guo, CoM (M= Fe, Cu, Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions, J. Power Sources 389 (2018) 249-259.
[23] F. Rosalbino, S. Delsante, G. Borzone, E. Angelini, Electrocatalytic behaviour of Co–Ni–R (R= Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline medium, Int. J. Hydrogen Energy 33 (2008) 6696-6703.
[24] A. Oh, Y.J. Sa, H. Hwang, H. Baik, J. Kim, B. Kim, S.H. Joo, K. Lee, Rational design of Pt–Ni–Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction, Nanoscale 8 (2016) 16379-16386.
[25] H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution, J. Am. Chem. Soc. 137 (2015) 2688-2694.
[26] J. Houston, G. Laramore, R.L. Park, Surface electronic properties of tungsten, tungsten carbide, and platinum, Science 185 (1974) 258-260.
[27] S. Dong, X. Chen, X. Zhang, G. Cui, Nanostructured transition metal nitrides for energy storage and fuel cells, Coord. Chem. Rev. 257 (2013) 1946-1956.
[28] B. Cao, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction, J. Am. Chem. Soc. 135 (2013) 19186-19192.
[29] N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao, S. Liu, Recent advances in nanostructured metal nitrides for water splitting, J. Mater. Chem.A 6 (2018) 19912-19933.
[30] P. Chen, K. Xu, Y. Tong, X. Li, S. Tao, Z. Fang, W. Chu, X. Wu, C. Wu, Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction, Inorg. Chem. Front. 3 (2016) 236-242.
[31] Z. Chen, Y. Ha, Y. Liu, H. Wang, H. Yang, H. Xu, Y. Li, R. Wu, In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting, ACS Appl. Mater. interfaces 10 (2018) 7134-7144.
[32] Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu, Tailoring the d‐band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis, Angew. Chem. Int. Ed. 57 (2018) 5076-5080.
[33] Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Transition metal carbides and nitrides in energy storage and conversion, Adv. Sci.3 (2016) 1500286.
[34] J. Yin, Y. Li, F. Lv, Q. Fan, Y.Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi, S. Guo, NiO/CoN Porous nanowires as efficient bifunctional catalysts for Zn–air batteries, ACS nano 11 (2017) 2275-2283.
[35] M. Fan, Y. Zheng, A. Li, K. Li, H. Liu, Z.A. Qiao, Janus CoN/Co cocatalyst in porous N-doped carbon: toward enhanced catalytic activity for hydrogen evolution, Catal. Sci. Technol. 8 (2018) 3695-3703.
[36] Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R.S. Rawat, H.J. Fan, Rapid synthesis of cobalt nitride nanowires: Highly efficient and low‐cost catalysts for oxygen evolution, Angew. Chem. Int. Ed. 55 (2016) 8670-8674.
[37] S. Bhattacharyya, S. Kurian, S. Shivaprasad, N. Gajbhiye, Synthesis and magnetic characterization of CoMoN2 nanoparticles, J. Nanoparticle Res. 12 (2010) 1107-1116.
[38] Y. Wang, D. Liu, Z. Liu, C. Xie, J. Huo, S. Wang, Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting, Chem. Commun. 52 (2016) 12614-12617.
[39] S. Carenco, D. Portehault, C. Boissiere, N. Mezailles, C. Sanchez, Nanoscaled metal borides and phosphides: recent developments and perspectives, Chem. Rev. 113 (2013) 7981-8065.
[40] P. Liu, J.A. Rodriguez, Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: the importance of ensemble effect, J. Am. Chem. Soc. 127 (2005) 14871-14878.
[41] J.F. Callejas, C.G. Read, E.J. Popczun, J.M. McEnaney, R.E. Schaak, Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP, Chem. Mater. 27 (2015) 3769-3774.
[42] Y. Li, M.A. Malik, P. O’Brien, Synthesis of single-crystalline cop nanowires by a one-pot metal− organic route, J. Am. Chem. Soc. 127 (2005) 16020-16021.
[43] J. Tian, Q. Liu, A. M. Asiri, X. Sun, Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0−14, J. Am. Chem. Soc. 136(2014) 7587−7590.
[44] D. Yang, J. Zhu, X. Rui, H. Tan, R. Cai, H.E. Hoster, D.Y. Yu, H.H. Hng, Q. Yan, Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries, ACS appl. mater. interfaces 5 (2013) 1093-1099.
[45] D.H. Ha, B. Han, M. Risch, L. Giordano, K.P. Yao, P. Karayaylali, Y. Shao-Horn, Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting, Nano Energy 29 (2016) 37-45.
[46] X. Yang, A.Y. Lu, Y. Zhu, M.N. Hedhili, S. Min, K.W. Huang, Y. Han, L.J. Li, CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation, Nano Energy 15 (2015) 634-641.
[47] C. Ye, M.Q. Wang, G. Chen, Y.H. Deng, L.J. Li, H.Q. Luo, N.B. Li, One-step CVD synthesis of carbon framework wrapped Co2P as a flexible electrocatalyst for efficient hydrogen evolution, J. Mater. Chem. A 5 (2017) 7791-7795.
[48] Y.P. Zhu, Y.P. Liu, T.Z. Ren, Z.Y. Yuan, Self‐supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation, Adv. Funct. Mater. 25 (2015) 7337-7347.
[49] Y. Lv, X. Wang, T. Mei, J. Li, J. Wang, Reduced graphene oxide-supported cobalt phosphide nanoflowers via in situ hydrothermal synthesis as pt-free effective electrocatalysts for oxygen reduction reaction, Nano 13 (2018) 1850047.
[50] E.J. Popczun, C.W. Roske, C.G. Read, J.C. Crompton, J.M. McEnaney, J.F. Callejas, N.S. Lewis, R.E. Schaak, Highly branched cobalt phosphide nanostructures for hydrogen-evolution electrocatalysis, J. Mater. Chem. A 3 (2015) 5420-5425.
[51] D. Zhou, L. He, W. Zhu, X. Hou, K. Wang, G. Du, C. Zheng, X. Sun, A.M. Asiri, Interconnected urchin-like cobalt phosphide microspheres film for highly efficient electrochemical hydrogen evolution in both acidic and basic media, J. Mater. Chem.A 4 (2016) 10114-10117.
[52] C. Lyu, J. Zheng, R. Zhang, R. Zou, B. Liu, W. Zhou, Homologous Co3O4‖CoP nanowires grown on carbon cloth as a high-performance electrode pair for triclosan degradation and hydrogen evolution, Mater. Chem. Front. 2 (2018) 323-330.
[53] Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A.M. Asiri, X. Sun, Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution, Angew. Chem. Int. Ed. 53 (2014) 6710-6714.
[54] T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A.M. Asiri, X. Sun, L. Chen, Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values, ACS Catal. 7 (2016) 98-102.
[55] Z. Zhuang, W. Sheng, Y. Yan, Synthesis of monodispere Au@ Co3O4 core‐shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction, Adv. mater. 26 (2014) 3950-3955.
[56] G. Mattioli, P. Giannozzi, A. Amore Bonapasta, L. Guidoni, Reaction pathways for oxygen evolution promoted by cobalt catalyst, J. Am. Chem. Soc. 135 (2013) 15353-15363.
[57] M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan, M.C. Lin, B. Zhang, Y. Hu, D.Y. Wang, J. Yang, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis, Nature commun. 5 (2014) 4695.
[58] C.S. Lim, C.K. Chua, Z. Sofer, O. E. Jankovský, M. Pumera, Alternating misfit layered transition/alkaline earth metal chalcogenide Ca3Co4O9 as a new class of chalcogenide materials for hydrogen evolution, Chem. Mater. 26 (2014) 4130-4136.
[59] T. Ling, D. Y. Yan, H. Wang, Y. Jiao, Z. Hu, Y. Zheng, L. Zheng, J. Mao, H. Liu, X. W. Du, M. Jaroniec, S. Qiao, Activating cobalt (II) oxide nanorods for efficient electrocatalysis by strain engineering, Nature Commun. 8 (2017) 1509.
[60] Y. Yan, B.Y. Xia, B. Zhao, X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting, J. Mater. Chem. A 4 (2016) 17587-17603.
[61] X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water‐splitting, Angew. Chem. 128 (2016) 6398-6402.
[62] M. Zang, N. Xu, G. Cao, Z. Chen, J. Cui, L. Gan, H. Dai, X. Yang, P. Wang, Cobalt molybdenum oxide derived high-performance electrocatalyst for the hydrogen evolution reaction, ACS Catal. 8 (2018) 5062-5069.
[63] R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni (OH)2-Pt interfaces, Science 334 (2011) 1256-1260.
[64] Y. Luo, X. Li, X. Cai, X. Zou, F. Kang, H.M. Cheng, B. Liu, Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes, ACS nano 12 (2018) 4565-4573.
[65] S.J. Bao, C.M. Li, C.X. Guo, Y. Qiao, Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors, J. Power Sources 180 (2008) 676-681.
[66] J. Li, X. Zhou, Z. Xia, Z. Zhang, J. Li, Y. Ma, Y. Qu, Facile synthesis of CoX (X= S, P) as an efficient electrocatalyst for hydrogen evolution reaction, J. Mater. Chem. A 3 (2015) 13066-13071.
[67] S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S.G. Mhaisalkar, F. Cheng, Q. Yan, J. Chen, S. Ramakrishna, Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution, Angew. Chem. 126 (2014) 12802-12807.
[68] J. Huang, D. Hou, Y. Zhou, W. Zhou, G. Li, Z. Tang, L. Li, S. Chen, MoS2 nanosheet-coated CoS2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution, J. Mater. Chem. A 3 (2015) 22886-22891.
[69] F. Wang, T.A. Shifa, X. Zhan, Y. Huang, K. Liu, Z. Cheng, C. Jiang, J. He, Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting, Nanoscale 7 (2015) 19764-19788.
[70] J. Mann, Q. Ma, P.M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. von Son Palacio, A. Nguyen, 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1–x)Se2x monolayers, Adv. Mater. 26 (2014) 1399-1404.
[71] M.S. Faber, R. Dziedzic, M.A. Lukowski, N.S. Kaiser, Q. Ding, S. Jin, High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures, J. Am. Chem. Soc. 136 (2014) 10053-10061.
[72] X. Li, G. Guan, X. Du, A.D. Jagadale, J. Cao, X. Hao, X. Ma, A. Abudula, Homogeneous nanosheet Co3O4 film prepared by novel unipolar pulse electro-deposition method for electrochemical water splitting, RSC Advances 5 (2015) 76026-76031.
[73] Y. Sun, C. Liu, D.C. Grauer, J. Yano, J.R. Long, P. Yang, C.J. Chang, Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water, J. Am. Chem. Soc. 135 (2013) 17699-17702.
[74] D. Kong, J.J. Cha, H. Wang, H.R. Lee, Y. Cui, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction, Energy Environ. Sci. 6 (2013) 3553-3558.
[75] Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen‐evolution reaction through combining experiment and theory, Angew. Chem. Int. Ed. 54 (2015) 52-65.
[76] J. Zhang, Y. Liu, C. Sun, P. Xi, S. Peng, D. Gao, D. Xue, Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping, ACS Energy Lett. 3 (2018) 779-786.
[77] Q. Lu, G.S. Hutchings, W. Yu, Y. Zhou, R.V. Forest, R. Tao, J. Rosen, B.T. Yonemoto, Z. Cao, H. Zheng, Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution, Nature commun. 6 (2015) 6567.
[78] A. Irshad, N. Munichandraiah, Electrodeposited nickel–cobalt–sulfide catalyst for the hydrogen evolution reaction, ACS Appl. Mater. Interfaces 9 (2017) 19746-19755.
[79] X. Li, Q. Li, Y. Wu, M. Rui, H. Zeng, Two-dimensional, porous nickel–cobalt sulfide for high-performance asymmetric supercapacitors, ACS Appl. Mater. Interfaces 7 (2015) 19316-19323.
[80] S. Peng, L. Li, J. Zhang, T. L. Tan, T. Zhang, D. Ji, X. Han, F. Cheng, S. Ramakrishna, Engineering Co9S8/WS2 array films as bifunctional electrocatalysts for efficient water splitting, J. Mater. Chem. A 5 (2017) 23361-23368.
[81] X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev. 44 (2015) 5148-5180.
[82] H. Zhang, B. Yang, X. Wu, Z. Li, L. Lei, X. Zhang, Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction, ACS Appl. Mater. Interfaces 7 (2015) 1772-1779.
[83] P. Chen, K. Xu, S. Tao, T. Zhou, Y. Tong, H. Ding, L. Zhang, W. Chu, C. Wu, Y. Xie, Phase‐transformation engineering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium, Adv. Mater. 28 (2016) 7527-7532.
[84] D. Kong, H. Wang, Z. Lu, Y. Cui, CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction, J. Am. Chem. Soc. 136 (2014) 4897-4900.
[85] A.I. Carim, F.H. Saadi, M.P. Soriaga, N.S. Lewis, Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films, J. Mater. Chem. A 2 (2014) 13835-13839.
[86] Q. Liu, J. Shi, J. Hu, A.M. Asiri, Y. Luo, X. Sun, CoSe2 nanowires array as a 3D electrode for highly efficient electrochemical hydrogen evolution, ACS Appl. Mater. Interfaces 7 (2015) 3877-3881.
[87] Y.F. Xu, M.R. Gao, Y.R. Zheng, J. Jiang, S.H. Yu, Nickel/nickel (II) oxide nanoparticles anchored onto cobalt (IV) diselenide nanobelts for the electrochemical production of hydrogen, Angew. Chem. 125 (2013) 8708-8712.
[88] R. Ye, P. del Angel‐Vicente, Y. Liu, M.J. Arellano‐Jimenez, Z. Peng, T. Wang, Y. Li, B.I. Yakobson, S.H. Wei, M.J. Yacaman, High‐performance hydrogen evolution from MoS2 (1–x) P x solid solution, Adv. Mater. 28 (2016) 1427-1432.
[89] J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution, J. Am. Chem. Soc. 135 (2013) 17881-17888.
[90] W. Liu, E. Hu, H. Jiang, Y. Xiang, Z. Weng, M. Li, Q. Fan, X. Yu, E.I. Altman, H. Wang, A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide, Nature commun. 7 (2016) 10771.
[91] C. Ouyang, X. Wang, S. Wang, Phosphorus-doped CoS2 nanosheet arrays as ultra-efficient electrocatalysts for the hydrogen evolution reaction, Chem. Commun. 51 (2015) 14160-14163.
[92] M. Cabán-Acevedo, M.L. Stone, J. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide, Nature mater. 14 (2015) 1245.
[93] M.S. Faber, S. Jin, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications, Energy Environ. Sci. 7 (2014) 3519-3542.
[94] K. Liu, F. Wang, K. Xu, T.A. Shifa, Z. Cheng, X. Zhan, J. He, CoS2xSe2(1−x) nanowire array: An efficient ternary electrocatalyst for the hydrogen evolution reaction, Nanoscale 8 (2016) 4699-4704.
[95] G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu, J. Li, Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting, J. Am. Chem. Soc. 138 (2016) 14686-14693.
[96] X. Li, C. Li, A. Yoshida, X. Hao, Z. Zuo, Z. Wang, A. Abudula, G. Guan, Facile fabrication of CuO microcube@ Fe–Co3O4 nanosheet array as a high-performance electrocatalyst for the oxygen evolution reaction, J. Mater. Chem. A 5 (2017) 21740-21749.