Metal-Organic-Framework Composites as Proficient Cathodes for Supercapacitor Applications


Metal-Organic-Framework Composites as Proficient Cathodes for Supercapacitor Applications

Wei Ni, Lingying Shi

Metal-organic frameworks (MOFs) have garnered significant interest over the past two decades for next-generation electrochemical energy storage applications, especially for supercapacitors that combine the two features of high energy density of batteries and high power density of capacitors, owing to their high specific surface areas, controllable structures, and adjustable pore sizes. Herein we timely and comprehensively reviewed the impressive advancements achieved in recent years on MOFs and their composites for promising electrochemical capacitors (including supercapacitors, asymmetric supercapacitors and hybrid supercapacitors). The challenges and opportunities are also proposed for new breakthroughs in further development of MOF-based supercapacitors for ultimate practical applications.

Metal-Organic Frameworks (MOFs), Composite, Supercapacitor, Hybrid Capacitor, Cathode

Published online 10/5/2019, 63 pages

Citation: Wei Ni, Lingying Shi, Metal-Organic-Framework Composites as Proficient Cathodes for Supercapacitor Applications, Materials Research Foundations, Vol. 58, pp 177-238, 2019


Part of the book on Metal-Organic Framework Composites

[1] S.-L. Li, Q. Xu, Metal–organic frameworks as platforms for clean energy, Energy Environ. Sci. 6 (2013) 1656-1683.
[2] Z. Wei, L. Wang, M. Zhuo, W. Ni, H. Wang, J. Ma, Layered Tin Sulfide and Selenide Anode Materials for Li- and Na-ion Batteries, J. Mater. Chem. A 6 (2018) 12185-12214.
[3] J. Huang, Z. Wei, J. Liao, W. Ni, C. Wang, J. Ma, Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2, J. Energy Chem. (2018).
[4] S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue, H. Pang, Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage, Adv. Energy Mater. 7 (2017) 1602733.
[5] F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs, Chem. Soc. Rev. 46 (2017) 6816-6854.
[6] W. Ni, B. Wang, J. Cheng, X. Li, Q. Guan, G. Gu, L. Huang, Hierarchical foam of exposed ultrathin nickel nanosheets supported on chainlike Ni-nanowires and the derivative chalcogenide for enhanced pseudocapacitance, Nanoscale 6 (2014) 2618-2623.
[7] W. Ni, J. Cheng, X. Li, G. Gu, L. Huang, Q. Guan, D. Yuan, B. Wang, Polymeric cathode materials of electroactive conducting poly (triphenylamine) with optimized structures for potential organic pseudo-capacitors with higher cut-off voltage and energy density, RSC Adv. 5 (2015) 9221-9227.
[8] W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Recent advancements in supercapacitor technology, Nano Energy 52 (2018) 441-473.
[9] Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang, G. Chen, Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors, J. Mater. Chem. A 5 (2017) 1094-1102.
[10] Y. Jiao, J. Pei, C. Yan, D. Chen, Y. Hu, G. Chen, Layered nickel metal–organic framework for high performance alkaline battery-supercapacitor hybrid devices, J. Mater. Chem. A 4 (2016) 13344-13351.
[11] D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries, Chem. Soc. Rev. 44 (2015) 1777-1790.
[12] Z. Wu, L. Li, J.-m. Yan, X.-b. Zhang, Materials design and system construction for conventional and new-concept supercapacitors, Adv. Sci. 4 (2017) 1600382.
[13] A. Morozan, F. Jaouen, Metal organic frameworks for electrochemical applications, Energy Environ. Sci. 5 (2012) 9269-9290.
[14] X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion, Chem. Soc. Rev. 46 (2017) 2660-2677.
[15] H. Wang, Q.-L. Zhu, R. Zou, Q. Xu, Metal-Organic Frameworks for Energy Applications, Chem 2 (2017) 52-80.
[16] H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341 (2013) 1230444.
[17] W. Zhao, J. Peng, W. Wang, S. Liu, Q. Zhao, W. Huang, Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices, Coord. Chem. Rev. 377 (2018) 44-63.
[18] Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, X. Sun, Metal organic frameworks for energy storage and conversion, Energy Storage Mater. 2 (2016) 35-62.
[19] L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, B. Wang, Metal–organic frameworks for energy storage: Batteries and supercapacitors, Coord. Chem. Rev. 307 (2016) 361-381.
[20] Y. Xu, Q. Li, H. Xue, H. Pang, Metal-organic frameworks for direct electrochemical applications, Coord. Chem. Rev. 376 (2018) 292-318.
[21] F.-S. Ke, Y.-S. Wu, H. Deng, Metal-organic frameworks for lithium ion batteries and supercapacitors, J. Solid State Chem. 223 (2015) 109-121.
[22] G. Xu, P. Nie, H. Dou, B. Ding, L. Li, X. Zhang, Exploring metal organic frameworks for energy storage in batteries and supercapacitors, Mater. Today 20 (2017) 191-209.
[23] Y. Zheng, S. Zheng, H. Xue, H. Pang, Metal-organic frameworks/graphene-based materials: Preparations and applications, Adv. Funct. Mater. 28 (2018) 1804950.
[24] Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Pristine metal–organic frameworks and their composites for energy storage and conversion, Adv. Mater. 30 (2018) 1702891.
[25] J. Zhou, B. Wang, Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage, Chem. Soc. Rev. 46 (2017) 6927-6945.
[26] Z. Xie, W. Xu, X. Cui, Y. Wang, Recent progress in metal–organic frameworks and their derived nanostructures for energy and environmental applications, ChemSusChem 10 (2017) 1645-1663.
[27] B. Valizadeh, T.N. Nguyen, K.C. Stylianou, Shape engineering of metal–organic frameworks, Polyhedron 145 (2018) 1-15.
[28] Y. Zhao, J. Liu, M. Horn, N. Motta, M. Hu, Y. Li, Recent advancements in metal organic framework based electrodes for supercapacitors, Sci. China Mater. 61 (2018) 159-184.
[29] S. Zheng, H. Xue, H. Pang, Supercapacitors based on metal coordination materials, Coord. Chem. Rev. 373 (2018) 2-21.
[30] S. Sundriyal, H. Kaur, S.K. Bhardwaj, S. Mishra, K.-H. Kim, A. Deep, Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications, Coord. Chem. Rev. 369 (2018) 15-38.
[31] W. Du, Y.-L. Bai, J. Xu, H. Zhao, L. Zhang, X. Li, J. Zhang, Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors, J. Power Sources 402 (2018) 281-295.
[32] J. Cheng, S. Chen, D. Chen, L. Dong, J. Wang, T. Zhang, T. Jiao, B. Liu, H. Wang, J.-J. Kai, D. Zhang, G. Zheng, L. Zhi, F. Kang, W. Zhang, Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal–organic framework/reduced graphene oxide self-assembled papers, J. Mater. Chem. A 6 (2018) 20254-20266.
[33] K.M. Choi, H.M. Jeong, J.H. Park, Y.-B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks, ACS Nano 8 (2014) 7451-7457.
[34] W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy Environ. Sci. 8 (2015) 1837-1866.
[35] L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, B. Wang, Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI, J. Am. Chem. Soc. 137 (2015) 4920-4923.
[36] Z. Zhang, Y. Chen, X. Xu, J. Zhang, G. Xiang, W. He, X. Wang, Well‐defined metal–organic framework hollow nanocages, Angew. Chem. Int. Ed. 53 (2014) 429-433.
[37] D. Liu, J. Wan, G. Pang, Z. Tang, Hollow metal–organic-framework micro/nanostructures and their derivatives: Emerging multifunctional materials, Adv. Mater. 0 (2019) 1803291.
[38] M. Zhao, Q. Lu, Q. Ma, H. Zhang, Two-dimensional metal–organic framework nanosheets, Small Methods 1 (2017) 1600030.
[39] P. Kumar, K.-H. Kim, V. Bansal, P. Kumar, Nanostructured materials: A progressive assessment and future direction for energy device applications, Coord. Chem. Rev. 353 (2017) 113-141.
[40] H.-Y. Guan, R.J. LeBlanc, S.-Y. Xie, Y. Yue, Recent progress in the syntheses of mesoporous metal–organic framework materials, Coord. Chem. Rev. 369 (2018) 76-90.
[41] Q.-L. Zhu, Q. Xu, Metal–organic framework composites, Chem. Soc. Rev. 43 (2014) 5468-5512.
[42] B. Li, M. Zheng, H. Xue, H. Pang, High performance electrochemical capacitor materials focusing on nickel based materials, Inorg. Chem. Front. 3 (2016) 175-202.
[43] S.K. Bhardwaj, N. Bhardwaj, R. Kaur, J. Mehta, A.L. Sharma, K.-H. Kim, A. Deep, An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof, J. Mater. Chem. A 6 (2018) 14992-15009.
[44] D.Y. Lee, S.J. Yoon, N.K. Shrestha, S.-H. Lee, H. Ahn, S.-H. Han, Unusual energy storage and charge retention in Co-based metal–organic-frameworks, Microporous Mesoporous Mater. 153 (2012) 163-165.
[45] D.Y. Lee, D.V. Shinde, E.-K. Kim, W. Lee, I.-W. Oh, N.K. Shrestha, J.K. Lee, S.-H. Han, Supercapacitive property of metal–organic-frameworks with different pore dimensions and morphology, Microporous Mesoporous Mater. 171 (2013) 53-57.
[46] X. Liu, C. Shi, C. Zhai, M. Cheng, Q. Liu, G. Wang, Cobalt-based layered metal–organic framework as an ultrahigh capacity supercapacitor electrode material, ACS Appl. Mater. Interfaces 8 (2016) 4585-4591.
[47] H. Yu, D. Xu, Q. Xu, Dual template effect of supercritical CO2 in ionic liquid to fabricate a highly mesoporous cobalt metal–organic framework, Chem. Commun. 51 (2015) 13197-13200.
[48] G. Zhu, H. Wen, M. Ma, W. Wang, L. Yang, L. Wang, X. Shi, X. Cheng, X. Sun, Y. Yao, A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance, Chem. Commun. 54 (2018) 10499-10502.
[49] J. Yang, Z. Ma, W. Gao, M. Wei, Layered structural Co-based mof with conductive network frames as a new supercapacitor electrode, Chem. Eur. J. 23 (2017) 631-636.
[50] X.-Y. Hou, X. Wang, S.-N. Li, Y.-C. Jiang, M.-C. Hu, Q.-G. Zhai, Gas uptake and supercapacitor performance of a highly connected porous Co-metal–organic framework induced by ligand bulk, Cryst. Growth Des. 17 (2017) 3229-3235.
[51] K. Wang, X. Wang, D. Zhang, H. Wang, Z. Wang, M. Zhao, R. Xi, H. Wu, M. Zheng, Interpenetrated nano-MOFs for ultrahigh-performance supercapacitors and excellent dye adsorption performance, CrystEngComm 20 (2018) 6940-6949.
[52] Z.-X. Li, G. Ye, J. Han, Y. Yang, K.-Y. Zou, X. Wang, X.-L. Wang, X.-F. Gou, 1D–3D mixed-ligand frameworks with an unusual dmp topology tuned by intersection angles of isomeric benzenedicarboxylates: magnetic properties, gas-dependent calcination-thermolysis and energy storage performances, Dalton Trans. 44 (2015) 9209-9220.
[53] S.D. Worrall, H. Mann, A. Rogers, M.A. Bissett, M.P. Attfield, R.A.W. Dryfe, Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes, Electrochim. Acta 197 (2016) 228-240.
[54] S. Prakash, P. Muthuraja, K. Balamurugan, J. Anandha Raj, P. Manisankar, Porous cobalt metal-organic framework with ultracapacitor activity, Mater. Lett. 222 (2018) 8-11.
[55] R. Rajak, M. Saraf, A. Mohammad, S.M. Mobin, Design and construction of a ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications, J. Mater. Chem. A 5 (2017) 17998-18011.
[56] R. Ramachandran, C. Zhao, D. Luo, K. Wang, F. Wang, Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials, Electrochim. Acta 267 (2018) 170-180.
[57] X. Liu, H.L. Valentine, W.-P. Pan, Y. Cao, B. Yan, 2D metal–organic frameworks: Syntheses, structures, and electrochemical properties, Inorg. Chim. Acta 447 (2016) 162-167.
[58] W. Xuan, R. Ramachandran, C. Zhao, F. Wang, Influence of synthesis temperature on cobalt metal-organic framework (Co-MOF) formation and its electrochemical performance towards supercapacitor electrodes, J. Solid State Electrochem. 22 (2018) 3873-3881.
[59] D. Zhang, H. Shi, R. Zhang, Z. Zhang, N. Wang, J. Li, B. Yuan, H. Bai, J. Zhang, Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances, RSC Adv. 5 (2015) 58772-58776.
[60] L. Kang, S.-X. Sun, L.-B. Kong, J.-W. Lang, Y.-C. Luo, Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors, Chin. Chem. Lett. 25 (2014) 957-961.
[61] J. Yang, P. Xiong, C. Zheng, H. Qiu, M. Wei, Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode, J. Mater. Chem. A 2 (2014) 16640-16644.
[62] J. Xu, C. Yang, Y. Xue, C. Wang, J. Cao, Z. Chen, Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor, Electrochim. Acta 211 (2016) 595-602.
[63] J. Luo, X. Yang, S. Wang, Y. Bi, A. Nautiyal, X. Zhang, Facile synthesis of nickel-based metal organic framework [Ni3(HCOO)6] by microwave method and application for supercapacitor, Funct. Mater. Lett. 11 (2018) 1850030.
[64] C.M. Liao, J.C. Zhao, B.H.J. Tang, A.M. Tang, Y.H. Sun, J.L. Xu, Electrochemical performance of M-3(BTC)(2)center dot 12H(2)O (M=Co, Ni, and Zn) for supercapacitors, J. New Mater. Electrochem. Syst. 15 (2012) 79-82.
[65] K. Wang, Z. Wang, X. Wang, X. Zhou, Y. Tao, H. Wu, Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies, J. Power Sources 377 (2018) 44-51.
[66] C. Feng, C.-P. Lv, Z.-Q. Li, H. Zhao, H.-H. Huang, A porous 2D Ni-MOF material with a high supercapacitive performance, J. Solid State Chem. 265 (2018) 244-247.
[67] C. Shi, X. Wang, Y. Gao, H. Rong, Y. Song, H.-J. Liu, Q. Liu, Nickel metal-organic framework nanoparticles as electrode materials for Li-ion batteries and supercapacitors, J. Solid State Electrochem. 21 (2017) 2415-2423.
[68] S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors, J. Mater. Sci. 53 (2018) 6807-6818.
[69] C. Zhang, Q. Zhang, K. Zhang, Z. Xiao, Y. Yang, L. Wang, Facile synthesis of a two-dimensional layered Ni-MOF electrode material for high performance supercapacitors, RSC Adv. 8 (2018) 17747-17753.
[70] Q. Hu, L. Qin, J. Lei, X.-X. Tan, G. Ni, Y.-Q. Wang, J. Li, F.-H. Cao, Nitrogen-rich metal–organic framework: Dye adsorptions and electrochemical performance, Polyhedron 151 (2018) 33-36.
[71] C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, M. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study, Nano Energy 26 (2016) 66-73.
[72] Q. Li, W. Teng, L. Han, R. Liu, 2D Nanoflakes of metal-polyphenolic coordination assembly for high-performance supercapacitor, Inorg. Chem. Commun. 90 (2018) 51-56.
[73] C. Liao, Y. Zuo, W. Zhang, J. Zhao, B. Tang, A. Tang, Y. Sun, J. Xu, Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors, Russ. J. Electrochem. 49 (2013) 983-986.
[74] F. Zhang, G. Zhang, H. Yao, Z. Gao, X. Chen, Y. Yang, Scalable in-situ growth of self-assembled coordination supramolecular network arrays: A novel high-performance energy storage material, Chem. Eng. J. 338 (2018) 230-239.
[75] X. Wang, X. Liu, H. Rong, Y. Song, H. Wen, Q. Liu, Layered manganese-based metal–organic framework as a high capacity electrode material for supercapacitors, RSC Adv. 7 (2017) 29611-29617.
[76] W. Gao, D. Chen, H. Quan, R. Zou, W. Wang, X. Luo, L. Guo, Fabrication of hierarchical porous metal–organic framework electrode for aqueous asymmetric supercapacitor, ACS Sustainable Chem. Eng. 5 (2017) 4144-4153.
[77] Q. Lu, Y. Tan, W. Ye, B. Tang, Preparation and performance of Zr-MOF with different particle sizes, Battery Bimonthly 45 (2015) 252-254.
[78] F. Yang, W. Li, B. Tang, Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application, J. Alloys Compd. 733 (2018) 8-14.
[79] Y. Tan, W. Zhang, Y. Gao, J. Wu, B. Tang, Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66), RSC Adv. 5 (2015) 17601-17605.
[80] N. Campagnol, R. Romero-Vara, W. Deleu, L. Stappers, K. Binnemans, D.E. De Vos, J. Fransaer, A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100(Fe), ChemElectroChem 1 (2014) 1182-1188.
[81] L. Zhou, Z. Yang, C. Li, B. Chen, Y. Wang, L. Fu, Y. Zhu, X. Liu, Y. Wu, Prussian blue as positive electrode material for aqueous sodium-ion capacitor with excellent performance, RSC Adv. 6 (2016) 109340-109345.
[82] M. Du, M. Chen, X.-G. Yang, J. Wen, X. Wang, S.-M. Fang, C.-S. Liu, A channel-type mesoporous In(iii)–carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors, J. Mater. Chem. A 2 (2014) 9828-9834.
[83] Y. Gong, J. Li, P.-G. Jiang, Q.-F. Li, J.-H. Lin, Novel metal (II) coordination polymers based on N, N′-bis-(4-pyridyl) phthalamide as supercapacitor electrode materials in an aqueous electrolyte, Dalton Trans. 42 (2013) 1603-1611.
[84] N. Phattharasupakun, J. Wutthiprom, S. Kaenket, T. Maihom, J. Limtrakul, M. Probst, S.S. Nagarkar, S. Horike, M. Sawangphruk, A proton-hopping charge storage mechanism of ionic one-dimensional coordination polymers for high-performance supercapacitors, Chem. Commun. 53 (2017) 11786-11789.
[85] Y.Y. Kannangara, U.A. Rathnayake, J.-K. Song, Redox active multi-layered Zn-pPDA MOFs as high-performance supercapacitor electrode material, Electrochim. Acta 297 (2019) 145-154.
[86] Q. Liu, X. Liu, C. Shi, Y. Zhang, X. Feng, M.-L. Cheng, S. Su, J. Gu, A copper-based layered coordination polymer: synthesis, magnetic properties and electrochemical performance in supercapacitors, Dalton Trans. 44 (2015) 19175-19184.
[87] R. Ramachandran, C. Zhao, D. Luo, K. Wang, F. Wang, Synthesis of copper benzene-1, 3, 5-tricarboxylate metal organic frameworks with mixed phases as the electrode material for supercapacitor applications, Appl. Surf. Sci. 460 (2018) 33-39.
[88] L. Yu, X. Wang, M. Cheng, H. Rong, Y. Song, Q. Liu, A Three-Dimensional Copper Coordination Polymer Constructed by 3-Methyl-1H-pyrazole-4-carboxylic Acid with Higher Capacitance for Supercapacitors, Cryst. Growth Des. 18 (2018) 280-285.
[89] X. Xiong, L. Zhou, W. Cao, J. Liang, Y. Wang, S. Hu, F. Yu, B. Li, Metal–organic frameworks based on halogen-bridged dinuclear-Cu-nodes as promising materials for high performance supercapacitor electrodes, CrystEngComm 19 (2017) 7177-7184.
[90] G. Wang, T. Chen, S. Li, H. Pang, H. Ma, A coordination polymer based on dinuclear (pyrazinyl tetrazolate) copper(ii) cations and Wells–Dawson anions for high-performance supercapacitor electrodes, Dalton Trans. 46 (2017) 13897-13902.
[91] M.H. Zhu, X.M. Wu, B.T. Niu, D. Guo, H.X. Guo, Facile mechanochemical green fabrication of CuBr(tu)(3) nanowires as electrochemical supercapacitor electrodes, Chin. J. Struct. Chem. 37 (2018) 1155-1159.
[92] Y. Yan, Y. Luo, J. Ma, B. Li, H. Xue, H. Pang, Facile synthesis of vanadium metal-organic frameworks for high-performance supercapacitors, Small 14 (2018) 1801815.
[93] R. Díaz, M.G. Orcajo, J.A. Botas, G. Calleja, J. Palma, Co8-MOF-5 as electrode for supercapacitors, Mater. Lett. 68 (2012) 126-128.
[94] S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors, J. Colloid Interface Sci. 531 (2018) 83-90.
[95] H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF Nanoflake-Assembled Spherical Microstructures for Enhanced Supercapacitor and Electrocatalysis Performances, Nano-Micro Lett. 9 (2017) 43.
[96] J. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, Zn-doped Ni-MOF material with a high supercapacitive performance, J. Mater. Chem. A 2 (2014) 19005-19010.
[97] B.N. Bhadra, A. Vinu, C. Serre, S.H. Jhung, MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis, Mater. Today (2018).
[98] R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects, ACS Nano 11 (2017) 5293-5308.
[99] B.Y. Guan, X.Y. Yu, H.B. Wu, X.W. Lou, Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion, Adv. Mater. 29 (2017) 1703614.
[100] Y. Li, Y. Xu, W. Yang, W. Shen, H. Xue, H. Pang, MOF-derived metal oxide composites for advanced electrochemical energy storage, Small 14 (2018) 1704435.
[101] L. Lux, K. Williams, S. Ma, Heat-treatment of metal–organic frameworks for green energy applications, CrystEngComm 17 (2015) 10-22.
[102] X. Li, S. Zheng, L. Jin, Y. Li, P. Geng, H. Xue, H. Pang, Q. Xu, Metal‐Organic Framework‐Derived Carbons for Battery Applications, Adv. Energy Mater. (2018) 1800716.
[103] M.H. Yap, K.L. Fow, G.Z. Chen, Synthesis and applications of MOF-derived porous nanostructures, Green Energy Environ. 2 (2017) 218-245.
[104] L. Sun, M.G. Campbell, M. Dincă, Electrically conductive porous metal–organic frameworks, Angew. Chem. Int. Ed. 55 (2016) 3566-3579.
[105] A. Vlad, A. Balducci, Porous materials get energized, Nat. Mater. 16 (2017) 161-162.
[106] P.F. Li, B. Wang, Recent development and application of conductive MOFs, Isr. J. Chem. 58 (2018) 1010-1018.
[107] D. Sheberla, J.C. Bachman, J.S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nat. Mater. 16 (2016) 220-224.
[108] D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A.A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J.B. Tok, X. Zou, Y. Cui, Z. Bao, Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance, Nat. Energy 3 (2018) 30-36.
[109] W.-H. Li, K. Ding, H.-R. Tian, M.-S. Yao, B. Nath, W.-H. Deng, Y. Wang, G. Xu, Conductive metal–organic framework nanowire array electrodes for high-performance solid-state supercapacitors, Adv. Funct. Mater. 27 (2017) 1702067.
[110] J. Zhao, Q. Li, L. Han, R. Liu, Spherical mesocrystals from self-assembly of folic acid and nickel(II) ion for high-performance supercapacitors, J. Colloid Interface Sci. 538 (2019) 142-148.
[111] P. Du, Y. Dong, C. Liu, W. Wei, D. Liu, P. Liu, Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor, J. Colloid Interface Sci. 518 (2018) 57-68.
[112] Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang, H. Xue, Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors, J. Mater. Chem. A 4 (2016) 19078-19085.
[113] Q.-R. Fang, T.A. Makal, M.D. Young, H.-C. Zhou, Recent advances in the study of mesoporous metal-organic frameworks, Comments Inorg. Chem. 31 (2010) 165-195.
[114] C.R. Rawool, S.P. Karna, A.K. Srivastava, Enhancing the supercapacitive performance of Nickel based metal organic framework-carbon nanofibers composite by changing the ligands, Electrochim. Acta 294 (2019) 345-356.
[115] T. Wei, M. Zhang, P. Wu, Y.-J. Tang, S.-L. Li, F.-C. Shen, X.-L. Wang, X.-P. Zhou, Y.-Q. Lan, POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage, Nano Energy 34 (2017) 205-214.
[116] W. Li, H. Yao, G. Zhang, Y. Yang, A Ni/Zn bi-metallic coordination supramolecular network applied for high performance energy storage material, Electrochim. Acta 228 (2017) 233-240.
[117] H. Gholipour-Ranjbar, M. Soleimani, H.R. Naderi, Application of Ni/Co-based metal–organic frameworks (MOFs) as an advanced electrode material for supercapacitors, New J. Chem. 40 (2016) 9187-9193.
[118] S. Zhao, L. Zeng, G. Cheng, L. Yu, H. Zeng, Ni/Co-based metal-organic frameworks as electrode material for high performance supercapacitors, Chin. Chem. Lett. (2019).
[119] X. Wang, Q. Li, N. Yang, Y. Yang, F. He, J. Chu, M. Gong, B. Wu, R. Zhang, S. Xiong, Hydrothermal synthesis of NiCo-based bimetal-organic frameworks as electrode materials for supercapacitors, J. Solid State Chem. 270 (2019) 370-378.
[120] S.H. Kazemi, B. Hosseinzadeh, H. Kazemi, M.A. Kiani, S. Hajati, Facile synthesis of mixed metal–organic frameworks: Electrode materials for supercapacitors with excellent areal capacitance and operational stability, ACS Appl. Mater. Interfaces 10 (2018) 23063-23073.
[121] N. Sun, Y. Wang, W. Wei, Z. Song, W. Liu, Synthesis of CoFe Prussian blue analogue nanocubes and its supercapacitive performance, Electron. Compon. Mater. 37 (2018) 35-39.
[122] H. Yu, H. Xia, J. Zhang, J. He, S. Guo, Q. Xu, Fabrication of Fe-doped Co-MOF with mesoporous structure for the optimization of supercapacitor performances, Chin. Chem. Lett. 29 (2018) 834-836.
[123] S.-H. Lee, S. Choi, Bimetallic zeolitic imidazolate frameworks for symmetric electrical double-layer supercapacitors with aqueous electrolytes, Mater. Lett. 207 (2017) 129-132.
[124] H. Wang, Z. Huang, H. Zhao, F. Zhang, C. Xu, Q. Fu, H. Tao, H. Li, J. Ma, Electrochemical performance of FexMn1−x-based metal–organic frameworks as electrode materials for supercapacitors, J. Mater. Sci.: Mater. Electron. 29 (2018) 19819-19824.
[125] Y.W. Sui, D.L. Zhang, Y.P. Han, Z. Sun, J.Q. Qi, F.X. Wei, Y.Z. He, Q.K. Meng, Electrochemical potential enhancement of supercapacitors by synthesizing advanced electrode materials using Ni doped fe metal-organic frameworks, Nanosci. Nanotechnol. Lett. 9 (2017) 1567-1571.
[126] A. Farisabadi, M. Moradi, S. Borhani, S. Hajati, M.A. Kiani, S.A. Tayebifard, Synthesis and electrochemical properties of Mg-doped chromium-based metal organic framework/reduced graphene oxide composite for supercapacitor application, J. Mater. Sci.: Mater. Electron. 29 (2018) 8421-8430.
[127] L. Yue, H. Guo, X. Wang, T. Sun, H. Liu, Q. Li, M. Xu, Y. Yang, W. Yang, Non-metallic element modified metal-organic frameworks as high-performance electrodes for all-solid-state asymmetric supercapacitors, J. Colloid Interface Sci. 539 (2019) 370-378.
[128] O. Fleker, A. Borenstein, R. Lavi, L. Benisvy, S. Ruthstein, D. Aurbach, Preparation and properties of metal organic framework/activated carbon composite materials, Langmuir 32 (2016) 4935-4944.
[129] E. Elanthamilan, S. Rajkumar, R. Rajavalli, J.P. Merlin, Cost effective synthesis of a copper-1H-imidazole@activated carbon metal organic framework as an electrode material for supercapacitor applications, New J. Chem. 42 (2018) 10300-10308.
[130] P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density, J. Mater. Chem. A 3 (2015) 13874-13883.
[131] S.-C. Wang, M. Gu, L. Pan, J. Xu, L. Han, F.-Y. Yi, The interlocked in situ fabrication of graphene@prussian blue nanocomposite as high-performance supercapacitor, Dalton Trans. 47 (2018) 13126-13134.
[132] R. Ramachandran, W. Xuan, C. Zhao, X. Leng, D. Sun, D. Luo, F. Wang, Enhanced electrochemical properties of cerium metal–organic framework based composite electrodes for high-performance supercapacitor application, RSC Adv. 8 (2018) 3462-3469.
[133] Y. Zhang, B. Lin, Y. Sun, X. Zhang, H. Yang, J. Wang, Carbon nanotubes@metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage, RSC Adv. 5 (2015) 58100-58106.
[134] Q. Wang, Q. Wang, B. Xu, F. Gao, F. Gao, C. Zhao, Flower-shaped multiwalled carbon nanotubes@nickel-trimesic acid MOF composite as a high-performance cathode material for energy storage, Electrochim. Acta 281 (2018) 69-77.
[135] Y. Zhou, Z. Mao, W. Wang, Z. Yang, X. Liu, In-situ fabrication of graphene oxide hybrid ni-based metal–organic framework (Ni–MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials, ACS Appl. Mater. Interfaces 8 (2016) 28904-28916.
[136] R.R. Fu, M. Luo, Y.H. Ma, S. Yang, Preparation and supercapacitance of Ni-3(HCOO)(6)/reduced graphene oxide electrode materials, Chem. J. Chin. Univ.-Chin. 37 (2016) 1485-1490.
[137] M. Luo, Y. Dou, H. Kang, Y. Ma, X. Ding, B. Liang, B. Ma, L. Li, A novel interlocked Prussian blue/reduced graphene oxide nanocomposites as high-performance supercapacitor electrodes, J. Solid State Electrochem. 19 (2015) 1621-1631.
[138] M. Zhang, C. Hou, A. Halder, J. Ulstrup, Q. Chi, Interlocked graphene–Prussian blue hybrid composites enable multifunctional electrochemical applications, Biosens. Bioelectron. 89 (2017) 570-577.
[139] M. Saraf, R. Rajak, S.M. Mobin, A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors, J. Mater. Chem. A 4 (2016) 16432-16445.
[140] G. Zhang, F. Zhang, H. Yao, Z. Liu, Y. Yang, A nickel coordination supramolecular network synergized with nitrogen-doped graphene as an advanced cathode to significantly boost the rate capability and durability of supercapacitors, J. Mater. Chem. A 5 (2017) 19036-19045.
[141] W. Cao, M. Han, L. Qin, Q. Jiang, J. Xu, Z. Lu, Y. Wang, Synthesis of zeolitic imidazolate framework-67 nanocube wrapped by graphene oxide and its application for supercapacitors, J. Solid State Electrochem. 23 (2019) 325-334.
[142] A. Hosseinian, A. Amjad, R. Hosseinzadeh-Khanmiri, E. Ghorbani-Kalhor, M. Babazadeh, E. Vessally, Nanocomposite of ZIF-67 metal–organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications, J. Mater. Sci.: Mater. Electron. 28 (2017) 18040-18048.
[143] W. Zhang, Y. Tan, Y. Gao, J. Wu, J. Hu, A. Stein, B. Tang, Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications, J. Appl. Electrochem. 46 (2016) 441-450.
[144] N.S. Punde, C.R. Rawool, A.S. Rajpurohit, S.P. Karna, A.K. Srivastava, Hybrid composite based on porous cobalt-benzenetricarboxylic acid metal organic framework and graphene nanosheets as high performance supercapacitor electrode, ChemistrySelect 3 (2018) 11368-11380.
[145] Z. Wang, C. Gao, Y. Liu, D. Li, W. Chen, Y. Ma, C. Wang, J. Zhang, Electrochemical performance and transformation of Co-MOF/reduced graphene oxide composite, Mater. Lett. 193 (2017) 216-219.
[146] X.Y. Hou, X.L. Yan, X. Wang, S.N. Li, Y.C. Jiang, M.C. Hu, Q.G. Zhai, Excellent supercapacitor performance of robust nickel-organic framework materials achieved by tunable porosity, inner-cluster redox, and in situ fabrication with graphene oxide, Cryst. Growth Des. 18 (2018) 6035-6045.
[147] Z. Wang, H. Yao, F. Zhang, W. Li, Y. Yang, X. Lu, Electro-synthesized Ni coordination supermolecular-networks-coated exfoliated graphene composite materials for high-performance asymmetric supercapacitors, J. Mater. Chem. A 4 (2016) 16476-16483.
[148] L. Liu, Y. Yan, Z. Cai, S. Lin, X. Hu, Growth-oriented Fe-based MOFs synergized with graphene aerogels for high-performance supercapacitors, Adv. Mater. Interfaces 5 (2018) 1701548.
[149] C. Li, C. Hu, Y. Zhao, L. Song, J. Zhang, R. Huang, L. Qu, Decoration of graphene network with metal–organic frameworks for enhanced electrochemical capacitive behavior, Carbon 78 (2014) 231-242.
[150] X. Deng, S. Zhu, J. Li, L. Ma, F. He, E. Liu, C. He, C. Shi, Q. Li, N. Zhao, Ball-in-cage nanocomposites of metal–organic frameworks and three-dimensional carbon networks: synthesis and capacitive performance, Nanoscale 9 (2017) 6478-6485.
[151] L. Ma, H. Fan, K. Fu, Y. Zhao, Metal-organic framework/layered carbon nitride nano–sandwiches for superior asymmetric supercapacitor, ChemistrySelect 1 (2016) 3730-3738.
[152] Z. Li, Y. Gao, J. Wu, W. Zhang, Y. Tan, B. Tang, Synthesis and electrochemical characterization of Ni-B/ZIF-8 as electrode materials for supercapacitors, Electron. Mater. Lett. 12 (2016) 645-650.
[153] R. Ramachandran, K. Rajavel, W. Xuan, D. Lin, F. Wang, Influence of Ti3C2Tx (MXene) intercalation pseudocapacitance on electrochemical performance of Co-MOF binder-free electrode, Ceram. Int. 44 (2018) 14425-14431.
[154] M. Zhao, Q. Zhao, J. Qiu, X. Lu, G. Zhang, H. Xue, H. Pang, Amorphous cobalt coordination nanolayers incorporated with silver nanowires: A new electrode material for supercapacitors, Part. Part. Syst. Charact. 34 (2017) 1600412.
[155] Z. Li, Y. Guo, X. Wang, W. Ying, D. Chen, X. Ma, X. Zhao, X. Peng, Highly conductive PEDOT:PSS threaded HKUST-1 thin films, Chem. Commun. 54 (2018) 13865-13868.
[156] A. Ehsani, M. Bigdeloo, M.Y. Ansari, B. Mirtamizdoust, A.A. Heidari, M. Hadi, H.M. Shiri, Nanocomposite of conjugated polymer/nano-flowers Cu(II) metal-organic system with 2-methylpyridinecarboxaldehyde isonicotinohydrazide as a novel and hybrid electrode material for highly capacitive pseudocapacitors, Bull. Chem. Soc. Jpn. 91 (2018) 617-622.
[157] A. Ehsani, J. Khodayari, M. Hadi, H.M. Shiri, H. Mostaanzadeh, Nanocomposite of p-type conductive polymer/Cu (II)-based metal-organic frameworks as a novel and hybrid electrode material for highly capacitive pseudocapacitors, Ionics 23 (2017) 131-138.
[158] M. Naseri, L. Fotouhi, A. Ehsani, S. Dehghanpour, Facile electrosynthesis of nano flower like metal-organic framework and its nanocomposite with conjugated polymer as a novel and hybrid electrode material for highly capacitive pseudocapacitors, J. Colloid Interface Sci. 484 (2016) 314-319.
[159] F. Boorboor Ajdari, E. Kowsari, A. Ehsani, P-type conductive polymer/zeolitic imidazolate framework-67 (ZIF-67) nanocomposite film: Synthesis, characterization, and electrochemical performance as efficient electrode materials in pseudocapacitors, J. Colloid Interface Sci. 509 (2018) 189-194.
[160] Y. Jiao, G. Chen, D. Chen, J. Pei, Y. Hu, Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage, J. Mater. Chem. A 5 (2017) 23744-23752.
[161] W. Ji, L. Feng, R. Hao, W. Pei, Study on the design and performance of Nano nHKUST-1/PANI electrode as supercapacitors, Journal of Shaanxi Normal University. Natural Science Edition 45 (2017) 59-65.
[162] S.B. Aliev, D.G. Samsonenko, E.A. Maksimovskiy, E.O. Fedorovskaya, S.A. Sapchenko, V.P. Fedin, Polyaniline-intercalated MIL-101: selective CO2 sorption and supercapacitor properties, New J. Chem. 40 (2016) 5306-5312.
[163] E.A. Jafari, M. Moradi, S. Borhani, H. Bigdeli, S. Hajati, Fabrication of hybrid supercapacitor based on rod-like HKUST-1@polyaniline as cathode and reduced graphene oxide as anode, Physica E 99 (2018) 16-23.
[164] Q. Chen, S. Lei, P. Deng, X. Ou, L. Chen, W. Wang, Y. Xiao, B. Cheng, Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors, J. Mater. Chem. A 5 (2017) 19323-19332.
[165] L. Wang, H. Yang, G. Pan, L. Miao, S. Chen, Y. Song, Polyaniline-Carbon Nanotubes@Zeolite Imidazolate Framework­67-Carbon Cloth Hierarchical Nanostructures for Supercapacitor Electrode, Electrochim. Acta 240 (2017) 16-23.
[166] Y. Zou, Q. Wang, C. Xiang, Z. She, H. Chu, S. Qiu, F. Xu, S. Liu, C. Tang, L. Sun, One-pot synthesis of ternary polypyrrole–Prussian-blue–graphene-oxide hybrid composite as electrode material for high-performance supercapacitors, Electrochim. Acta 188 (2016) 126-134.
[167] F.B. Ajdari, E. Kowsari, A. Ehsani, Ternary nanocomposites of conductive polymer/functionalized GO/MOFs: Synthesis, characterization and electrochemical performance as effective electrode materials in pseudocapacitors, J. Solid State Chem. 265 (2018) 155-166.
[168] H.-N. Wang, M. Zhang, A.M. Zhang, F.-C. Shen, X.-K. Wang, S.-N. Sun, Y.-J. Chen, Y.-Q. Lan, polyoxometalate-based metal–organic frameworks with conductive polypyrrole for supercapacitors, ACS Appl. Mater. Interfaces 10 (2018) 32265-32270.
[169] J. Ji, Y. Li, W. Peng, G. Zhang, F. Zhang, X. Fan, Advanced Graphene‐Based Binder‐Free Electrodes for High‐Performance Energy Storage, Adv. Mater. 27 (2015) 5264-5279.
[170] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science 347 (2015) 1246501.
[171] P.C. Banerjee, D.E. Lobo, R. Middag, W.K. Ng, M.E. Shaibani, M. Majumder, Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts, ACS Appl. Mater. Interfaces 7 (2015) 3655-3664.
[172] S. Chen, W. Xing, J. Duan, X. Hu, S.Z. Qiao, Nanostructured morphology control for efficient supercapacitor electrodes, J. Mater. Chem. A 1 (2013) 2941-2954.
[173] F. Miao, C. Shao, X. Li, K. Wang, N. Lu, Y. Liu, Three-dimensional freestanding hierarchically porous carbon materials as binder-free electrodes for supercapacitors: high capacitive property and long-term cycling stability, J. Mater. Chem. A 4 (2016) 5623-5631.
[174] Q. Wang, F.N. Yong, Z.H. Xiao, X.Y. Chen, Z.J. Zhang, Simply incorporating an efficient redox additive into KOH electrolyte for largely improving electrochemical performances, J. Electroanal. Chem. 770 (2016) 62-72.
[175] M. Zhang, G. Wang, L. Lu, T. Wang, H. Xu, C. Yu, H. Li, W. Tian, Improving the electrochemical performances of active carbon-based supercapacitors through the combination of introducing functional groups and using redox additive electrolyte, J. Saudi Chem. Soc. 22 (2018) 908-918.
[176] C. Zhao, T. Deng, X. Xue, L. Chang, W. Zheng, S. Wang, Development of novel and ultrahigh-performance asymmetric supercapacitor based on redox electrode-electrolyte system, Electrochim. Acta 231 (2017) 495-501.
[177] Y. Tian, M. Liu, R. Che, R. Xue, L. Huang, Cooperative redox-active additives of anthraquinone-2,7-disulphonate and K4Fe(CN)6 for enhanced performance of active carbon-based capacitors, J. Power Sources 324 (2016) 334-341.
[178] Y.-Z. Zhang, T. Cheng, Y. Wang, W.-Y. Lai, H. Pang, W. Huang, A simple approach to boost capacitance: Flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation, Adv. Mater. 28 (2016) 5242-5248.
[179] Z. Li, Y. Tan, W. Zhang, B. Tang, Flower-like Ni3(NO3)2(OH)4@Zr-metal organic framework (UiO-66) composites as electrode materials for high performance pseudocapacitors, Ionics 22 (2016) 2545-2551.
[180] Y. Gao, J. Wu, W. Zhang, Y. Tan, J. Gao, B. Tang, J. Zhao, Synthesis of nickel carbonate hydroxide@zeolitic imidazolate framework-67 (Ni2CO3(OH)2@ZIF-67) for pseudocapacitor applications, J. Appl. Electrochem. 45 (2015) 541-547.
[181] Y. Gao, J. Wu, W. Zhang, Y. Tan, J. Gao, J. Zhao, B. Tang, Synthesis of nickel oxalate/zeolitic imidazolate framework-67 (NiC2O4/ZIF-67) as a supercapacitor electrode, New J. Chem. 39 (2015) 94-97.
[182] Y. Gao, J. Wu, W. Zhang, Y. Tan, J. Gao, B. Tang, J. Zhao, Synthesis of nickel carbonate hydroxide/zeolitic imidazolate framework-8 as a supercapacitors electrode, RSC Adv. 4 (2014) 36366-36371.
[183] Y. Gao, J. Wu, W. Zhang, Y. Tan, J. Zhao, B. Tang, The electrochemical performance of SnO2 quantum dots@zeolitic imidazolate frameworks-8 (ZIF-8) composite material for supercapacitors, Mater. Lett. 128 (2014) 208-211
[184] Y. Wang, Q. Chen, Dual-layer-structured nickel hexacyanoferrate/MnO2 composite as a high-energy supercapacitive material based on the complementarity and interlayer concentration enhancement effect, ACS Appl. Mater. Interfaces 6 (2014) 6196-6201.
[185] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130 (2008) 13850-13851.
[186] J. Xu, Y. Wang, S. Cao, J. Zhang, G. Zhang, H. Xue, Q. Xu, H. Pang, Ultrathin Cu-MOF@δ-MnO2 nanosheets for aqueous electrolyte-based high-voltage electrochemical capacitors, J. Mater. Chem. A 6 (2018) 17329-17336.
[187] D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics, Chem. Soc. Rev. 47 (2018) 2065-2129.
[188] Y.Z. Liu, N. Xu, W.C. Chen, X.L. Wang, C.Y. Sun, Z.M. Su, Supercapacitor with high cycling stability through electrochemical deposition of metal-organic frameworks/polypyrrole positive electrode, Dalton Trans. 47 (2018) 13472-13478.
[189] H. Yao, F. Zhang, G. Zhang, Y. Yang, A new hexacyanoferrate nanosheet array converted from copper oxide as a high-performance binder-free energy storage electrode, Electrochim. Acta 294 (2019) 286-296.
[190] C. Qu, Z. Liang, Y. Jiao, B. Zhao, B. Zhu, D. Dang, S. Dai, Y. Chen, R. Zou, M. Liu, “One-for-all” strategy in fast energy storage: Production of pillared MOF nanorod-templated positive/negative electrodes for the application of high-performance hybrid supercapacitor, Small 14 (2018) 1800285.
[191] Y. Mengyao, Z. Xin, Z. Junxian, T. Wenjun, L. Jie, D. Jie, Z. Qinghua, Flexible all-solid-state supercapacitors of polyaniline nanowire arrays deposited on electrospun carbon nanofibers decorated with MOFs, Nanotechnology 30 (2019) 085404.
[192] D. Tian, X. Lu, Y. Zhu, M. Li, C. Wang, Fabrication of two-dimensional metal-organic frameworks on electrospun nanofibers and their derived metal doped carbon nanofibers for an advanced asymmetric supercapacitor with a high energy density, J. Power Sources 413 (2019) 50-58.
[193] D. Fu, H. Zhou, X.-M. Zhang, G. Han, Y. Chang, H. Li, Flexible solid–state supercapacitor of metal–organic framework coated on carbon nanotube film interconnected by electrochemically -codeposited PEDOT-GO, ChemistrySelect 1 (2016) 285-289.
[194] H. Li, D. Fu, X.-M. Zhang, G. Han, F. Zhang, Facile preparation of varisized ZIF-8 and ZIF-8/polypyrrole composites for flexible solid-state supercapacitor, ChemistrySelect 2 (2017) 7530-7534.
[195] D. Fu, H. Li, X.-M. Zhang, G. Han, H. Zhou, Y. Chang, Flexible solid-state supercapacitor fabricated by metal-organic framework/graphene oxide hybrid interconnected with PEDOT, Mater. Chem. Phys. 179 (2016) 166-173.
[196] X. Xu, J. Tang, H. Qian, S. Hou, Y. Bando, M.S.A. Hossain, L. Pan, Y. Yamauchi, Three-dimensional networked metal–organic frameworks with conductive polypyrrole tubes for flexible supercapacitors, ACS Appl. Mater. Interfaces 9 (2017) 38737-38744.
[197] K. Qi, R. Hou, S. Zaman, Y. Qiu, B.Y. Xia, H. Duan, Construction of metal–organic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor, ACS Appl. Mater. Interfaces 10 (2018) 18021-18028.
[198] P. Srimuk, S. Luanwuthi, A. Krittayavathananon, M. Sawangphruk, Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper, Electrochim. Acta 157 (2015) 69-77.
[199] L. Zhang, Y. Zhang, S. Huang, Y. Yuan, H. Li, Z. Jin, J. Wu, Q. Liao, L. Hu, J. Lu, S. Ruan, Y.-J. Zeng, Co3O4/Ni-based MOFs on carbon cloth for flexible alkaline battery-supercapacitor hybrid devices and near-infrared photocatalytic hydrogen evolution, Electrochim. Acta 281 (2018) 189-197.
[200] Q. Wang, L. Shao, Z. Ma, J. Xu, Y. Li, C. Wang, Hierarchical porous PANI/MIL-101 nanocomposites based solid-state flexible supercapacitor, Electrochim. Acta 281 (2018) 582-593.
[201] Y.-N. Liu, L.-N. Jin, H.-T. Wang, X.-H. Kang, S.-W. Bian, Fabrication of three-dimensional composite textile electrodes by metal-organic framework, zinc oxide, graphene and polyaniline for all-solid-state supercapacitors, J. Colloid Interface Sci. 530 (2018) 29-36.
[202] C. Zhu, Y. He, Y. Liu, N. Kazantseva, P. Saha, Q. Cheng, ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes, J. Energy Chem. 35 (2019) 124-131.
[203] L. Shao, Q. Wang, Z. Ma, Z. Ji, X. Wang, D. Song, Y. Liu, N. Wang, A high-capacitance flexible solid-state supercapacitor based on polyaniline and Metal-Organic Framework (UiO-66) composites, J. Power Sources 379 (2018) 350-361.
[204] H. Yao, F. Zhang, G. Zhang, H. Luo, L. Liu, M. Shen, Y. Yang, A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor, Chem. Eng. J. 334 (2018) 2547-2557.
[205] M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto, O. Terasaki, O.M. Yaghi, New porous crystals of extended metal-catecholates, Chem. Mater. 24 (2012) 3511-3513.
[206] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828.
[207] P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, S.J. Kim, High-energy aqueous Li-ion hybrid capacitor based on metal-organic-framework-mimicking insertion-type copper hexacyanoferrate and capacitive-type graphitic carbon electrodes, J. Alloys Compd. 765 (2018) 1041-1048.