Metal Organic Frameworks Composites for Lithium Battery Applications

$28.50

Metal Organic Frameworks Composites for Lithium Battery Applications

Rashid Iqbal, Pothu Ramyakrishna, Rajender Boddula, Anish Khan

Metal–organic frameworks (MOFs) have grabbed a lot of attention of scientist in the last two decades with more than 20,000 reported MOFs, due to tunable pore size, reticular design chemistry and higher surface area as compared to conventional amorphous materials. Moreover, these materials are applicable in energy storage, energy conversion, catalysis and separation. MOFs possesses capability to perform in the research area of Li-ion and Li-S batteries. Herein, an overview about challenges and recent advances electrochemical properties of MOF-derived carbon, pristine MOF and their composited with conductive materials to enhance Li-ion batteries performance. Finally, by focusing on development of MOF materials, we proposed the future of Li-ion batteries for high energy density.

Keywords
Metal–Organic Frameworks, Lithium-Ion Batteries, Lithium-Sulphur Batteries

Published online 10/5/2019, 17 pages

Citation: Rashid Iqbal, Pothu Ramyakrishna, Rajender Boddula, Anish Khan, Metal Organic Frameworks Composites for Lithium Battery Applications, Materials Research Foundations, Vol. 58, pp 32-48, 2019

DOI: https://doi.org/10.21741/9781644900437-3

Part of the book on Metal-Organic Framework Composites

References
[1] O. Yaghi, H. Li, Journal of the American Chemical Society, 117 (1995) 10401-10402. https://doi.org/10.1021/ja00146a033
[2] O.M. Yaghi, G. Li, H. Li, Nature, 378 (1995) 703. https://doi.org/10.1038/378703a0
[3] P.G. Yot, Z. Boudene, J. Macia, D. Granier, L. Vanduyfhuys, T. Verstraelen, V. Van Speybroeck, T. Devic, C. Serre, G. Férey, N. Stock, G. Maurin, Chemical Communications, 50 (2014) 9462-9464. https://doi.org/10.1039/C4CC03853C
[4] G. Férey, Chemical Society Reviews, 37 (2008) 191-214. https://doi.org/10.1039/B618320B
[5] J.-K. Sun, Q. Xu, Energy & Environmental Science, 7 (2014) 2071-2100. https://doi.org/10.1039/c4ee00517a
[6] S.-L. Li, Q. Xu, Energy & Environmental Science, 6 (2013) 1656-1683. https://doi.org/10.1039/c3ee40507a
[7] W. Xia, A. Mahmood, R. Zou, Q. Xu, Energy & Environmental Science, 8 (2015) 1837-1866. https://doi.org/10.1039/C5EE00762C
[8] S.J. Yang, S. Nam, T. Kim, J.H. Im, H. Jung, J.H. Kang, S. Wi, B. Park, C.R. Park, Journal of the American Chemical Society, 135 (2013) 7394-7397. https://doi.org/10.1021/ja311550t
[9] A.J. Clough, J.W. Yoo, M.H. Mecklenburg, S.C. Marinescu, Journal of the American Chemical Society, 137 (2014) 118-121. https://doi.org/10.1021/ja5116937
[10] Z.-L. Wang, X.-F. Hao, Z. Jiang, X.-P. Sun, D. Xu, J. Wang, H.-X. Zhong, F.-L. Meng, X.-B. Zhang, Journal of the American Chemical Society, 137 (2015) 15070-15073. https://doi.org/10.1021/jacs.5b09021
[11] P. Yang, W. Zhao, A. Shkurenko, Y. Belmabkhout, M. Eddaoudi, X. Dong, H.N. Alshareef, N.M. Khashab, Journal of the American Chemical Society, (2019).
[12] P. Xiao, F. Bu, R. Zhao, M.F. Aly Aboud, I. Shakir, Y. Xu, ACS nano, 12 (2018) 3947-3953. https://doi.org/10.1021/acsnano.8b01488
[13] M.-T. Li, X.-Y. Yang, J.-S. Li, N. Sheng, G.-D. Liu, J.-Q. Sha, Y.-Q. Lan, Inorganic chemistry, 57 (2018) 3865-3872. https://doi.org/10.1021/acs.inorgchem.7b03228
[14] D. Wu, Z. Guo, X. Yin, Q. Pang, B. Tu, L. Zhang, Y.G. Wang, Q. Li, Advanced Materials, 26 (2014) 3258-3262. https://doi.org/10.1002/adma.201305492
[15] X. Li, S. Zheng, L. Jin, Y. Li, P. Geng, H. Xue, H. Pang, Q. Xu, Advanced Energy Materials, (2018) 1800716. https://doi.org/10.1002/aenm.201800716
[16] J.-Q. Sha, X.-Y. Yang, Y. Chen, P.-P. Zhu, Y.-F. Song, J. Jiang, ACS applied materials & interfaces, 10 (2018) 16660-16665. https://doi.org/10.1021/acsami.8b04009
[17] W. Cheng, F.-C. Shen, Y.-s. Xue, X. Luo, M. Fang, Y.-Q. Lan, Y. Xu, ACS Applied Energy Materials, 1 (2018) 4931-4938. https://doi.org/10.1021/acsaem.8b00938
[18] A. Morozan, F. Jaouen, Energy & environmental science, 5 (2012) 9269-9290. https://doi.org/10.1039/c2ee22989g
[19] A. Petronico, T.P. Moneypenny, B.G. Nicolau, J.S. Moore, R.G. Nuzzo, A.A. Gewirth, Journal of the American Chemical Society, (2018).
[20] B.-J. Chae, Y.E. Jung, C.Y. Lee, T. Yim, ACS Sustainable Chemistry & Engineering, (2018).
[21] Z.L. Wang, Journal of physics: condensed matter, 16 (2004) R829. https://doi.org/10.1088/0953-8984/16/25/R01
[22] L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, B. Wang, Coordination Chemistry Reviews, 307 (2016) 361-381. https://doi.org/10.1016/j.ccr.2015.09.002
[23] S.S. Park, Y. Tulchinsky, M. Dincă, Journal of the American Chemical Society, 139 (2017) 13260-13263. https://doi.org/10.1021/jacs.7b06197
[24] X. Li, F. Cheng, S. Zhang, J. Chen, Journal of power sources, 160 (2006) 542-547. https://doi.org/10.1016/j.jpowsour.2006.01.015
[25] P. Tran-Van, K. Barthelet, M. Morcrette, M. Herlem, J. Tarascon, A. Cheetham, G. Férey, Journal of New Materials for Electrochemical Systems, 6 (2003) 29-32.
[26] K. Barthelet, J. Marrot, D. Riou, G. Férey, Angewandte Chemie International Edition, 41 (2002) 281-284. https://doi.org/10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y
[27] G. Férey, F. Millange, M. Morcrette, C. Serre, M.L. Doublet, J.M. Grenèche, J.M. Tarascon, Angewandte Chemie International Edition, 46 (2007) 3259-3263. https://doi.org/10.1002/anie.200605163
[28] C. Combelles, M.B. Yahia, L. Pedesseau, M.-L. Doublet, Journal of Power Sources, 196 (2011) 3426-3432. https://doi.org/10.1016/j.jpowsour.2010.08.065
[29] C. Combelles, M.B. Yahia, L. Pedesseau, M.-L. Doublet, The Journal of Physical Chemistry C, 114 (2010) 9518-9527. https://doi.org/10.1021/jp1016455
[30] L. Gou, L.-M. Hao, Y.X. Shi, S.-L. Ma, X.-Y. Fan, L. Xu, D.-L. Li, K. Wang, Journal of Solid State Chemistry, 210 (2014) 121-124. https://doi.org/10.1016/j.jssc.2013.11.014
[31] X. Hu, H. Hu, C. Li, T. Li, X. Lou, Q. Chen, B. Hu, Journal of Solid State Chemistry, 242 (2016) 71-76. https://doi.org/10.1016/j.jssc.2016.07.021
[32] P. Sengodu, C. Bongu, M. Perumal, M. Paramasivam, Journal of Alloys and Compounds, 714 (2017) 603-609. https://doi.org/10.1016/j.jallcom.2017.04.241
[33] C. Li, X. Hu, X. Lou, L. Zhang, Y. Wang, J.-P. Amoureux, M. Shen, Q. Chen, B. Hu, Journal of Materials Chemistry A, 4 (2016) 16245-16251. https://doi.org/10.1039/C6TA06413B
[34] H. Song, L. Shen, J. Wang, C. Wang, Journal of Materials Chemistry A, 4 (2016) 15411-15419. https://doi.org/10.1039/C6TA05925B
[35] C. Li, X. Lou, M. Shen, X. Hu, Z. Guo, Y. Wang, B. Hu, Q. Chen, ACS Applied Materials & Interfaces, 8 (2016) 15352-15360. https://doi.org/10.1021/acsami.6b03648
[36] A. Manthiram, S.-H. Chung, C. Zu, Advanced Materials, 27 (2015) 1980-2006. https://doi.org/10.1002/adma.201405115
[37] R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, J.-M. Tarascon, Journal of the American Chemical Society, 133 (2011) 16154-16160. https://doi.org/10.1021/ja2062659
[38] J. Zhou, X. Yu, X. Fan, X. Wang, H. Li, Y. Zhang, W. Li, J. Zheng, B. Wang, X. Li, Journal of Materials Chemistry A, 3 (2015) 8272-8275. https://doi.org/10.1039/C5TA00524H
[39] Z. Wang, Z. Dou, Y. Cui, Y. Yang, Z. Wang, G. Qian, Microporous and Mesoporous Materials, 185 (2014) 92-96. https://doi.org/10.1016/j.micromeso.2013.11.011
[40] J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M.H. Engelhard, J.-G. Zhang, J. Liu, J. Xiao, Nano Letters, 14 (2014) 2345-2352. https://doi.org/10.1021/nl404721h
[41] Z. Wang, X. Li, Y. Cui, Y. Yang, H. Pan, Z. Wang, C. Wu, B. Chen, G. Qian, Crystal Growth & Design, 13 (2013) 5116-5120. https://doi.org/10.1021/cg401304x
[42] K. Xi, S. Cao, X. Peng, C. Ducati, R. Vasant Kumar, A.K. Cheetham, Chemical Communications, 49 (2013) 2192-2194. https://doi.org/10.1039/c3cc38009b
[43] Z. Li, L. Yin, ACS Applied Materials & Interfaces, 7 (2015) 4029-4038. https://doi.org/10.1021/am507660y
[44] M. Klose, K. Pinkert, M. Zier, M. Uhlemann, F. Wolke, T. Jaumann, P. Jehnichen, D. Wadewitz, S. Oswald, J. Eckert, L. Giebeler, Carbon, 79 (2014) 302-309. https://doi.org/10.1016/j.carbon.2014.07.071
[45] W. Bao, Z. Zhang, Y. Qu, C. Zhou, X. Wang, J. Li, Journal of Alloys and Compounds, 582 (2014) 334-340. https://doi.org/10.1016/j.jallcom.2013.08.056
[46] Z. Zhao, S. Wang, R. Liang, Z. Li, Z. Shi, G. Chen, Journal of Materials Chemistry A, 2 (2014) 13509-13512. https://doi.org/10.1039/C4TA01241K
[47] Y. Yue, B. Guo, Z.-A. Qiao, P.F. Fulvio, J. Chen, A.J. Binder, C. Tian, S. Dai, Microporous and Mesoporous Materials, 198 (2014) 139-143. https://doi.org/10.1016/j.micromeso.2014.07.026
[48] W. Bao, Z. Zhang, W. Chen, C. Zhou, Y. Lai, J. Li, Electrochimica Acta, 127 (2014) 342-348. https://doi.org/10.1016/j.electacta.2014.02.043
[49] W. Bao, Z. Zhang, C. Zhou, Y. Lai, J. Li, Journal of Power Sources, 248 (2014) 570-576. https://doi.org/10.1016/j.jpowsour.2013.09.132
[50] R. Chen, T. Zhao, T. Tian, S. Cao, P.R. Coxon, K. Xi, D. Fairen-Jimenez, R.V. Kumar, A.K. Cheetham, APL Materials, 2 (2014) 124109. https://doi.org/10.1063/1.4901751
[51] X. Li, F. Cheng, S. Zhang, J. Chen, Journal of Power Sources, 160 (2006) 542-547. https://doi.org/10.1016/j.jpowsour.2006.01.015
[52] K. Saravanan, M. Nagarathinam, P. Balaya, J.J. Vittal, Journal of Materials Chemistry, 20 (2010) 8329-8335. https://doi.org/10.1039/c0jm01671c
[53] Q. Liu, L. Yu, Y. Wang, Y. Ji, J. Horvat, M.-L. Cheng, X. Jia, G. Wang, Inorganic Chemistry, 52 (2013) 2817-2822. https://doi.org/10.1021/ic301579g
[54] X. Han, F. Yi, T. Sun, J. Sun, Electrochemistry Communications, 25 (2012) 136-139. https://doi.org/10.1016/j.elecom.2012.09.014
[55] P. Nie, L. Shen, H. Luo, B. Ding, G. Xu, J. Wang, X. Zhang, Journal of Materials Chemistry A, 2 (2014) 5852-5857. https://doi.org/10.1039/C4TA00062E
[56] Y. Lin, Q. Zhang, C. Zhao, H. Li, C. Kong, C. Shen, L. Chen, Chemical Communications, 51 (2015) 697-699. https://doi.org/10.1039/C4CC07149B
[57] R. Senthil Kumar, C. Nithya, S. Gopukumar, M. Anbu Kulandainathan, Energy Technology, 2 (2014) 921-927. https://doi.org/10.1002/ente.201402076
[58] C. Zhao, C. Shen, W. Han, RSC Advances, 5 (2015) 20386-20389. https://doi.org/10.1039/C4RA16416D
[59] T. An, Y. Wang, J. Tang, Y. Wang, L. Zhang, G. Zheng, Journal of Colloid and Interface Science, 445 (2015) 320-325. https://doi.org/10.1016/j.jcis.2015.01.012
[60] J. Zhou, R. Li, X. Fan, Y. Chen, R. Han, W. Li, J. Zheng, B. Wang, X. Li, Energy & Environmental Science, 7 (2014) 2715-2724. https://doi.org/10.1039/C4EE01382D
[61] G. Férey, F. Millange, M. Morcrette, C. Serre, M.-L. Doublet, J.-M. Grenèche, J.-M. Tarascon, Angewandte Chemie International Edition, 46 (2007) 3259-3263. https://doi.org/10.1002/anie.200605163
[62] G. de Combarieu, M. Morcrette, F. Millange, N. Guillou, J. Cabana, C.P. Grey, I. Margiolaki, G. Férey, J.M. Tarascon, Chemistry of Materials, 21 (2009) 1602-1611. https://doi.org/10.1021/cm8032324
[63] A. Fateeva, P. Horcajada, T. Devic, C. Serre, J. Marrot, J.-M. Grenèche, M. Morcrette, J.-M. Tarascon, G. Maurin, G. Férey, European Journal of Inorganic Chemistry, 2010 (2010) 3789-3794. https://doi.org/10.1002/ejic.201000486
[64] T.L.A. Nguyen, T. Devic, P. Mialane, E. Rivière, A. Sonnauer, N. Stock, R. Demir-Cakan, M. Morcrette, C. Livage, J. Marrot, J.-M. Tarascon, G. Férey, Inorganic Chemistry, 49 (2010) 10710-10717. https://doi.org/10.1021/ic101906u
[65] M. Nagarathinam, K. Saravanan, E.J.H. Phua, M.V. Reddy, B.V.R. Chowdari, J.J. Vittal, Angewandte Chemie International Edition, 51 (2012) 5866-5870. https://doi.org/10.1002/anie.201200210
[66] A. Shahul Hameed, M. Nagarathinam, M. Schreyer, M.V. Reddy, B.V.R. Chowdari, J.J. Vittal, Journal of Materials Chemistry A, 1 (2013) 5721-5726. https://doi.org/10.1039/c3ta10464h
[67] J. Shin, M. Kim, J. Cirera, S. Chen, G.J. Halder, T.A. Yersak, F. Paesani, S.M. Cohen, Y.S. Meng, Journal of Materials Chemistry A, 3 (2015) 4738-4744. https://doi.org/10.1039/C4TA06694D
[68] Z. Zhang, H. Yoshikawa, K. Awaga, Journal of the American Chemical Society, 136 (2014) 16112-16115. https://doi.org/10.1021/ja508197w
[69] Z. Wang, X. Li, Y. Yang, Y. Cui, H. Pan, Z. Wang, B. Chen, G. Qian, Journal of Materials Chemistry A, 2 (2014) 7912-7916. https://doi.org/10.1039/c4ta00367e
[70] W. Kaveevivitchai, A.J. Jacobson, Journal of Power Sources, 278 (2015) 265-273. https://doi.org/10.1016/j.jpowsour.2014.12.094
[71] T.L.A. Nguyen, R. Demir-Cakan, T. Devic, M. Morcrette, T. Ahnfeldt, P. Auban-Senzier, N. Stock, A.-M. Goncalves, Y. Filinchuk, J.-M. Tarascon, G. Férey, Inorganic Chemistry, 49 (2010) 7135-7143. https://doi.org/10.1021/ic100950n
[72] M. Okubo, D. Asakura, Y. Mizuno, J.D. Kim, T. Mizokawa, T. Kudo, I. Honma, The Journal of Physical Chemistry Letters, 1 (2010) 2063-2071. https://doi.org/10.1021/jz100708b
[73] D. Asakura, M. Okubo, Y. Mizuno, T. Kudo, H. Zhou, K. Ikedo, T. Mizokawa, A. Okazawa, N. Kojima, The Journal of Physical Chemistry C, 116 (2012) 8364-8369. https://doi.org/10.1021/jp2118949
[74] M. Okubo, K. Kagesawa, Y. Mizuno, D. Asakura, E. Hosono, T. Kudo, H. Zhou, K. Fujii, H. Uekusa, S.-i. Nishimura, A. Yamada, A. Okazawa, N. Kojima, Inorganic Chemistry, 52 (2013) 3772-3779. https://doi.org/10.1021/ic302364d