Metal Organic Frameworks (MOF’s) for Biosensing and Bioimaging Applications

$28.50

Metal Organic Frameworks (MOF’s) for Biosensing and Bioimaging Applications

Fulya Gülbağça, Kubilay Arıkan, Kemal Cellat, Anish Khan, Fatih Şen

Metal-organic-frameworks (MOFs) formed by combining between intermetallic ion bonds and organic bridge ligands are a class of nanomaterials. Due to their privileges such as structural porosity, flexibility, controllable synthesis, MOFs have been used in many applications and have shown a high-efficiency in biological detection and imaging. When compared with other nanomaterials, the MOF structures are foreseen for biological applications due to their biodegradability and compatibility advantages. Recently, MOF structures have been instrumental in the introduction of new generation technologies in clinical diagnoses such as detection of small biomolecules, DNA, RNA, enzyme activity, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). In this chapter, recent advances in biosensing and bio-imaging are reported in research for MOF.

Keywords
Biosensing and Bioimaging, Metal-Organic Frameworks, Enzymatic-MOF, Fluorescence, Computed Tomography, Magnetic Resonance Imaging

Published online 10/5/2019, 53 pages

Citation: Fulya Gülbağça, Kubilay Arıkan, Kemal Cellat, Anish Khan, Fatih Şen, Metal Organic Frameworks (MOF’s) for Biosensing and Bioimaging Applications, Materials Research Foundations, Vol. 58, pp 308-360, 2019

DOI: https://doi.org/10.21741/9781644900437-11

Part of the book on Metal-Organic Framework Composites

References
1. W. Ma, X. Li, Y. Bai, & H. Liu, Applications of metal-organic frameworks as advanced sorbents in biomacromolecules sample preparation. TrAC Trends in Analytical Chemistry, 109 (2018) 154–162. https://doi.org/10.1016/j.trac.2018.10.003
2. L. Jiao, J. Y. R. Seow, W. S. Skinner, Z. U. Wang, & H.-L. Jiang, Metal–organic frameworks: Structures and functional applications. Materials Today, (2018)
3. G. Başkaya, Y. Yıldız, A. Savk, T. O. Okyay, S. Eriş, H. Sert, & F. Şen, Rapid, Sensitive, and Reusable Detection of Glucose by Highly Monodisperse Nickel Nanoparticles Decorated Functionalized Multi-Walled Carbon Nanotubes. Biosensors and Bioelectronics, 91 (2017) 728–733. https://doi.org/10.1016/j.bios.2017.01.045
4. Y. Koskun, A. Şavk, B. Şen, & F. Şen, Highly Sensitive Glucose Sensor Based on Monodisperse Palladium Nickel/Activated Carbon Nanocomposites. Analytica Chimica Acta, 1010 (2018) 37–43. https://doi.org/10.1016/j.aca.2018.01.035
5. H. Göksu, B. Çelik, Y. Yıldız, F. Şen, & B. Kılbaş, Superior Monodisperse CNT-Supported CoPd (CoPd@CNT) Nanoparticles for Selective Reduction of Nitro Compounds to Primary Amines with NaBH4 in Aqueous Medium. ChemistrySelect, 1 (2016) 2366–2372. https://doi.org/10.1002/slct.201600509
6. B. Sen, B. Demirkan, B. Şimşek, A. Savk, & F. Sen, Monodisperse Palladium Nanocatalysts for Dehydrocoupling of Dimethylamineborane. Nano-Structures & Nano-Objects, 16 (2018) 209–214. https://doi.org/10.1016/j.nanoso.2018.07.008
7. B. Şen, B. Demirkan, A. Savk, R. Kartop, M. S. Nas, M. H. Alma, S. Sürdem, & F. Şen, High-performance graphite-supported ruthenium nanocatalyst for hydrogen evolution reaction. Journal of Molecular Liquids, 268 (2018) 807–812. https://doi.org/10.1016/j.molliq.2018.07.117
8. B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, & F. Şen, Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide with The High Catalytic Activity and Reusability in The Dehydrogenation of Dimethylamine-borane. International Journal of Hydrogen Energy, 43 (2018) 20176–20182. https://doi.org/10.1016/j.ij. International Journal of Hydrogen Energy, 43 (2018) 20176–20182. https://doi.org/10.1016/j.ijhydene.2018.03.175
9. Z. Daşdelen, Y. Yıldız, S. Eriş, & F. Şen, Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Applied Catalysis B: Environmental, 219 (2017) 511–516. https://doi.org/10.1016/j.apcatb.2017.08.014
10. B. Şahin, E. Demir, A. Aygün, H. Gündüz, & F. Şen, Investigation of The Effect Of Pomegranate Extract And Monodisperse Silver Nanoparticle Combination on MCF-7 Cell Line. Journal of Biotechnology, 260 (2017) 79–83. https://doi.org/10.1016/j.jbiotec.2017.09.012
11. E. Demir, B. Sen, & F. Sen, Highly Efficient Pt Nanoparticles and f-MWCNT Nanocomposites Based Counter Electrodes for Dye-sensitized Solar Cells. Nano-Structures & Nano-Objects, 11 (2017) 39–45. https://doi.org/10.1016/j.nanoso.2017.06.003
12. E. Demir, A. Savk, B. Sen, & F. Sen, A Novel Monodisperse Metal Nanoparticles Anchored Graphene Oxide as Counter Electrode for Dye-Sensitized Solar Cells. Nano-Structures and Nano-Objects, 12 (2017) 41–45. https://doi.org/10.1016/j.nanoso.2017.08.018
13. S. Akocak, B. Şen, N. Lolak, A. Şavk, M. Koca, S. Kuzu, & F. Şen, One-Pot Three-Component Synthesis of 2-Amino-4H-Chromene Derivatives by Using Monodisperse Pd Nanomaterials Anchored Graphene Oxide as Highly Efficient and Recyclable Catalyst. Nano-Structures & Nano-Objects, 11 (2017) 25–31. https://doi.org/10.1016/j.nanoso.2017.06.002
14. Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, & F. Şen, Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. International Journal of Hydrogen Energy, 42 (2017) 13061–13069. https://doi.org/10.1016/j.ijhydene.2017.03.230
15. S. Bozkurt, B. Tosun, B. Sen, S. Akocak, A. Savk, M. F. Ebeoğlugil, & F. Sen, A Hydrogen Peroxide Sensor Based on TNM Functionalized Reduced Graphene Oxide Grafted with Highly Monodisperse Pd Nanoparticles. Analytica Chimica Acta, 989 (2017) 88–94. https://doi.org/10.1016/j.aca.2017.07.051
16. B. Şen, N. Lolak, Ö. Paralı, M. Koca, A. Şavk, S. Akocak, & F. Şen, Bimetallic PdRu/graphene oxide based Catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Structures & Nano-Objects, 12 (2017) 33–40. https://doi.org/10.1016/J.NANOSO.2017.08.013
17. B. Sen, S. Kuzu, E. Demir, S. Akocak, & F. Sen, Monodisperse palladium–nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine–borane. International Journal of Hydrogen Energy, 42 (2017) 23276–23283. https://doi.org/10.1016/j.ijhydene.2017.05.113
18. B. Sen, S. Kuzu, E. Demir, S. Akocak, F. S.-I. J. of, & undefined 2017, Polymer-graphene hybride decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of dimethylamine–borane at room. Elsevier, (n.d.)
19. R. Ayranci, G. Baskaya, M. Guzel, S. Bozkurt, M. Ak, A. Savk, & F. Sen, Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation. Nano-Structures and Nano-Objects, 11 (2017) 13–19. https://doi.org/10.1016/j.nanoso.2017.05.008
20. B. Sen, S. Kuzu, E. Demir, T. Onal Okyay, & F. Sen, Hydrogen Liberation from The Dehydrocoupling of Dimethylamine–borane at Room Temperature by Using Novel and Highly Monodispersed RuPtNi Nanocatalysts Decorated with Graphene Oxide. International Journal of Hydrogen Energy, 42 (2017) 23299–23306. https://doi.org/10.1016/j.ijhydene.2017.04.213
21. B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, B. Şen, S. Kuzu, E. Demir, F. Akocak, SüleymanŞSen, B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, B. Şen, S. Kuzu, E. Demir, S. Akocak, F. Şen, F. Akocak, SüleymanŞSen, B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, B. Şen, S. Kuzu, E. Demir, F. Akocak, SüleymanŞSen, B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, B. Şen, S. Kuzu, E. Demir, S. Akocak, & F. Şen, Highly Monodisperse RuCo Nanoparticles Decorated on Functionalized Multiwalled Carbon Nanotube with The Highest Observed Catalytic Activity in The Dehydrogenation of Dimethylamine−borane. International Journal of Hydrogen Energy, 42 (2017) 23292–23298. https://doi.org/10.1016/j.ijhydene.2017.06.032
22. B. Gezer, H. Sert, T. Onal Okyay, S. Bozkurt, G. Başkaya, B. Şahin, C. Ulutürk, & F. Sen, Reduced graphene oxide (rGO) as highly effective material for the ultrasound assisted boric acid extraction from ulexite ore. Chemical Engineering Research and Design, 117 (2017) 542–548. https://doi.org/10.1016/j.cherd.2016.11.007
23. Y. Yildiz, E. Erken, H. Pamuk, H. Sert, & F. Sen, Monodisperse Pt Nanoparticles Assembled on Reduced Graphene Oxide: Highly Efficient and Reusable Catalyst for Methanol Oxidation and Dehydrocoupling of Dimethylamine-Borane (DMAB). Journal of nanoscience and nanotechnology, 16 (2016) 5951–8
24. E. Erken, H. Pamuk, Ö. Karatepe, G. Başkaya, H. Sert, O. M. Kalfa, & F. Şen, New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB). Journal of Cluster Science, 27 (2016) 9–23. https://doi.org/10.1007/s10876-015-0892-8
25. B. Sen, S. Kuzu, E. Demir, E. Yıldırır, & F. Sen, Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium–nickel alloy nanoparticles assembled on PEDOT. International Journal of Hydrogen Energy, 42 (2017) 23307–23314. https://doi.org/10.1016/J.IJHYDENE.2017.05.115
26. B. Şen, B. Demirkan, A. Şavk, S. Karahan Gülbay, & F. Şen, Trimetallic PdRuNi Nanocomposites Decorated on Graphene Oxide: A Superior Catalyst for The Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 43 (2018) 17984–17992. https://doi.org/10.1016/j.ijhydene.2018.07.122
27. H. Sert, Y. Yıldız, T. Onal Okyay, B. Sen, B. Gezer, S. Bozkurt, G. Ba, F. Sen, Y. Yildiz, T. O. Okyay, B. Sen, B. Gezer, S. Bozkurt, G. Başskaya, & F. Sen, Activated Carbon Furnished Monodisperse Pt Nanocomposites as a Superior Adsorbent for Methylene Blue Removal from Aqueous Solutions. Journal of Nanoscience and Nanotechnology, 17 (2017) 4799–4804. https://doi.org/10.1166/jnn.2017.13776
28. H. Goksu, H. Sert, B. Kilbas, & F. Sen, Recent Advances in the Reduction of Nitro Compounds by Heterogenous Catalysts. Current Organic Chemistry, 21 (2017) 794–820. https://doi.org/10.2174/1385272820666160525123907
29. R. Ulus, Y. Yıldız, S. Eriş, B. Aday, F. Şen, & M. Kaya, Functionalized Multi-Walled Carbon Nanotubes (f-MWCNT) as Highly Efficient and Reusable Heterogeneous Catalysts for the Synthesis of Acridinedione Derivatives. ChemistrySelect, 1 (2016) 3861–3865. https://doi.org/10.1002/slct.201600719
30. B. Aday, H. Pamuk, M. Kaya, & F. Sen, Graphene Oxide as Highly Effective and Readily Recyclable Catalyst Using for the One-Pot Synthesis of 1,8-Dioxoacridine Derivatives. Journal of Nanoscience and Nanotechnology, 16 (2016) 6498–6504. https://doi.org/10.1166/jnn.2016.12432
31. T. Demirci, B. Çelik, Y. Yıldız, S. Eriş, M. Arslan, F. Sen, & B. Kilbas, One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst. RSC Advances, 6 (2016) 76948–76956. https://doi.org/10.1039/C6RA13142E
32. Y. Yıldız, İ. Esirden, E. Erken, E. Demir, M. Kaya, & F. Şen, Microwave (Mw)-assisted Synthesis of 5-Substituted 1H-Tetrazoles via [3+2] Cycloaddition Catalyzed by Mw-Pd/Co Nanoparticles Decorated on Multi-Walled Carbon Nanotubes. ChemistrySelect, 1 (2016) 1695–1701. https://doi.org/10.1002/slct.201600265
33. H. Sert, Y. Yıldız, T. O. Okyay, B. Gezer, Z. Dasdelen, B. Sen, & F. Sen, Monodisperse Mw-Pt NPs@VC as Highly Efficient and Reusable Adsorbents for Methylene Blue Removal. Journal of Cluster Science, 27 (2016) 1953–1962. https://doi.org/10.1007/s10876-016-1054-3
34. Y. Yıldız, H. Pamuk, Ö. Karatepe, Z. Dasdelen, & F. Sen, Carbon black hybrid material furnished monodisperse platinum nanoparticles as highly efficient and reusable electrocatalysts for formic acid electro-oxidation. RSC Advances, 6 (2016) 32858–32862. https://doi.org/10.1039/C6RA00232C
35. B. Çelik, G. Başkaya, H. Sert, Ö. Karatepe, E. Erken, F. Şen, B. Celik, G. Baskaya, H. Sert, O. Karatepe, E. Erken, & F. Sen, Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. International Journal of Hydrogen Energy, 41 (2016) 5661–5669. https://doi.org/10.1016/j.ijhydene.2016.02.061
36. E. Erken, Y. Yıldız, B. Kilbaş, & F. Şen, Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB). Journal of Nanoscience and Nanotechnology, 16 (2016) 5944–5950. https://doi.org/10.1166/jnn.2016.11683
37. S. Eris, Z. Daşdelen, Y. Yıldız, & F. Sen, Nanostructured Polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for Methanol oxidation. International Journal of Hydrogen Energy, 43 (2018) 1337–1343. https://doi.org/10.1016/J.IJHYDENE.2017.11.051
38. B. Şahin, A. Aygün, H. Gündüz, K. Şahin, E. Demir, S. Akocak, & F. Şen, Cytotoxic Effects of Platinum Nanoparticles Obtained from Pomegranate Extract by The Green Synthesis Method on The MCF-7 Cell Line. Colloids and Surfaces B: Biointerfaces, 163 (2018) 119–124. https://doi.org/10.1016/j.colsurfb.2017.12.042
39. İ. Gulçin, P. Taslimi, A. Aygün, N. Sadeghian, E. Bastem, O. I. Kufrevioglu, F. Turkan, & F. Şen, Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. International Journal of Biological Macromolecules, 119 (2018) 741–746. https://doi.org/10.1016/J.IJBIOMAC.2018.08.001
40. S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, & F. Şen, Carbon-nanotube-based Rhodium Nanoparticles as Highly-Active Catalyst for Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature. Journal of Colloid and Interface Science, 530 (2018) 321–327. https://doi.org/10.1016/j.jcis.2018.06.100
41. B. Aday, Y. Yıldız, R. Ulus, S. Eris, F. Sen, & M. Kaya, One-Pot, Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Monodisperse Platinum Nanoparticles Supported with Reduced Graphene Oxide. New Journal of Chemistry, 40 (2016) 748–754. https://doi.org/10.1039/C5NJ02098K
42. B. Sen, A. Şavk, E. Kuyuldar, S. Karahan Gülbay, & F. Sen, Hydrogen Liberation from The Hydrolytic Dehydrogenation of Hydrazine Borane in Acidic Media. International Journal of Hydrogen Energy, 43 (2018) 17978–17983. https://doi.org/10.1016/j.ijhydene.2018.03.225
43. N. M. Iverson, P. W. Barone, M. Shandell, L. J. Trudel, S. Sen, F. Sen, V. Ivanov, E. Atolia, E. Farias, T. P. McNicholas, N. Reuel, N. M. A. Parry, G. N. Wogan, & M. S. Strano, In vivo Biosensing via Tissue-localizable Near-infrared-fluorescent Single-walled Carbon Nanotubes. Nature Nanotechnology, 8 (2013) 873–880. https://doi.org/10.1038/nnano.2013.222
44. P. Sennequier, Signal conditioning for electrochemical sensors. (2017) 1–27
45. H. Kitagawa, Y. Nagao, M. Fujishima, R. Ikeda, & S. Kanda, Highly proton-conductive copper coordination polymer, H2dtoaCu (H2dtoa=dithiooxamide anion). Inorganic Chemistry Communications, 6 (2003) 346–348. https://doi.org/10.1016/S1387-7003(02)00749-9
46. X. Zhu, H. Zheng, X. Wei, Z. Lin, L. Guo, B. Qiu, & G. Chen, Metal–organic framework (MOF): a novel sensing platform for biomolecules. Chemical Communications, 49 (2013) 1276. https://doi.org/10.1039/c2cc36661d
47. W. Yang, G. Zhang, W. Weng, B. Qiu, L. Guo, Z. Lin, & G. Chen, Signal on fluorescence biosensor for MMP-2 based on FRET between semiconducting polymer dots and a metal organic framework. RSC Adv., 4 (2014) 58852–58857. https://doi.org/10.1039/C4RA12478B
48. S.-P. Yang, S.-R. Chen, S.-W. Liu, X.-Y. Tang, L. Qin, G.-H. Qiu, J.-X. Chen, & W.-H. Chen, Platforms Formed from a Three-Dimensional Cu-Based Zwitterionic Metal–Organic Framework and Probe ss-DNA: Selective Fluorescent Biosensors for Human Immunodeficiency Virus 1 ds-DNA and Sudan Virus RNA Sequences. Analytical Chemistry, 87 (2015) 12206–12214. https://doi.org/10.1021/acs.analchem.5b03084
49. L. Qin, L.-X. Lin, Z.-P. Fang, S.-P. Yang, G.-H. Qiu, J.-X. Chen, & W.-H. Chen, A water-stable metal–organic framework of a zwitterionic carboxylate with dysprosium: a sensing platform for Ebolavirus RNA sequences. Chemical Communications, 52 (2016) 132–135. https://doi.org/10.1039/C5CC06697B
50. H.-Q. Zhao, G.-H. Qiu, Z. Liang, M.-M. Li, B. Sun, L. Qin, S.-P. Yang, W.-H. Chen, & J.-X. Chen, A zinc(II)-based two-dimensional MOF for sensitive and selective sensing of HIV-1 ds-DNA sequences. Analytica Chimica Acta, 922 (2016) 55–63. https://doi.org/10.1016/J.ACA.2016.03.054
51. H.-Q. Zhao, S.-P. Yang, N.-N. Ding, L. Qin, G.-H. Qiu, J.-X. Chen, W.-H. Zhang, W.-H. Chen, & T. S. A. Hor, A zwitterionic 1D/2D polymer co-crystal and its polymorphic sub-components: a highly selective sensing platform for HIV ds-DNA sequences. Dalton Transactions, 45 (2016) 5092–5100. https://doi.org/10.1039/C5DT04410C
52. J. M. Fang, F. Leng, X. J. Zhao, X. L. Hu, & Y. F. Li, Metal–organic framework MIL-101 as a low background signal platform for label-free DNA detection. The Analyst, 139 (2014) 801–806. https://doi.org/10.1039/C3AN01975F
53. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, & I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science (New York, N.Y.), 309 (2005) 2040–2. https://doi.org/10.1126/science.1116275
54. H. Tan, G. Tang, Z. Wang, Q. Li, J. Gao, & S. Wu, Magnetic porous carbon nanocomposites derived from metal-organic frameworks as a sensing platform for DNA fluorescent detection. Analytica Chimica Acta, 940 (2016) 136–142. https://doi.org/10.1016/J.ACA.2016.08.024
55. R. Mejia-Ariza, J. Rosselli, C. Breukers, A. Manicardi, L. W. M. M. Terstappen, R. Corradini, & J. Huskens, DNA Detection by Flow Cytometry using PNA-Modified Metal-Organic Framework Particles. Chemistry (Weinheim an der Bergstrasse, Germany), 23 (2017) 4180–4186. https://doi.org/10.1002/chem.201605803
56. C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk, & G. Férey, Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science (New York, N.Y.), 315 (2007) 1828–31. https://doi.org/10.1126/science.1137975
57. T. Chalati, P. Horcajada, R. Gref, P. Couvreur, & C. Serre, Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem., 21 (2011) 2220–2227. https://doi.org/10.1039/C0JM03563G
58. H.-T. Zhang, J.-W. Zhang, G. Huang, Z.-Y. Du, & H.-L. Jiang, An amine-functionalized metal–organic framework as a sensing platform for DNA detection. Chem. Commun., 50 (2014) 12069–12072. https://doi.org/10.1039/C4CC05571C
59. S.-N. Zhao, L.-L. Wu, J. Feng, S.-Y. Song, & H.-J. Zhang, An ideal detector composed of a 3D Gd-based coordination polymer for DNA and Hg 2+ ion. Inorganic Chemistry Frontiers, 3 (2016) 376–380. https://doi.org/10.1039/C5QI00252D
60. H.-S. Wang, J. Li, J.-Y. Li, K. Wang, Y. Ding, & X.-H. Xia, Lanthanide-based metal-organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells. NPG Asia Materials, 9 (2017) e354–e354. https://doi.org/10.1038/am.2017.7
61. H.-S. Wang, W.-J. Bao, S.-B. Ren, M. Chen, K. Wang, & X.-H. Xia, Fluorescent Sulfur-Tagged Europium(III) Coordination Polymers for Monitoring Reactive Oxygen Species. Analytical Chemistry, 87 (2015) 6828–6833. https://doi.org/10.1021/acs.analchem.5b01104
62. P. Ling, J. Lei, L. Zhang, & H. Ju, Porphyrin-Encapsulated Metal–Organic Frameworks as Mimetic Catalysts for Electrochemical DNA Sensing via Allosteric Switch of Hairpin DNA. Analytical Chemistry, 87 (2015) 3957–3963. https://doi.org/10.1021/acs.analchem.5b00001
63. S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, & I. D. Williams, A chemically functionalizable nanoporous material. Science (New York, N.Y.), 283 (1999) 1148–50. https://doi.org/10.1126/SCIENCE.283.5405.1148
64. Q. Zhu, Y. Chen, W. Wang, H. Zhang, C. Ren, H. Chen, & X. Chen, A sensitive biosensor for dopamine determination based on the unique catalytic chemiluminescence of metal–organic framework HKUST-1. Sensors and Actuators B: Chemical, 210 (2015) 500–507. https://doi.org/10.1016/J.SNB.2015.01.012
65. Q. Wang, Y. Yang, F. Gao, J. Ni, Y. Zhang, & Z. Lin, Graphene Oxide Directed One-Step Synthesis of Flowerlike Graphene@HKUST-1 for Enzyme-Free Detection of Hydrogen Peroxide in Biological Samples. ACS Applied Materials & Interfaces, 8 (2016) 32477–32487. https://doi.org/10.1021/acsami.6b11965
66. T. Guo, Q. Deng, G. Fang, D. Gu, Y. Yang, & S. Wang, Upconversion fluorescence metal-organic frameworks thermo-sensitive imprinted polymer for enrichment and sensing protein. Biosensors and Bioelectronics, 79 (2016) 341–346. https://doi.org/10.1016/J.BIOS.2015.12.040
67. S.-H. Huo & X.-P. Yan, Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. Journal of Materials Chemistry, 22 (2012) 7449. https://doi.org/10.1039/c2jm16513a
68. S. Patra, T. Hidalgo Crespo, A. Permyakova, C. Sicard, C. Serre, A. Chaussé, N. Steunou, & L. Legrand, Design of metal organic framework–enzyme based bioelectrodes as a novel and highly sensitive biosensing platform. Journal of Materials Chemistry B, 3 (2015) 8983–8992. https://doi.org/10.1039/C5TB01412C
69. J.-N. Hao & B. Yan, Recyclable lanthanide-functionalized MOF hybrids to determine hippuric acid in urine as a biological index of toluene exposure. Chemical Communications, 51 (2015) 14509–14512. https://doi.org/10.1039/C5CC05219J
70. C. Volkringer, T. Loiseau, N. Guillou, G. Férey, M. Haouas, F. Taulelle, E. Elkaim, & N. Stock, High-Throughput Aided Synthesis of the Porous Metal−Organic Framework-Type Aluminum Pyromellitate, MIL-121, with Extra Carboxylic Acid Functionalization. Inorganic Chemistry, 49 (2010) 9852–9862. https://doi.org/10.1021/ic101128w
71. S.-Y. Zhang, W. Shi, P. Cheng, & M. J. Zaworotko, A Mixed-Crystal Lanthanide Zeolite-like Metal–Organic Framework as a Fluorescent Indicator for Lysophosphatidic Acid, a Cancer Biomarker. Journal of the American Chemical Society, 137 (2015) 12203–12206. https://doi.org/10.1021/jacs.5b06929
72. Y. Wang, C. Hou, Y. Zhang, F. He, M. Liu, & X. Li, Preparation of graphene nano-sheet bonded PDA/MOF microcapsules with immobilized glucose oxidase as a mimetic multi-enzyme system for electrochemical sensing of glucose. Journal of Materials Chemistry B, 4 (2016) 3695–3702. https://doi.org/10.1039/C6TB00276E
73. G. Lu & J. T. Hupp, Metal−Organic Frameworks as Sensors: A ZIF-8 Based Fabry−Pérot Device as a Selective Sensor for Chemical Vapors and Gases. Journal of the American Chemical Society, 132 (2010) 7832–7833. https://doi.org/10.1021/ja101415b
74. Y. Pan, Y. Liu, G. Zeng, L. Zhao, & Z. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 47 (2011) 2071. https://doi.org/10.1039/c0cc05002d
75. K. Wang, N. Li, J. Zhang, Z. Zhang, & F. Dang, Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities. Biosensors and Bioelectronics, 87 (2017) 339–344. https://doi.org/10.1016/J.BIOS.2016.08.026
76. J. An, C. M. Shade, D. A. Chengelis-Czegan, S. Petoud, & N. L. Rosi, Zinc-Adeninate Metal−Organic Framework for Aqueous Encapsulation and Sensitization of Near-infrared and Visible Emitting Lanthanide Cations. Journal of the American Chemical Society, 133 (2011) 1220–1223. https://doi.org/10.1021/ja109103t
77. Y. Zhang, B. Li, H. Ma, L. Zhang, & Y. Zheng, Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosensors and Bioelectronics, 85 (2016) 287–293. https://doi.org/10.1016/J.BIOS.2016.05.020
78. W. Li & D. Cosker, Video interpolation using optical flow and Laplacian smoothness. Neurocomputing, 220 (2017) 236–243. https://doi.org/10.1016/J.NEUCOM.2016.04.064
79. G.-Y. Zhang, Y.-H. Zhuang, D. Shan, G.-F. Su, S. Cosnier, & X.-J. Zhang, Zirconium-Based Porphyrinic Metal–Organic Framework (PCN-222): Enhanced Photoelectrochemical Response and Its Application for Label-Free Phosphoprotein Detection. Analytical Chemistry, 88 (2016) 11207–11212. https://doi.org/10.1021/acs.analchem.6b03484
80. Z. Hu, B. J. Deibert, & J. Li, Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 43 (2014) 5815–5840. https://doi.org/10.1039/C4CS00010B
81. Y. Zhang, S. Yuan, G. Day, X. Wang, X. Yang, & H.-C. Zhou, Luminescent sensors based on metal-organic frameworks. Coordination Chemistry Reviews, 354 (2018) 28–45. https://doi.org/10.1016/j.ccr.2017.06.007
82. D. Kukkar, K. Vellingiri, K.-H. Kim, & A. Deep, Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sensors and Actuators B: Chemical, 273 (2018) 1346–1370. https://doi.org/10.1016/j.snb.2018.06.128
83. W. Morris, W. E. Briley, E. Auyeung, M. D. Cabezas, & C. A. Mirkin, Nucleic Acid–Metal Organic Framework (MOF) Nanoparticle Conjugates. Journal of the American Chemical Society, 136 (2014) 7261–7264. https://doi.org/10.1021/ja503215w
84. B. Valizadeh, T. N. Nguyen, & K. C. Stylianou, Shape engineering of metal–organic frameworks. Polyhedron, 145 (2018) 1–15. https://doi.org/10.1016/j.poly.2018.01.004
85. H. Cai, Y.-L. Huang, & D. Li, Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications. Coordination Chemistry Reviews, 378 (2019) 207–221. https://doi.org/10.1016/j.ccr.2017.12.003
86. J. T. Petty, C. Fan, S. P. Story, B. Sengupta, A. St. John Iyer, Z. Prudowsky, & R. M. Dickson, DNA Encapsulation of 10 Silver Atoms Producing a Bright, Modulatable, Near-Infrared-Emitting Cluster. The Journal of Physical Chemistry Letters, 1 (2010) 2524–2529. https://doi.org/10.1021/jz100817z
87. R. Dahm, Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Human Genetics, 122 (2008) 565–581. https://doi.org/10.1007/s00439-007-0433-0
88. Y. Nakazaki, N. Goto, & T. Inui, Simulation of dynamic behaviors of simple aromatic hydrocarbons inside the pores of a pentasil zeolite. Journal of Catalysis, 136 (1992) 141–148. https://doi.org/10.1016/0021-9517(92)90113-V
89. P. Shah, A. Rørvig-Lund, S. Ben Chaabane, P. W. Thulstrup, H. G. Kjaergaard, E. Fron, J. Hofkens, S. W. Yang, & T. Vosch, Design Aspects of Bright Red Emissive Silver Nanoclusters/DNA Probes for MicroRNA Detection. ACS Nano, 6 (2012) 8803–8814. https://doi.org/10.1021/nn302633q
90. R. Srivastava, Complexes of DNA bases and Watson–Crick base pairs interaction with neutral silver Ag n ( n = 8, 10, 12) clusters: a DFT and TDDFT study. Journal of Biomolecular Structure and Dynamics, 36 (2018) 1050–1062. https://doi.org/10.1080/07391102.2017.1310059
91. M. Chen, N. Gan, Y. Zhou, T. Li, Q. Xu, Y. Cao, & Y. Chen, An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification. Talanta, 161 (2016) 867–874. https://doi.org/10.1016/J.TALANTA.2016.09.051
92. P. Kumar, A. Deep, A. K. Paul, & L. M. Bharadwaj, Bioconjugation of MOF-5 for molecular sensing. Journal of Porous Materials, 21 (2014) 99–104. https://doi.org/10.1007/s10934-013-9752-9
93. X. Lu, X. Wang, L. Wu, L. Wu, Dhanjai, L. Fu, Y. Gao, & J. Chen, Response Characteristics of Bisphenols on a Metal–Organic Framework-Based Tyrosinase Nanosensor. ACS Applied Materials & Interfaces, 8 (2016) 16533–16539. https://doi.org/10.1021/acsami.6b05008
94. Y.-A. Chen, F.-J. Tsai, Y.-T. Zeng, J.-C. Wang, C. P. Hong, P.-H. Huang, H.-L. Chuang, S.-Y. Lin, C.-T. Chan, Y.-C. Ko, Y.-C. Chou, T.-L. Lin, G.-H. Lee, & M.-L. Ho, Fast and Effective Turn-on Paper-based Phosphorescence Biosensor for Detection of Glucose in Serum. Journal of the Chinese Chemical Society, 63 (2016) 424–431. https://doi.org/10.1002/jccs.201500488
95. M.-L. Ho, J.-C. Wang, T.-Y. Wang, C.-Y. Lin, J. F. Zhu, Y.-A. Chen, & T.-C. Chen, The construction of glucose biosensor based on crystalline iridium(III)-containing coordination polymers with fiber-optic detection. Sensors and Actuators B: Chemical, 190 (2014) 479–485. https://doi.org/10.1016/J.SNB.2013.08.100
96. L.-L. Wu, Z. Wang, S.-N. Zhao, X. Meng, X.-Z. Song, J. Feng, S.-Y. Song, & H.-J. Zhang, A Metal-Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion Detection. Chemistry – A European Journal, 22 (2016) 477–480. https://doi.org/10.1002/chem.201503335
97. H.-H. Zeng, W.-B. Qiu, L. Zhang, R.-P. Liang, & J.-D. Qiu, Lanthanide Coordination Polymer Nanoparticles as an Excellent Artificial Peroxidase for Hydrogen Peroxide Detection. Analytical Chemistry, 88 (2016) 6342–6348. https://doi.org/10.1021/acs.analchem.6b00630
98. Y. Li, A. Guo, L. Chang, W.-J. Li, & W.-J. Ruan, Luminescent Metal-Organic-Framework-Based Label-Free Assay of Polyphenol Oxidase with Fluorescent Scan. Chemistry – A European Journal, 23 (2017) 6562–6569. https://doi.org/10.1002/chem.201605992
99. H. Tan, Q. Li, Z. Zhou, C. Ma, Y. Song, F. Xu, & L. Wang, A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Analytica Chimica Acta, 856 (2015) 90–95. https://doi.org/10.1016/J.ACA.2014.11.026
100. X. Lian, T. Miao, X. Xu, C. Zhang, & B. Yan, Eu3+ functionalized Sc-MOFs: Turn-on fluorescent switch for ppb-level biomarker of plastic pollutant polystyrene in serum and urine and on-site detection by smartphone. Biosensors and Bioelectronics, 97 (2017) 299–304. https://doi.org/10.1016/J.BIOS.2017.06.018
101. C. Xiong, W. Liang, Y. Zheng, Y. Zhuo, Y. Chai, & R. Yuan, Ultrasensitive Assay for Telomerase Activity via Self-Enhanced Electrochemiluminescent Ruthenium Complex Doped Metal–Organic Frameworks with High Emission Efficiency. Analytical Chemistry, 89 (2017) 3222–3227. https://doi.org/10.1021/acs.analchem.7b00259
102. Y. Yin, C. Gao, Q. Xiao, G. Lin, Z. Lin, Z. Cai, & H. Yang, Protein-Metal Organic Framework Hybrid Composites with Intrinsic Peroxidase-like Activity as a Colorimetric Biosensing Platform. ACS Applied Materials & Interfaces, 8 (2016) 29052–29061. https://doi.org/10.1021/acsami.6b09893
103. G.-Y. Wang, C. Song, D.-M. Kong, W.-J. Ruan, Z. Chang, & Y. Li, Two luminescent metal–organic frameworks for the sensing of nitroaromatic explosives and DNA strands. J. Mater. Chem. A, 2 (2014) 2213–2220. https://doi.org/10.1039/C3TA14199C
104. A. Foucault-Collet, K. A. Gogick, K. A. White, S. Villette, A. Pallier, G. Collet, C. Kieda, T. Li, S. J. Geib, N. L. Rosi, & S. Petoud, Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks. Proceedings of the National Academy of Sciences of the United States of America, 110 (2013) 17199–204. https://doi.org/10.1073/pnas.1305910110
105. F. R. S. Lucena, L. C. C. de Araújo, M. do D. Rodrigues, T. G. da Silva, V. R. A. Pereira, G. C. G. Militão, D. A. F. Fontes, P. J. Rolim-Neto, F. F. da Silva, & S. C. Nascimento, Induction of cancer cell death by apoptosis and slow release of 5-fluoracil from metal-organic frameworks Cu-BTC. Biomedicine & Pharmacotherapy, 67 (2013) 707–713. https://doi.org/10.1016/J.BIOPHA.2013.06.003
106. K. Lu, C. He, & W. Lin, Nanoscale Metal–Organic Framework for Highly Effective Photodynamic Therapy of Resistant Head and Neck Cancer. Journal of the American Chemical Society, 136 (2014) 16712–16715. https://doi.org/10.1021/ja508679h
107. W. J. Rieter, K. M. L. Taylor, H. An, W. Lin, & W. Lin, Nanoscale Metal−Organic Frameworks as Potential Multimodal Contrast Enhancing Agents. Journal of the American Chemical Society, 128 (2006) 9024–9025. https://doi.org/10.1021/ja0627444
108. K. M. L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, & W. Lin, Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal−Organic Frameworks for Imaging and Drug Delivery. Journal of the American Chemical Society, 131 (2009) 14261–14263. https://doi.org/10.1021/ja906198y
109. V. Lykourinou, Y. Chen, X.-S. Wang, L. Meng, T. Hoang, L.-J. Ming, R. L. Musselman, & S. Ma, Immobilization of MP-11 into a Mesoporous Metal–Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis. Journal of the American Chemical Society, 133 (2011) 10382–10385. https://doi.org/10.1021/ja2038003
110. F. Lyu, Y. Zhang, R. N. Zare, J. Ge, & Z. Liu, One-Pot Synthesis of Protein-Embedded Metal–Organic Frameworks with Enhanced Biological Activities. Nano Letters, 14 (2014) 5761–5765. https://doi.org/10.1021/nl5026419
111. N. Yan, X. Zhou, Y. Li, F. Wang, H. Zhong, H. Wang, & Q. Chen, Fe2O3 Nanoparticles Wrapped in Multi-walled Carbon Nanotubes With Enhanced Lithium Storage Capability. Scientific Reports, 3 (2013) 3392. https://doi.org/10.1038/srep03392
112. G. Gao, L. Yu, H. Bin Wu, & X. W. David Lou, Hierarchical Tubular Structures Constructed by Carbon-coated α-Fe 2 O 3 Nanorods for Highly Reversible Lithium Storage. Small, 10 (2014) 1741–1745. https://doi.org/10.1002/smll.201303818
113. S. Sajjadi, H. Ghourchian, & H. Tavakoli, Choline oxidase as a selective recognition element for determination of paraoxon. Biosensors and Bioelectronics, 24 (2009) 2509–2514. https://doi.org/10.1016/J.BIOS.2009.01.008
114. L. Wang, Q. Zhang, S. Chen, F. Xu, S. Chen, J. Jia, H. Tan, H. Hou, & Y. Song, Electrochemical Sensing and Biosensing Platform Based on Biomass-Derived Macroporous Carbon Materials. Analytical Chemistry, 86 (2014) 1414–1421. https://doi.org/10.1021/ac401563m
115. S. Dong, P. Zhang, H. Liu, N. Li, & T. Huang, Direct electrochemistry and electrocatalysis of hemoglobin in composite film based on ionic liquid and NiO microspheres with different morphologies. Biosensors and Bioelectronics, 26 (2011) 4082–4087. https://doi.org/10.1016/J.BIOS.2011.03.039
116. H. Dai, W. Lü, X. Zuo, Q. Zhu, C. Pan, X. Niu, J. Liu, H. Chen, & X. Chen, A novel biosensor based on boronic acid functionalized metal-organic frameworks for the determination of hydrogen peroxide released from living cells. Biosensors and Bioelectronics, 95 (2017) 131–137. https://doi.org/10.1016/J.BIOS.2017.04.021
117. L. Ruiyi, X. Qianfang, L. Zaijun, S. Xiulan, & L. Junkang, Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene–gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition. Biosensors and Bioelectronics, 44 (2013) 235–240. https://doi.org/10.1016/J.BIOS.2013.01.007
118. R. Zhang & W. Chen, Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosensors and Bioelectronics, 89 (2017) 249–268. https://doi.org/10.1016/J.BIOS.2016.01.080
119. L. Peng, S. Dong, W. Wei, X. Yuan, & T. Huang, Synthesis of reticulated hollow spheres structure NiCo2S4 and its application in organophosphate pesticides biosensor. Biosensors and Bioelectronics, 92 (2017) 563–569. https://doi.org/10.1016/J.BIOS.2016.10.059
120. N. Chauhan, J. Narang, & C. S. Pundir, Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosensors and Bioelectronics, 29 (2011) 82–88. https://doi.org/10.1016/J.BIOS.2011.07.070
121. H. Dzudzevic Cancar, S. Soylemez, Y. Akpinar, M. Kesik, S. Göker, G. Gunbas, M. Volkan, & L. Toppare, A Novel Acetylcholinesterase Biosensor: Core–Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides. ACS Applied Materials & Interfaces, 8 (2016) 8058–8067. https://doi.org/10.1021/acsami.5b12383
122. G. Yu, W. Wu, Q. Zhao, X. Wei, & Q. Lu, Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosensors and Bioelectronics, 68 (2015) 288–294. https://doi.org/10.1016/J.BIOS.2015.01.005
123. H. Zhao, X. Ji, B. Wang, N. Wang, X. Li, R. Ni, & J. Ren, An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosensors and Bioelectronics, 65 (2015) 23–30. https://doi.org/10.1016/J.BIOS.2014.10.007
124. Y. Qian, I. A. Khan, & D. Zhao, Electrocatalysts Derived from Metal-Organic Frameworks for Oxygen Reduction and Evolution Reactions in Aqueous Media. Small, 13 (2017) 1701143. https://doi.org/10.1002/smll.201701143
125. I. Hod, P. Deria, W. Bury, J. E. Mondloch, C.-W. Kung, M. So, M. D. Sampson, A. W. Peters, C. P. Kubiak, O. K. Farha, & J. T. Hupp, A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nature Communications, 6 (2015) 8304. https://doi.org/10.1038/ncomms9304
126. W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, & S. K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 46 (2017) 3242–3285. https://doi.org/10.1039/C6CS00930A
127. M.-X. Wu & Y.-W. Yang, Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Advanced Materials, 29 (2017) 1606134. https://doi.org/10.1002/adma.201606134
128. M. Yabushita, P. Li, V. Bernales, H. Kobayashi, A. Fukuoka, L. Gagliardi, O. K. Farha, & A. Katz, Unprecedented selectivity in molecular recognition of carbohydrates by a metal–organic framework. Chemical Communications, 52 (2016) 7094–7097. https://doi.org/10.1039/C6CC03266D
129. F. Zheng, Z. Yin, H. Xia, G. Bai, & Y. Zhang, Porous MnO@C nanocomposite derived from metal-organic frameworks as anode materials for long-life lithium-ion batteries. Chemical Engineering Journal, 327 (2017) 474–480. https://doi.org/10.1016/J.CEJ.2017.06.097
130. G. K. H. Shimizu, J. M. Taylor, & S. Kim, Proton conduction with metal-organic frameworks. Science, 341 (2013) 354–355. https://doi.org/10.1126/science.1239872
131. N. S. Lopa, M. M. Rahman, F. Ahmed, S. Chandra Sutradhar, T. Ryu, & W. Kim, A base-stable metal-organic framework for sensitive and non-enzymatic electrochemical detection of hydrogen peroxide. Electrochimica Acta, 274 (2018) 49–56. https://doi.org/10.1016/J.ELECTACTA.2018.03.148
132. D. Zhang, J. Zhang, R. Zhang, H. Shi, Y. Guo, X. Guo, S. Li, & B. Yuan, 3D porous metal-organic framework as an efficient electrocatalyst for nonenzymatic sensing application. Talanta, 144 (2015) 1176–1181. https://doi.org/10.1016/J.TALANTA.2015.07.091
133. Y. Shu, Y. Yan, J. Chen, Q. Xu, H. Pang, & X. Hu, Ni and NiO Nanoparticles Decorated Metal–Organic Framework Nanosheets: Facile Synthesis and High-Performance Nonenzymatic Glucose Detection in Human Serum. ACS Applied Materials & Interfaces, 9 (2017) 22342–22349. https://doi.org/10.1021/acsami.7b07501
134. L. Yang, C. Xu, W. Ye, & W. Liu, An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode. Sensors and Actuators B: Chemical, 215 (2015) 489–496. https://doi.org/10.1016/J.SNB.2015.03.104
135. C. Li, T. Zhang, J. Zhao, H. Liu, B. Zheng, Y. Gu, X. Yan, Y. Li, N. Lu, Z. Zhang, & G. Feng, Boosted Sensor Performance by Surface Modification of Bifunctional rht -Type Metal–Organic Framework with Nanosized Electrochemically Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 9 (2017) 2984–2994. https://doi.org/10.1021/acsami.6b13788
136. D. Zhang, J. Zhang, H. Shi, X. Guo, Y. Guo, R. Zhang, & B. Yuan, Redox-active microsized metal-organic framework for efficient nonenzymatic H2O2 sensing. Sensors and Actuators B: Chemical, 221 (2015) 224–229. https://doi.org/10.1016/J.SNB.2015.06.079
137. J. Yang, F. Zhao, & B. Zeng, One-step synthesis of a copper-based metal–organic framework–graphene nanocomposite with enhanced electrocatalytic activity. RSC Advances, 5 (2015) 22060–22065. https://doi.org/10.1039/C4RA16950F
138. B. Yuan, R. Zhang, X. Jiao, J. Li, H. Shi, & D. Zhang, Amperometric determination of reduced glutathione with a new Co-based metal-organic coordination polymer modified electrode. Electrochemistry Communications, 40 (2014) 92–95. https://doi.org/10.1016/J.ELECOM.2014.01.006
139. Z. Peng, Z. Jiang, X. Huang, & Y. Li, A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal–organic framework composite modified glassy carbon electrode. RSC Advances, 6 (2016) 13742–13748. https://doi.org/10.1039/C5RA25251B
140. H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Tadjarodi, & A. R. Fakhari, A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosensors and Bioelectronics, 42 (2013) 426–429. https://doi.org/10.1016/J.BIOS.2012.09.062
141. M. M. Rahman, A. J. S. Ahammad, J.-H. Jin, S. J. Ahn, J.-J. Lee, M. M. Rahman, A. J. S. Ahammad, J.-H. Jin, S. J. Ahn, & J.-J. Lee, A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides. Sensors, 10 (2010) 4855–4886. https://doi.org/10.3390/s100504855
142. T. D. Thanh, J. Balamurugan, S. H. Lee, N. H. Kim, & J. H. Lee, Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosensors and Bioelectronics, 81 (2016) 259–267. https://doi.org/10.1016/J.BIOS.2016.02.070
143. S. Park, H. Boo, & T. D. Chung, Electrochemical non-enzymatic glucose sensors (2006). https://doi.org/10.1016/j.aca.2005.05.080
144. J. Zhang, M. Liu, T. Yang, K. Yang, & H. Wang, A novel magnetic biochar from sewage sludge: synthesis and its application for the removal of malachite green from wastewater. Water Science and Technology, 74 (2016) 1971–1979. https://doi.org/10.2166/wst.2016.386
145. R. Yuan, H. Li, X. Yin, J. Lu, & L. Zhang, 3D CuO nanosheet wrapped nanofilm grown on Cu foil for high-performance non-enzymatic glucose biosensor electrode. Talanta, 174 (2017) 514–520. https://doi.org/10.1016/J.TALANTA.2017.06.030
146. B. Yuan, C. Xu, D. Deng, Y. Xing, L. Liu, H. Pang, & D. Zhang, Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochimica Acta, 88 (2013) 708–712. https://doi.org/10.1016/J.ELECTACTA.2012.10.102
147. D.-J. Lee, Q. Li, H. Kim, & K. Lee, Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique. Microporous and Mesoporous Materials, 163 (2012) 169–177. https://doi.org/10.1016/J.MICROMESO.2012.07.008
148. Y. Song, C. Zhu, H. Li, D. Du, & Y. Lin, A nonenzymatic electrochemical glucose sensor based on mesoporous Au/Pt nanodendrites. RSC Advances, 5 (2015) 82617–82622. https://doi.org/10.1039/C5RA16953D
149. B. Valeur & I. Leray, Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 205 (2000) 3–40. https://doi.org/10.1016/S0010-8545(00)00246-0
150. A. P. de Silva, T. S. Moody, & G. D. Wright, Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. The Analyst, 134 (2009) 2385. https://doi.org/10.1039/b912527m
151. H. J. Carlson & R. E. Campbell, Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging. Current Opinion in Biotechnology, 20 (2009) 19–27. https://doi.org/10.1016/J.COPBIO.2009.01.003
152. * and Jong Seung Kim† & D. T. Quang‡, Calixarene-Derived Fluorescent Probes. (2007). https://doi.org/10.1021/CR068046J
153. C. Lodeiro & F. Pina, Luminescent and chromogenic molecular probes based on polyamines and related compounds. Coordination Chemistry Reviews, 253 (2009) 1353–1383. https://doi.org/10.1016/J.CCR.2008.09.008
154. J. Wu, W. Liu, J. Ge, H. Zhang, & P. Wang, New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews, 40 (2011) 3483. https://doi.org/10.1039/c0cs00224k
155. K. Kiyose, S. Aizawa, E. Sasaki, H. Kojima, K. Hanaoka, T. Terai, Y. Urano, & T. Nagano, Molecular Design Strategies for Near-Infrared Ratiometric Fluorescent Probes Based on the Unique Spectral Properties of Aminocyanines. Chemistry – A European Journal, 15 (2009) 9191–9200. https://doi.org/10.1002/chem.200900035
156. M. Kasha, Collisional Perturbation of Spin‐Orbital Coupling and the Mechanism of Fluorescence Quenching. A Visual Demonstration of the Perturbation. The Journal of Chemical Physics, 20 (1952) 71–74. https://doi.org/10.1063/1.1700199
157. M. A. El-Sayed, Triplet state. Its radiative and nonradiative properties. Accounts of Chemical Research, 1 (1968) 8–16. https://doi.org/10.1021/ar50001a002
158. P. Svejda, R. R. Anderson, & A. H. Maki, Optical detection of magnetic resonance measurements of the effects of pH on the triplet states of benzimidazole and purine. Journal of the American Chemical Society, 100 (1978) 7131–7138. https://doi.org/10.1021/ja00491a001
159. H. Masuhara, H. Shioyama, T. Saito, K. Hamada, S. Yasoshima, & N. Mataga, Fluorescence quenching mechanism of aromatic hydrocarbons by closed-shell heavy metal ions in aqueous and organic solutions. The Journal of Physical Chemistry, 88 (1984) 5868–5873. https://doi.org/10.1021/j150668a026
160. † Charlotte N. Burress, † Martha I. Bodine, ‡ Oussama Elbjeirami, † Joseph H. Reibenspies, *,‡ and Mohammad A. Omary, & † François P. Gabbaï*, Enhancement of External Spin−Orbit Coupling Effects Caused by Metal−Metal Cooperativity. (2007). https://doi.org/10.1021/IC061998N
161. H. N. Kim, W. X. Ren, J. S. Kim, & J. Yoon, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev., 41 (2012) 3210–3244. https://doi.org/10.1039/C1CS15245A
162. S. Lee, B. A. Rao, & Y.-A. Son, Colorimetric and “turn-on” fluorescent determination of Hg2+ ions based on a rhodamine–pyridine derivative. Sensors and Actuators B: Chemical, 196 (2014) 388–397. https://doi.org/10.1016/j.snb.2014.02.025
163. D.-H. Kim, J. Seong, H. Lee, & K.-H. Lee, Ratiometric fluorescence detection of Hg(II) in aqueous solutions at physiological pH and live cells with a chemosensor based on tyrosine. Sensors and Actuators B: Chemical, 196 (2014) 421–428. https://doi.org/10.1016/j.snb.2014.02.029
164. H. Zhu, Y. Lin, G. Wang, Y. Chen, X. Lin, & N. Fu, A coordination driven deaggregation approach toward Hg2+-specific chemosensors based on thioether linked squaraine-aniline dyads. Sensors and Actuators B: Chemical, 198 (2014) 201–209. https://doi.org/10.1016/j.snb.2014.03.021
165. C. Wang, D. Zhang, X. Huang, P. Ding, Z. Wang, Y. Zhao, & Y. Ye, A ratiometric fluorescent chemosensor for Hg2+ based on FRET and its application in living cells. Sensors and Actuators B: Chemical, 198 (2014) 33–40. https://doi.org/10.1016/j.snb.2014.03.032
166. A. Han, X. Liu, G. D. Prestwich, & L. Zang, Fluorescent sensor for Hg2+ detection in aqueous solution. Sensors and Actuators B: Chemical, 198 (2014) 274–277. https://doi.org/10.1016/j.snb.2014.03.033
167. L. Xu, S. Wang, Y. Lv, Y.-A. Son, & D. Cao, A highly selective and sensitive photoswitchable fluorescent probe for Hg2+ based on bisthienylethene–rhodamine 6G dyad and for live cells imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128 (2014) 567–574. https://doi.org/10.1016/j.saa.2014.03.001
168. X. Li, C. Zheng, A. Yuan, L. Yang, H. Wang, & H. Wang, A highly selective ratiometric fluorescent sensor for Hg 2+ based on 1,8-naphthalimide. Coloration Technology, 130 (2014) 236–242. https://doi.org/10.1111/cote.12081
169. R. Kavitha & T. Stalin, A highly selective chemosensor for colorimetric detection of Hg2+ and fluorescence detection of pH changes in aqueous solution. Journal of Luminescence, 149 (2014) 12–18. https://doi.org/10.1016/j.jlumin.2013.11.044
170. M. Wang, F.-Y. Yan, Y. Zou, N. Yang, L. Chen, & L.-G. Chen, A rhodamine derivative as selective fluorescent and colorimetric chemosensor for mercury (II) in buffer solution, test strips and living cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 123 (2014) 216–223. https://doi.org/10.1016/j.saa.2013.12.079
171. S. Liu, Z. Shi, W. Xu, H. Yang, N. Xi, X. Liu, Q. Zhao, & W. Huang, A class of wavelength-tunable near-infrared aza-BODIPY dyes and their application for sensing mercury ion. Dyes and Pigments, 103 (2014) 145–153. https://doi.org/10.1016/j.dyepig.2013.12.004
172. D. Udhayakumari & S. Velmathi, Colorimetric chemosensor for multi-signaling detection of metal ions using pyrrole based Schiff bases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122 (2014) 428–435. https://doi.org/10.1016/j.saa.2013.11.083
173. N. Wanichacheva, O. Hanmeng, S. Kraithong, & K. Sukrat, Dual optical Hg2+-selective sensing through FRET system of fluorescein and rhodamine B fluorophores. Journal of Photochemistry and Photobiology A: Chemistry, 278 (2014) 75–81. https://doi.org/10.1016/J.JPHOTOCHEM.2014.01.003
174. N. Wanichacheva, P. Praikaew, T. Suwanich, & K. Sukrat, “Naked-eye” colorimetric and “turn-on” fluorometric chemosensors for reversible Hg2+ detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118 (2014) 908–914. https://doi.org/10.1016/j.saa.2013.09.140
175. R. Puingam, A. Chindaduang, G. Tumcharern, D. S.-T. Phromyothin, & S. Pratontep, Theoretical Investigation of Rhodamine6G Derivative as Fluorescence Metal Ion Sensor. Integrated Ferroelectrics, 155 (2014) 126–133. https://doi.org/10.1080/10584587.2014.905380
176. X. Wang, J. Zhao, C. Guo, M. Pei, & G. Zhang, Simple hydrazide-based fluorescent sensors for highly sensitive and selective optical signaling of Cu2+ and Hg2+ in aqueous solution. Sensors and Actuators B: Chemical, 193 (2014) 157–165. https://doi.org/10.1016/j.snb.2013.11.111
177. Junhua Jia, Xiang Lin, Alexander J. Blake, * Neil R. Champness, * Peter Hubberstey, Limin Shao, Gavin Walker, and Claire Wilson, & M. Schröder*, Triggered Ligand Release Coupled to Framework Rearrangement:  Generating Crystalline Porous Coordination Materials. (2006). https://doi.org/10.1021/IC061095U
178. L. Hao, H. Song, Y. Su, & Y. Lv, A cubic luminescent graphene oxide functionalized Zn-based metal-organic framework composite for fast and highly selective detection of Cu 2+ ions in aqueous solution. The Analyst, 139 (2014) 764–770. https://doi.org/10.1039/C3AN01943H
179. J. Zhao, Y.-N. Wang, W.-W. Dong, Y.-P. Wu, D.-S. Li, & Q.-C. Zhang, A Robust Luminescent Tb(III)-MOF with Lewis Basic Pyridyl Sites for the Highly Sensitive Detection of Metal Ions and Small Molecules. Inorganic Chemistry, 55 (2016) 3265–3271. https://doi.org/10.1021/acs.inorgchem.5b02294
180. X. Lin, G. Gao, L. Zheng, Y. Chi, & G. Chen, Encapsulation of Strongly Fluorescent Carbon Quantum Dots in Metal–Organic Frameworks for Enhancing Chemical Sensing. Analytical Chemistry, 86 (2014) 1223–1228. https://doi.org/10.1021/ac403536a
181. P.-Y. Du, W. Gu, & X. Liu, Multifunctional Three-Dimensional Europium Metal–Organic Framework for Luminescence Sensing of Benzaldehyde and Cu 2+ and Selective Capture of Dye Molecules. Inorganic Chemistry, 55 (2016) 7826–7828. https://doi.org/10.1021/acs.inorgchem.6b01385
182. J.-M. Zhou, W. Shi, H.-M. Li, H. Li, & P. Cheng, Experimental Studies and Mechanism Analysis of High-Sensitivity Luminescent Sensing of Pollutional Small Molecules and Ions in Ln 4 O 4 Cluster Based Microporous Metal–Organic Frameworks. The Journal of Physical Chemistry C, 118 (2014) 416–426. https://doi.org/10.1021/jp4097502
183. Y. Xiao, Y. Cui, Q. Zheng, S. Xiang, G. Qian, & B. Chen, A microporous luminescent metal–organic framework for highly selective and sensitive sensing of Cu2+ in aqueous solution. Chemical Communications, 46 (2010) 5503. https://doi.org/10.1039/c0cc00148a
184. J. Wang, M. Jiang, L. Yan, R. Peng, M. Huangfu, X. Guo, Y. Li, & P. Wu, Multifunctional Luminescent Eu(III)-Based Metal–Organic Framework for Sensing Methanol and Detection and Adsorption of Fe(III) Ions in Aqueous Solution. Inorganic Chemistry, 55 (2016) 12660–12668. https://doi.org/10.1021/acs.inorgchem.6b01815
185. S.-S. Zhao, J. Yang, Y.-Y. Liu, & J.-F. Ma, Fluorescent Aromatic Tag-Functionalized MOFs for Highly Selective Sensing of Metal Ions and Small Organic Molecules. Inorganic Chemistry, 55 (2016) 2261–2273. https://doi.org/10.1021/acs.inorgchem.5b02666
186. J.-N. Hao & B. Yan, Amino-decorated lanthanide( iii ) organic extended frameworks for multi-color luminescence and fluorescence sensing. J. Mater. Chem. C, 2 (2014) 6758–6764. https://doi.org/10.1039/C4TC00962B
187. P. Yi, H. Huang, Y. Peng, D. Liu, & C. Zhong, A series of europium-based metal organic frameworks with tuned intrinsic luminescence properties and detection capacities. RSC Advances, 6 (2016) 111934–111941. https://doi.org/10.1039/C6RA23263A
188. P. Kukkar, D. Kukkar, H. Sammi, K. Singh, M. Rawat, P. Singh, S. Basu, & K.-H. Kim, A facile means for the improvement of sensing properties of metal-organic frameworks through control on the key synthesis variables. Sensors and Actuators B: Chemical, 271 (2018) 157–163. https://doi.org/10.1016/J.SNB.2018.05.118
189. H. Xu, F. Liu, Y. Cui, B. Chen, & G. Qian, A luminescent nanoscale metal–organic framework for sensing of nitroaromatic explosives. Chemical Communications, 47 (2011) 3153. https://doi.org/10.1039/c0cc05166g
190. C. Zhang, L. Sun, Y. Yan, J. Li, X. Song, Y. Liu, & Z. Liang, A luminescent cadmium metal–organic framework for sensing of nitroaromatic explosives. Dalton Transactions, 44 (2015) 230–236. https://doi.org/10.1039/C4DT02227K
191. S. Khatua, S. Goswami, S. Biswas, K. Tomar, H. S. Jena, & S. Konar, Stable Multiresponsive Luminescent MOF for Colorimetric Detection of Small Molecules in Selective and Reversible Manner. Chemistry of Materials, 27 (2015) 5349–5360. https://doi.org/10.1021/acs.chemmater.5b01773
192. W. Xie, S.-R. Zhang, D.-Y. Du, J.-S. Qin, S.-J. Bao, J. Li, Z.-M. Su, W.-W. He, Q. Fu, & Y.-Q. Lan, Stable Luminescent Metal–Organic Frameworks as Dual-Functional Materials To Encapsulate Ln 3+ Ions for White-Light Emission and To Detect Nitroaromatic Explosives. Inorganic Chemistry, 54 (2015) 3290–3296. https://doi.org/10.1021/ic5029383
193. R. Kaur, A. K. Paul, & A. Deep, Nanocomposite of europium organic framework and quantum dots for highly sensitive chemosensing of trinitrotoluene. Forensic Science International, 242 (2014) 88–93. https://doi.org/10.1016/J.FORSCIINT.2014.06.028
194. N. Campagnol, E. R. Souza, D. E. De Vos, K. Binnemans, & J. Fransaer, Luminescent terbium-containing metal–organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chem. Commun., 50 (2014) 12545–12547. https://doi.org/10.1039/C4CC05742B
195. K. Vellingiri, D. W. Boukhvalov, S. K. Pandey, A. Deep, & K.-H. Kim, Luminescent metal-organic frameworks for the detection of nitrobenzene in aqueous media. Sensors and Actuators B: Chemical, 245 (2017) 305–313. https://doi.org/10.1016/J.SNB.2017.01.126
196. P. Kumar, K.-H. Kim, V. Bansal, A. K. Paul, & A. Deep, Practical utilization of nanocrystal metal organic framework biosensor for parathion specific recognition. Microchemical Journal, 128 (2016) 102–107. https://doi.org/10.1016/J.MICROC.2016.04.008
197. L.-G. Qiu, Z.-Q. Li, Y. Wu, W. Wang, T. Xu, & X. Jiang, Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications, 0 (2008) 3642. https://doi.org/10.1039/b804126a
198. J. Tao, X. Wang, T. Sun, H. Cai, Y. Wang, T. Lin, D. Fu, L. L. Y. Ting, Y. Gu, & D. Zhao, Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity. Scientific Reports, 7 (2017) 41640. https://doi.org/10.1038/srep41640
199. K. Vellingiri, A. Deep, K.-H. Kim, D. W. Boukhvalov, P. Kumar, & Q. Yao, The sensitive detection of formaldehyde in aqueous media using zirconium-based metal organic frameworks. Sensors and Actuators B: Chemical, 241 (2017) 938–948. https://doi.org/10.1016/J.SNB.2016.11.017
200. C. A. Kent, B. P. Mehl, L. Ma, J. M. Papanikolas, T. J. Meyer, & W. Lin, Energy Transfer Dynamics in Metal−Organic Frameworks. Journal of the American Chemical Society, 132 (2010) 12767–12769. https://doi.org/10.1021/ja102804s
201. Z. Guo, H. Xu, S. Su, J. Cai, S. Dang, S. Xiang, G. Qian, H. Zhang, M. O’Keeffe, & B. Chen, A robust near infrared luminescent ytterbium metal–organic framework for sensing of small molecules. Chemical Communications, 47 (2011) 5551. https://doi.org/10.1039/c1cc10897b
202. C. Li, J. Huang, H. Zhu, L. Liu, Y. Feng, G. Hu, & X. Yu, Dual-emitting fluorescence of Eu/Zr-MOF for ratiometric sensing formaldehyde. Sensors and Actuators B: Chemical, 253 (2017) 275–282. https://doi.org/10.1016/J.SNB.2017.06.064
203. L. Wang, G. Fan, X. Xu, D. Chen, L. Wang, W. Shi, & P. Cheng, Detection of polychlorinated benzenes (persistent organic pollutants) by a luminescent sensor based on a lanthanide metal–organic framework. Journal of Materials Chemistry A, 5 (2017) 5541–5549. https://doi.org/10.1039/C7TA00256D
204. F.-N. Shi, M. L. Pinto, D. Ananias, & J. Rocha, Structure, topology, gas adsorption and photoluminescence of multifunctional porous RE3+-furan-2,5-dicarboxylate metal organic frameworks. Microporous and Mesoporous Materials, 188 (2014) 172–181. https://doi.org/10.1016/J.MICROMESO.2014.01.012
205. Z. Dou, J. Yu, H. Xu, Y. Cui, Y. Yang, & G. Qian, Preparation and thiols sensing of luminescent metal–organic framework films functionalized with lanthanide ions. Microporous and Mesoporous Materials, 179 (2013) 198–204. https://doi.org/10.1016/J.MICROMESO.2013.06.008
206. N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, & M. Dincă, Selective Turn-On Ammonia Sensing Enabled by High-Temperature Fluorescence in Metal–Organic Frameworks with Open Metal Sites. Journal of the American Chemical Society, 135 (2013) 13326–13329. https://doi.org/10.1021/ja407778a
207. P. Wu, J. Wang, C. He, X. Zhang, Y. Wang, T. Liu, & C. Duan, Luminescent Metal-Organic Frameworks for Selectively Sensing Nitric Oxide in an Aqueous Solution and in Living Cells. Advanced Functional Materials, 22 (2012) 1698–1703. https://doi.org/10.1002/adfm.201102157
208. X.-Y. Xu & B. Yan, An efficient and sensitive fluorescent pH sensor based on amino functional metal–organic frameworks in aqueous environment. Dalton Transactions, 45 (2016) 7078–7084. https://doi.org/10.1039/C6DT00361C
209. Y.-J. Li, Y.-L. Wang, & Q.-Y. Liu, The Highly Connected MOFs Constructed from Nonanuclear and Trinuclear Lanthanide-Carboxylate Clusters: Selective Gas Adsorption and Luminescent pH Sensing. Inorganic Chemistry, 56 (2017) 2159–2164. https://doi.org/10.1021/acs.inorgchem.6b02811
210. X. Lian, D. Zhao, Y. Cui, Y. Yang, & G. Qian, A near infrared luminescent metal–organic framework for temperature sensing in the physiological range. Chemical Communications, 51 (2015) 17676–17679. https://doi.org/10.1039/C5CC07532G
211. R. H. Hashemi, William G. Bradley, & Christopher J. Lisanti, MRI the basics. Baltimore: Williams and Wilkins. (1997)
212. H. Bin Na, I. C. Song, & T. Hyeon, Inorganic Nanoparticles for MRI Contrast Agents. Advanced Materials, 21 (2009) 2133–2148. https://doi.org/10.1002/adma.200802366
213. R. Nishiyabu, N. Hashimoto, T. Cho, K. Watanabe, T. Yasunaga, A. Endo, K. Kaneko, T. Niidome, M. Murata, C. Adachi, Y. Katayama, M. Hashizume, & N. Kimizuka, Nanoparticles of Adaptive Supramolecular Networks Self-Assembled from Nucleotides and Lanthanide Ions. Journal of the American Chemical Society, 131 (2009) 2151–2158. https://doi.org/10.1021/ja8058843
214. M. D. Rowe, C.-C. Chang, D. H. Thamm, S. L. Kraft, J. F. Harmon, A. P. Vogt, B. S. Sumerlin, & S. G. Boyes, Tuning the Magnetic Resonance Imaging Properties of Positive Contrast Agent Nanoparticles by Surface Modification with RAFT Polymers. Langmuir, 25 (2009) 9487–9499. https://doi.org/10.1021/la900730b
215. † Young-wook Jun, ‡ Yong-Min Huh, † Jin-sil Choi, † Jae-Hyun Lee, ‡ Ho-Taek Song, ‡ Sungjun Kim,‡ Sungjun Kim, § Sarah Yoon, § Kyung-Sup Kim, ⊥ Jeon-Soo Shin, *,‡ and Jin-Suck Suh, & † Jinwoo Cheon*, Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging. (2005). https://doi.org/10.1021/JA0422155
216. J.-H. Lee, Y.-M. Huh, Y. Jun, J. Seo, J. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh, & J. Cheon, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine, 13 (2007) 95–99. https://doi.org/10.1038/nm1467
217. J. Lee & A. Koretsky, Manganese Enhanced Magnetic Resonance Imaging. Current Pharmaceutical Biotechnology, 5 (2004) 529–537. https://doi.org/10.2174/1389201043376607
218. K. Brindle, New approaches for imaging tumour responses to treatment. Nature Reviews Cancer, 8 (2008) 94–107. https://doi.org/10.1038/nrc2289
219. D. P. Cormode, E. Roessl, A. Thran, T. Skajaa, R. E. Gordon, J.-P. Schlomka, V. Fuster, E. A. Fisher, W. J. M. Mulder, R. Proksa, & Z. A. Fayad, Atherosclerotic Plaque Composition: Analysis with Multicolor CT and Targeted Gold Nanoparticles. Radiology, 256 (2010) 774–782. https://doi.org/10.1148/radiol.10092473
220. D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, & G. M. Lanza, Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging. Angewandte Chemie International Edition, 49 (2010) 9635–9639. https://doi.org/10.1002/anie.201005657
221. J. P. Schlomka, E. Roessl, R. Dorscheid, S. Dill, G. Martens, T. Istel, C. Bäumer, C. Herrmann, R. Steadman, G. Zeitler, A. Livne, & R. Proksa, Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Physics in Medicine and Biology, 53 (2008) 4031–4047. https://doi.org/10.1088/0031-9155/53/15/002
222. E. Roessl, B. Brendel, K.-J. Engel, J.-P. Schlomka, A. Thran, & R. Proksa, Sensitivity of Photon-Counting Based ${\rm K}$-Edge Imaging in X-ray Computed Tomography. IEEE Transactions on Medical Imaging, 30 (2011) 1678–1690. https://doi.org/10.1109/TMI.2011.2142188
223. W. J. Song, Intracellular DNA and microRNA sensing based on metal-organic framework nanosheets with enzyme-free signal amplification. Talanta, 170 (2017) 74–80. https://doi.org/10.1016/j.talanta.2017.02.040
224. J.-C. Tan, P. J. Saines, E. G. Bithell, & A. K. Cheetham, Hybrid Nanosheets of an Inorganic–Organic Framework Material: Facile Synthesis, Structure, and Elastic Properties. ACS Nano, 6 (2012) 615–621. https://doi.org/10.1021/nn204054k
225. H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, & O. M. Yaghi, Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 136 (2014) 4369–4381. https://doi.org/10.1021/ja500330a
226. Y. Wu, J. Han, P. Xue, R. Xu, & Y. Kang, Nano metal–organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale, 7 (2015) 1753–1759. https://doi.org/10.1039/C4NR05447D
227. C. Tian, L. Zhu, F. Lin, & S. G. Boyes, Poly(acrylic acid) Bridged Gadolinium Metal–Organic Framework–Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging. ACS Applied Materials & Interfaces, 7 (2015) 17765–17775. https://doi.org/10.1021/acsami.5b03998
228. Y.-M. Wang, W. Liu, & X.-B. Yin, Self-Limiting Growth Nanoscale Coordination Polymers for Fluorescence and Magnetic Resonance Dual-Modality Imaging. Advanced Functional Materials, 26 (2016) 8463–8470. https://doi.org/10.1002/adfm.201602925
229. V. M. Suresh, S. Chatterjee, R. Modak, V. Tiwari, A. B. Patel, T. K. Kundu, & T. K. Maji, Oligo( p -phenyleneethynylene)-Derived Porous Luminescent Nanoscale Coordination Polymer of Gd III : Bimodal Imaging and Nitroaromatic Sensing. The Journal of Physical Chemistry C, 118 (2014) 12241–12249. https://doi.org/10.1021/jp501030h
230. D. Liu, C. He, C. Poon, & W. Lin, Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery. J. Mater. Chem. B, 2 (2014) 8249–8255. https://doi.org/10.1039/C4TB00751D
231. J. Fang, Y. Yang, W. Xiao, B. Zheng, Y.-B. Lv, X.-L. Liu, & J. Ding, Extremely low frequency alternating magnetic field–triggered and MRI–traced drug delivery by optimized magnetic zeolitic imidazolate framework-90 nanoparticles. Nanoscale, 8 (2016) 3259–3263. https://doi.org/10.1039/C5NR08086J
232. W. Morris, C. J. Doonan, H. Furukawa, R. Banerjee, & O. M. Yaghi, Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 130 (2008) 12626–12627. https://doi.org/10.1021/ja805222x
233. T. Isobe, Y. Arai, S. Yanagida, S. Matsushita, & A. Nakajima, Solvothermal preparation and gas permeability of an IRMOF-3 membrane. Microporous and Mesoporous Materials, 241 (2017) 218–225. https://doi.org/10.1016/J.MICROMESO.2016.12.031
234. A. R. Chowdhuri, T. Singh, S. K. Ghosh, & S. K. Sahu, Carbon Dots Embedded Magnetic Nanoparticles @Chitosan @Metal Organic Framework as a Nanoprobe for pH Sensitive Targeted Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 8 (2016) 16573–16583. https://doi.org/10.1021/acsami.6b03988
235. K. E. deKrafft, W. S. Boyle, L. M. Burk, O. Z. Zhou, & W. Lin, Zr- and Hf-based nanoscale metal–organic frameworks as contrast agents for computed tomography. Journal of Materials Chemistry, 22 (2012) 18139. https://doi.org/10.1039/c2jm32299d
236. C. Wang, O. Volotskova, K. Lu, M. Ahmad, C. Sun, L. Xing, & W. Lin, Synergistic Assembly of Heavy Metal Clusters and Luminescent Organic Bridging Ligands in Metal–Organic Frameworks for Highly Efficient X-ray Scintillation. Journal of the American Chemical Society, 136 (2014) 6171–6174. https://doi.org/10.1021/ja500671h