Significance of Metal Organic Frameworks Consisting of Porous Materials


Significance of Metal Organic Frameworks Consisting of Porous Materials

R. Kumar, A. Arul Marcel Moshi, S.R. Sundara Bharathi, S. Sivaganesan, C. Dhanasekaran, P. Senthamaraikannan, S.S. Saravanakumar, Anish Khan

Metal-organic framework materials are adjustable and highly porous materials and they are sensitive to air and resistant to structural collapse upon heating. MOFs are of often crystalline. Over the past 50 decades, porous materials have been focused with substantial attention. The attracting feature of MOFs is their porosity that allows the diffusion of guest molecules into the bulk structure. MOFs are one among the most extremely focused material types, which are formed by combining inorganic units with organic units through strong bonds (reticular synthesis). The strong bonds between the inorganic units (metal ions or clusters) and the organic linkers (building units) offer an unparalled chemical diversity and pore environments to the entire structure. The inherent structural characteristics and the flexibility of MOFs with the geometry of their constituents, size and functionality have led to the extensive study on more than twenty thousand different forms of MOFs. These materials have pulled towards a great deal of attention in the past ten years; and the increase in the number of papers published in this area during recent years is remarkable. Metal Organic Frameworks are typically structured in such a way that the porosity is more than 50% of their entire crystal volume. The surface area values of such Metal Organic Frameworks normally range between 1000 and 10,000 m2/g, which is more than the values of regular porous materials like carbons and zeolites. Due to the unique chemical and structural properties, MOFs are utilized in various kinds of real time applications such as separation of gases, storage of gases, catalysis, drug delivery, etc.

Metal Organic Framework (MOF), Zeolites, Activated Carbon, Porous Materials, Organic Linkers, Gas Separation and Drug Delivery

Published online 10/5/2019, 18 pages

Citation: R. Kumar, A. Arul Marcel Moshi, S.R. Sundara Bharathi, S. Sivaganesan, C. Dhanasekaran, P. Senthamaraikannan, S.S. Saravanakumar, Anish Khan, Significance of Metal Organic Frameworks Consisting of Porous Materials, Materials Research Foundations, Vol. 58, pp 290-307, 2019


Part of the book on Metal-Organic Framework Composites

[1] O.M. Yaghi, M.O. Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature 423 (2003) 705-714.
[2] H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks, Chem. Rev. 112 (2012) 673-674.
[3] U. Mueller, M. Schubert, F.Teich, H. Puetter, K.S. Arndt, J. Pastre, Metal-organic frameworks-prospective industrial applications. J. Mater. Chem. 16 (2006) 626-636.
[4] M. Jacoby, Heading to market with MOFs, Chem. Eng. News 86 (2008) 13-16.
[5] H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Multiple functional groups of varying ratios in metal-organic frameworks, Science 327 (2010) 846-850.
[6] A. F. Wells, Structural Inorganic Chemistry (Oxford Univ. Press, New York, 1984).
[7] Y. Kinoshita, I. Matsubara, T. Higuchi, Y. Saito, The crystal structure of Bis(adiponitrilo)copper(I) nitrate, Bull. Chem. Soc. Jpn. 32 (1959) 1221–1226.
[8] O. M. Yaghi, H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, J. Am. Chem. Soc. 117 (1995) 10401–10402.
[9] M. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa, K. Seki, Three-dimensional framework with channelling cavities for small molecules: [M2(4,4′-bpy)3(NO3)4]·xH2O}n(M = Co, Ni, Zn), Angew. Chem. Int. Ed. Engl. 36 (1997) 1725–1727.
[10] H. Li, M. Eddaoudi, T. L. Groy, O. M. Yaghi, Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate), J. Am. Chem. Soc. 120 (1998) 8571–8572.
[11] H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402 (1999) 276-279.
[12] H.K. Chae, D.Y.S. Perez, J. Kim, Y.B. Go, M. Eddaoudi, A.J. Matzger, M.O. Keeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals, Nature 427 (2004) 523-527.
[13] H. Furukawa, K.E. Cordova, M. O’Keeffe, O. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341(2013) 974-986.
[14] Z.Y Gu, C.X. Yang, N. Chang, X.P. Yan, Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation, Acc. Chem. Res. 45 (2012) 734-745.
[15] J.R.Li, J.Sculley, H.C. Zhou, Metal-organic frameworks for separations.Chem. Rev. 112 (2012) 869-932.
[16] R.C. Bansal, M. Goyal, Activated Carbon Adsorption from Solutions, In Activated Carbon Adsorption,CRC Press (2005) 145-199.
[17] S. Ma, Gas adsorption applications of porous metal–organic frameworks. Pure Appl. Chem.81 (2009) 2235-2251.
[18] Y.F Zeng, X. Hu, F.C Liu, X.H.Bu, Azido-mediated systems showingdifferent magnetic behaviors,Chem. Soc. Rev.38 (2009) 469-480.
[19] M.D Allendorf, C.A.Bauer, R.K. Bhakta, R.J.THouk, Luminescent metal organic frameworks,Chem. Soc. Rev.38 (2009)1330-1352.
[20] J. Rouquerol, D. Avinr, H. Everett, C. Fairbridge, M. Haynes, N. Pernicone, J.D. F. Ramsay, K.S.W. Sing, K.K.Unger, Guidelines for the characterization of porous solids,Stud. Surf. Sci.Catal. 87 (1994) 1-9.
[21] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal–organic frameworks Chem. Soc. Rev. 38 (2009) 1477.
[22] S.M. Manocha, Porous carbons, Sadhana 28 (2003) 335-348.
[23] G. Ferey, Hybrid porous solids: past, present, future, Chem. Soc. Rev. 37 (2008) 191-214.
[24] P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M. Vallet-Regi, M.Sebban, F. Taulelle, G. Ferey, Flexible porous metal-organic frameworks for a controlled drug delivery, J. Am. Chem. Soc. 130 (2008) 6774-6780.
[25] Y.K. Park, S.B. Choi, H. Kim, K. Kim, B.H. Won, K. Choi, J.S. Choi, W.S. Ahn, N.Won, S. Kim, D.H. Jung, S.H. Choi, G.H. Kim, S.S. Cha, Y.H. Jhon, J.K. Yang, J. Kim, Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter,AngewChem. Int. Ed. Engl. 46 (2007) 8230-8233.
[26] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T.Siemieniewska, Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis, Pure Appl. Chem. 57 (1985) 603-619.
[27] S.R. Batten, S.M. Neville, D.R. Turner, Coordination polymers: design, analysisand application, Royal Society of Chemistry, Cambridge, (2009) 1-424.
[28] S. Ma, J. Eckert, P.M. Forster, J.W. Yoon, Y.K. Hwang, J.S. Chang, C.D. Collier,J.B. Parise, H.C. Zhou, Further investigation of the effect of framework catenation on hydrogen uptake in metal-organic frameworks, J. Am. Chem. Soc. 130 (2008) 15896-15902.
[29] W.E.Liss, W.H. Thrasher, G.F.Steinmetz, P. Chowdiah, A.Attari, Variability of natural gas composition in select major metropolitan areas of the united states, (1992) PB92–224617.
[30] S.H.Yeon, S.Osswald, Y.Gogotsi, J.P.Singer, J.M.Simmons, J.E.Fischer, M.A. Lillo-Ro´denas, A.L. Solano, Enhanced methane storage of chemically and physically activated carbide-derived carbon, J. Power Sourc. 191 (2009) 560-567.
[31] S. A.Jenekhe, X. L. Chen, Self-assembly of ordered microporous materials from rod-coil block copolymers, Science 283 (1999) 372-375.
[32] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizablenanoporous material[Cu3(TMA)2(H2O)3], Science 283(1999) 1148-1150.
[33] B. Chen, C. Liang, J. Yang, D.S. Contreras, Y.L. Clancy, E.B. Lobkovsky, O.M.Yaghi, S. Dai, Angew, A microporous metal-organic framework for gas-chromatographic separation of alkanes, Chem. Int. Ed. 45 (2006) 1390-1393.
[34] P.S. Bárcia, F. Zapata, J.A.C. Silva, A.E. Rodrigues, B. Chen, Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal−organic framework, J. Phys. Chem.111(2007) 6101–6103.
[35] Z. Bao, G. Chang, H. Xing, R. Krishna, Q. Ren, B. Chen, Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures,Energy Environ. Sci.9(2016) 3612–3641.
[36] K. Adil, Y. Belmabkhout, R.S. Pillai, A. Cadiau, P.M. Bhatt, A.H. Assen, G.Maurin, M. Eddaoudi, Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationshipp, Chem. Soc. Rev. 46 (2017) 3402–3430.
[37] Y. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Metal–organic frameworks as platforms for functional materials, Acc. Chem. Res. 49 (2016) 483– 493.
[38] B. Li, H.M. Wen, W. Zhou, B. Chen, Porous Metal–organic frameworks for gas storage and separation: what, how, and why?,J. Phys. Chem. Lett.,5(2014)3468-3479.
[39] A. Car, C. Stropnik, K.V. Peinemann, Hybrid membrane materials with different metal–organic frameworks (MOFs) for gas separation, Desalination, 200(2006)424-426.
[40] F.X.L.I. Xamena, A. Abad, A. Corma, H. Garcia, MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF, J. Catal.250(2007)294-298.
[41] K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J.U. Romo, H.K.Chae, M. O’keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeoliticimidazolate frameworks. Proc. Natl. Acad. Sci. 103(2006) 10186-10191.
[42] N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keefe and O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks, Science 300 (2003) 1127-1129.
[43] C. Prestipino, L Regli, J. G. Vitillo, F Bonino, A. Damin, C. Lamberti, A.Zecchina, P. L. Solari, K. O.Kongshaug, S. Bordiga, Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework:  Spectroscopic Characterization upon Activation and Interaction with Adsorbates, Chem. Mater. 18 (2006)1337-1346.
[44] M.E. Davis, Ordered porous materials for emerging applications,Nature 417 (2002) 813-821.
[45] A.K. Patra, A. Dutta, A. Bhaumik, Self-assembled mesoporousγ–Al203, spherical nanoparticles and their efficiency for the removal of arsenic from water, J. Hazard. Mater. (2012) 170-177.
[46] M. Hartmann, Ordered mesoporous materials for bioadsorption and biocatalysis, Chem. Mater. 17 (2005) 4577-4593.
[47] A. Taguchi, F. Schiith, Ordered mesoporous materials in catalysis Micropor. Mesopor. Mater. 77 (2005) 1-45.
[48] D.J. Tranchemontagne, K.S. Park, H. Furukawa, J. Eckert, C. B. Knobler, O. M Yaghi, Hydrogen storage in new metal-organic frameworks, J.Phy. Chem. C 776 (2012)13143-13151.
[49] A.Dutta, M. Pramanik, A. K. Patra, M. Nandi, H. Uyama, A.Bhaumik, Hybrid porous tin (IV) phosphonate: an efficient catalyst for adipic acid synthesis and a very good adsorbent for CO2 uptake, Chem. Commun. 48 (2012)6738-6740.
[50] M. Nandi, K. Okada, A. Dutta, A. Bhaumik, J. Maruyama, D.Derks, H.Uyama, , Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation, Chem. Commun. 48 (2012) 10283-10285.
[51] H.Liu,Z. Bi, X.-G. Sun, R. R. Unocic, M. P. Paranthaman, S.Dai, G. M. Brown, Mesoporous TiO2–B microspheres with superior rate performance for lithium ion batteries,Adv. Mater. 23 (2011) 3450-3454.
[52] H. Wu, S. Zhang, J.Zhang, G.Liu, J.Shi, L.Zhang, X.Cui, M. Ruan, Q.He, W.Bu, A hollow-core, magnetic, and mesoporous double-shell nanostructure: In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties, Adv. Fund. Mater. 21(2011)1850-1862.
[53] B.J. Scott, G. Wirnsberger, G.D. Stucky, Mesoporous and Mesostructured Materials for Optical Applications, Chem. Mater.13(2001)3140-3150.
[54] S.E.Habas, H.A.S, Platt, M.F.A. M.Van Hest, D.S. Ginley, Low-cost inorganic solar cells: from ink to printed device,Chem. Rev.110(2010)6571-6594.
[55] A.Stein, B.J.Melde, R.C. Schroden, Hybrid inorganic–organic mesoporous silicates-nanoscopic reactors coming of age, Adv. Mater. 12 (2000)1403-1419.<1403::AID-ADMA1403>3.0.CO;2-X
[56] I.W. Hamley, Nanotechnology with soft materials, Angew.Chem. Int. Ed. Engl. 42 (2003) 1692-1712.
[57] D. Mao, J. Yao, X. Lai, M. Yang, J. Du, and D. Wang, Hierarchically mesoporous hematite microspheres and their enhanced formaldehyde-sensing properties, Small 7 (2011)578-582.
[58] R.C.Hayward, P.A. Henning, B.F.Chmelka, G.D. Stucky, The current role of mesostructures in composite materials and device fabrication,Micropor. Mesopor.Mater.44-45 (2001)619-624.
[59] S.Wang, Ordered mesoporous materials for drug delivery, Micropor. Mesopor.Mater. 117 (2009) 1-9.
[60] M.Vallet-Regi, F.Balas, D.Arcos, Mesoporous materials for drug delivery,Angew.Chem. Int. Ed.Engl 46 (2007)7548-7558.
[61] Y.Wan, H.Yang, D.Zhao, Host−Gues chemistry in the synthesis of ordered nonsiliceousmesoporous materials, Ace. Chem. Res.39 (2006) 423-432.
[62] S.L. James, Metal organic frameworks, Chem. Soc. Rev. 32 (2003) 276–288.
[63] M. Eddaoudi, D. B. Moler, H. L. Li, B. L. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks, Acc. Chem. Res. 34 (2001) 319–330.
[64] I. Spanopoulos, I. Bratsos, C. Tampaxis, A. Kourtellaris, A. Tasiopoulos, G. Charalambopoulou, T.A. Steriotis, P.N. Trikalitis, Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate,Cryst. Eng. Comm.17 (2015) 532-539.
[65] Z.J. Lin, J. Lu, M. Hong, R. Cao, Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications, Chem. Soc. Rev., 43 (2014) 5867-5895.
[66] W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle Iii, M. Bosch, H.- C. Zhou, Tuning the structure and function of metal-organic frameworks via linker design, Chem. Soc. Rev. 43 (2014) 5561-5593.
[67] B. Liu, H.Shioyama, H.Jiang, X. Zhang, Q. Xu, Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor,Carbon, 48 (2010) 456-463.
[68] P. Falcaro, D. Buso, A. J. Hill, C. M. Doherty, Patterning techniques for metal organic frameworks, Adv.Mater. 24 (2012) 3153–3168.
[69] S.I. Noro and S. Kitagawa, The supramolecular chemistry of organic-inorganic hybrid materials, ed. John Wiley & Sons, Inc., (2010) 235–269.