Multiscale Study of Hydrogen Storage in Metal-Organic Frameworks

$28.50

Multiscale Study of Hydrogen Storage in Metal-Organic Frameworks

Seyfeddine Rahali, Mahamadou Seydou, Youghourta Belhocine, Bahoueddine Tangour

Because of their high surface areas, crystallinity, and tunable properties, metal−organic frameworks have attracted intense interest as next-generation materials for gas capture and storage, especially the molecular hydrogen storage. Hydrogen storage remains one of the main challenges in the implementation of a hydrogen-based energy economy.

Keywords
Hydrogen Storage, Metal–Organic Frameworks (MOFs)

Published online 10/5/2019, 18 pages

Citation: Seyfeddine Rahali, Mahamadou Seydou, Youghourta Belhocine, Bahoueddine Tangour, Multiscale Study of Hydrogen Storage in Metal-Organic Frameworks, Materials Research Foundations, Vol. 58, pp 1-18, 2019

DOI: https://doi.org/10.21741/9781644900437-1

Part of the book on Metal-Organic Framework Composites

References
[1] Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G, Catal Today 2007;120:246-56. https://doi.org/10.1016/j.cattod.2006.09.022
[2] S.M. Aceves, G.D. Berry, J. Martinez-Frias, F. Espinosa-Loza. Int. J. Hydro. Energy 2006;31:2274-2283. https://doi.org/10.1016/j.ijhydene.2006.02.019
[3] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher. Int. J. Hydrogen Energy 2007;32:1121-1140. https://doi.org/10.1016/j.ijhydene.2006.11.022
[4] Z.X Guo, C. Shang, K.F Aguey-Zinsou. J. Eur. Cer. Soc. 2008;28:1467-1473. https://doi.org/10.1016/j.jeurceramsoc.2007.12.019
[5] A. Zaluska, L. Zaluski, J.O Ström-Olsen. J. Alloy. Compd. 1999;288:217-225. https://doi.org/10.1016/S0925-8388(99)00073-0
[6] A. Zaluska, L. Zaluski, J.O Ström-Olsen. J. Alloy. Compd. 2000;298:125-134. https://doi.org/10.1016/S0925-8388(99)00666-0
[7] P. Chen, Z. Xiong, J. Luo, J. Lin, K.L Tan. Nature 2002;420:302-304. https://doi.org/10.1038/nature01210
[8] A. Züttel, P. Wenger, S. Rentsch, P. Sudan, P. Pauron, C. Emmegder. J. Power Sources 2003;118:1-7. https://doi.org/10.1016/S0378-7753(03)00054-5
[9] Liu Z, Xue Q, Ling C, Yan Z, Zheng J. Hydrogen storage and release by bending carbon nanotubes. Compu Mater Sci 2013:68:121-6. https://doi.org/10.1016/j.commatsci.2012.09.025
[10] Chattaraj PK, Bandaru S, Mondal S. Hydrogen storage in clathrate hydrates. J Phys Chem A 2011;115:187-93. https://doi.org/10.1021/jp109515a
[11] Surya VJ, Iyakutti K, Mizuseki H, Kawazoe Y. Modification of graphene as active hydrogen storage medium by strain engineering. Comput Mater Sci 2012;65:144-8. https://doi.org/10.1016/j.commatsci.2012.07.016
[12] Gtari WF, Tangour B. A theoretical study of the dihydrogen molecule confined inside carbon nanotube. Int J Quantum Chem 2013;113:2397-404. https://doi.org/10.1002/qua.24474
[13] Collins DJ, Zhou HC. Hydrogen storage in metal-organic frameworks. J Mater Chem 2007;17:3154-60. https://doi.org/10.1039/b702858j
[14] Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 2008;38:1477-504. https://doi.org/10.1039/b802426j
[15] Murry LJ, Dinca M, Long JR. Hydrogen storage in metal organic frameworks. Chem Soc Rev 2009;38:1294-314. https://doi.org/10.1039/b802256a
[16] Hu YH, Zhang L. Hydrogen storage in Metal-Organic frameworks. Adv Mater 2010;22:117-30. https://doi.org/10.1002/adma.200902096
[17] Calleja G, Botas JA, Sánchez MS, Orcajo MG. Hydrogen adsorption over Zeolite-like MOF materials modified by ion exchange. Int J Hydrogen Energy 2010;35:9916-23. https://doi.org/10.1016/j.ijhydene.2010.02.114
[18] Satyapal, S.; Petrovic, J.; Thomas, G. Sci. Am. 2007, 81−87.
[19] Srepusharawoot P, Swatsitang E, Amornkitbamrung V, Pinsook U, Ahuja R. Hydrogen adsorption of Li functionalized covalent organic framework-366:An ab initio study. Int J Hydrogen Energy 2013;38:1-5. https://doi.org/10.1016/j.ijhydene.2013.08.102
[20] DOE. Hydrogen and fuell cells program. 2013. http://www.hydrogen.energy.gov/annual progress13_storage.html. https://doi.org/10.2172/1219580
[21] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, et al. Science 2003;300:1127-1129. https://doi.org/10.1126/science.1083440
[22] K.A. Forrest, T. Pham, K. McLaughlin, J.L. Belof, A.C. Stern, M.J. Zaworotko, B. Space. J. Phys. Chem. C 2012;116:15538-15549. https://doi.org/10.1021/jp306084t
[23] Bhatia, S. K.; Myers, A. L. Langmuir 2006, 22, 1688-1700. https://doi.org/10.1021/la0523816
[24] Mueller T, Ceder G. A Density Functional Theory Study of Hydrogen Adsorption in MOF-5. J Phys Chem B 2005; 109:17974-83. https://doi.org/10.1021/jp051202q
[25] Srepusharawoot P, Araujo CM, Blomqvist A, Scheicher RH, Ahuja R. A comparative investigation of H2 adsorption strength in Cd- and Zn-based metal organic framework-5.J Chem Phys 2008;129:164104-5. https://doi.org/10.1063/1.2997377
[26] Lee TB, Kim D, Jung DH, Choi SB, Yoon JH, Kim J, et al. Understanding the mechanism of hydrogen adsorption into metal organic frameworks. Catal Today 2007;120:330-5. https://doi.org/10.1016/j.cattod.2006.09.030
[27] Kuc A, Heine T, Seifert G, Duarte HA. On the nature of the interaction between H2 and metal-organic frameworks. Theor Chem Account 2008;120:543-50. https://doi.org/10.1007/s00214-008-0439-2
[28] Vitillo JG, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel PDC, et al. Role of exposed metal sites in hydrogen storage in MOFs. J Am Chem Soc 2008;130:8386-96. https://doi.org/10.1021/ja8007159
[29] Uzun A, Keskin S. Site characteristics in metal organic frameworks for gas adsorption. Int J Hydrogen Energy 2014;89:56-79. https://doi.org/10.1016/j.progsurf.2013.11.001
[30] Forrest KA, Tony P, Ke ML, Belof JL, Stern AC, Zaworotko MJ. Simulation of the Mechanism of Gas Sorption in a Metal−Organic Framework with Open Metal Sites: Molecular Hydrogen in PCN-61. J Phys Chem C 2012;116:15538−49. https://doi.org/10.1021/jp306084t
[31] X.D. Zhu, T.X. Tao, W.X. Zhou, F.H. Wang, R.M. Liu, et al. Inorg. Chem. Commun. 2014;40:116-119. https://doi.org/10.1016/j.inoche.2013.11.042
[32] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993;47:558-61. https://doi.org/10.1103/PhysRevB.47.558
[33] Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 1994;49:14251-69. https://doi.org/10.1103/PhysRevB.49.14251
[34] Blochl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953-79. https://doi.org/10.1103/PhysRevB.50.17953
[35] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758-75. https://doi.org/10.1103/PhysRevB.59.1758
[36] Hammer B, Hansen LB, Norskov JK. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 1999;59:7413-21. https://doi.org/10.1103/PhysRevB.59.7413
[37] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1997;78:1396. https://doi.org/10.1103/PhysRevLett.78.1396
[38] S. Rahali, M. Seydou, Y. Belhocine, F. Maurel, B. Tangour, Int. J. Hydrogen Energy 2016;41:2711-2719 https://doi.org/10.1016/j.ijhydene.2015.12.153
[39] Schimmel HG, Kearley GJ, Nijkamp MG, Visserl CT, De Jong KP, Mulder FM. Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. Chem Eur J 2003;9:4764-70. https://doi.org/10.1002/chem.200304845
[40] Gtari WF, Tangour B. A theoretical study of the dihydrogen molecule confined inside carbon nanotubes. Int J Quantum Chem 2013;113:2397-404. https://doi.org/10.1002/qua.24474
[41] Gándara F, Furukawa H, Lee S, Yaghi OM. High Methane Storage Capacity in Aluminum Metal−Organic Frameworks. J Am Chem Soc 2014;136:5271−4. https://doi.org/10.1021/ja501606h
[42] S.Rahali, Y.Belhocine, M. Seydou F.Maurel, B. Tangour, Int. J. Hydrogen Energy 2017
[43] L. Sarkisov, T. Düren, R.Q. Snurr. Mol. Phys. 2004;102:211-221. https://doi.org/10.1080/00268970310001654854
[44] G. Garberoglio, A.I. Skoulidas, J.K. Johnson. J. Phys. Chem. B 2005;109:13094-13103. https://doi.org/10.1021/jp050948l
[45] A.G. Wong-Foy, A.J. Matzger, O.M. Yaghi. J. Am. Chem. Soc. 2006;128:3494-3495. https://doi.org/10.1021/ja058213h
[46] S.S. Han, W.A. Goddard. J. Am. Chem. Soc. 2007;129:8422-8423. https://doi.org/10.1021/ja072599+
[47] M. Latroche, S. Surblé, C. Serre, C.M. Draznieks, P. Lewellyn, et al. Angew Chem. 2006;45:8227-8231. https://doi.org/10.1002/anie.200600105
[48] H. Wu, W. Zhou, T. Yildirim. J. Am. Chem. Soc. 2009;131:4995-5000. https://doi.org/10.1021/ja900258t
[49] O.K. Farha, A.O. Yazadyn, I. Eryazici, C.D. Malliakas, B.G. Hauser, et al. Nat. Chem. 2010; 2:944-948. https://doi.org/10.1038/nchem.834
[50] J.L.C. Rowsell, O.M. Yaghi. J. Am. Chem. Soc. 2006;128:1304-1315. https://doi.org/10.1021/ja056639q
[51] Y.W. Li, R.T. Yang. AICHE J. 2008;54:269-279. https://doi.org/10.1002/aic.11362
[52] W. Zhou, H. Wu,M. R. Hartman, T. Yildirim, J. Phys. Chem. C 2007; 111:16131-16137. https://doi.org/10.1021/jp074889i
[53] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, et al. Science 2010;329:424-428. https://doi.org/10.1126/science.1192160
[54] M. Cortés, L.J. Han, S. Soo, G. Wa, A. William. J. Phys. Chem. 2012;6:1621-1631.
[55] Y.W. Li, R.T. Yang. Langmuir 2007;23:12937-12944. https://doi.org/10.1021/la702466d
[56] A.G. Wong-Foy, A.J. Matzger, O.M. Yaghi, J. Am. Chem. Soc. 2006;128:3494-3495. https://doi.org/10.1021/ja058213h
[57] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi. Science 2010;329:424-428. https://doi.org/10.1126/science.1192160
[58] D. Yuan, D. Zhao, D. Sun, H.C. Zhou. Angew Chem. Int. Ed. 2010;49:5357-5361.
[59] M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim. Chem. Rev. 2012;112:782-835. https://doi.org/10.1021/cr200274s
[60] Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, et al. Chen B Angew Chem. Int. Ed. 2011;50:3178-3181. https://doi.org/10.1002/anie.201007583
[61] Smith W, Forester TR. DL_POLY_2.0: a general-purposeparallel molecular dynamics simulation package. J Mol Graph 1996;14:136-41. https://doi.org/10.1016/S0263-7855(96)00043-4
[62] Vaidhyanathan R, Iremonger SS, Shimizu GKH, Boyd PG, Alavi S, Woo TK. Direct observation and quantification of CO2 binding within an amine functionalized nanoporous solid. Science 2010;330:650-3. https://doi.org/10.1126/science.1194237
[63] Vaidhyanathan R, Iremonger SS, Shimizu GKH, Boyd PG, Alavi S, Woo TK. Competition and cooperativity in carbon dioxide sorption by amine functionalized metal-organic frameworks. Angew Chem Int Ed Engl 2012;51:1826-9. https://doi.org/10.1002/anie.201105109
[64] Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 1992;114:10024-35. https://doi.org/10.1021/ja00051a040