The Dielectric Properties of Some Studied Ferrites

$28.50

The Dielectric Properties of Some Studied Ferrites

Hesham Zaki

In present chapter, AC conductivity and dielectric studies of Lio.5+0.5xGexFe2.5-1.5x (x = 0.0, 0.2, 0.3 & 0.5), Cu1+xGexFe2–2xO4 (x = 0.0, 0.2, 0.3, 0.4), Cu1+xTixFe2–2xO4 (x = 0.0, 0.2, 0.3, 0.4), and CuxFe3−xO4+δ (0.0, 0.4, 0.6, 0.8 and 1.0) spinel ferrites have been covered. The relation of log conductivity and log activation energy for Lio.5+0.5xGexFe2.5-1.5x ferrites showed a straight line between l04 Hz to l06 Hz. The dielectric properties for Ge substituted and Ti substituted Copper ferrites were explained using the Maxwell–Wagner model.

Keywords
Ge, Ti Substituted Ferrites, AC- Conductivity, Dielectric Properties, Activation Energy

Published online 9/20/2019, 36 pages

Citation: Hesham Zaki, The Dielectric Properties of Some Studied Ferrites, Materials Research Foundations, Vol. 57, pp 113-148, 2019

DOI: https://doi.org/10.21741/9781644900390-6

Part of the book on Engineering Magnetic, Dielectric and Microwave Properties of Ceramics and Alloys

References
[1] A.M.M. Farea, Shalendra Kumar, Ali Yousef , Chan Gyu Le and Alimuddin, Structure and electrical properties of Co0.5CdxFe2.5−xO4 ferrites, Journal of Alloys and Compounds, 464 ( 2008) 361. https://doi.org/10.1016/j.jallcom.2007.09.126
[2] Y. Köseoğlu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya and N. Akdoğan, Magnetic and dielectric properties of Mn0.2Ni0.8Fe2O4 nanoparticles synthesized by PEG-assisted hydrothermal method, Journal of Nanoparticle Research, 13 ( 2011) 2235. https://doi.org/10.1007/s11051-010-9982-6
[3] Razia Nongjai, Shakeel Khan, K. Asokan, Hilal Ahmed, and Imran Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles, Journal of Applied Physics 112, (2012) 084321. https://doi.org/10.1063/1.4759436
[4] S. Mahalakshmi, K. SrinivasaManja, and S. Nithiyanantham, Electrical Properties of Nanophase Ferrites Doped with Rare Earth Ions, Journal of Superconductivity and Novel Magnetism, 27 (2014) 2083. https://doi.org/10.1007/s10948-014-2551-y
[5] Baykal, Al., Kasapoglu, N., Koseoglu, Y.K., Toprak, M.S., and Bayrakdar, H., CTAB-assisted hydrothermal synthesis of NiFe 2 O 4 and its magnetic characterization. J. Alloys. Compd. 464 (1-2) (2008) 514–518 . https://doi.org/10.1016/j.jallcom.2007.10.041
[6] S. U. Haque, K. K. Saikia, G. Murugesan, and S. Kalainathan, “A study on dielectric and magnetic properties of lanthanum substituted cobalt ferrite,” J. Alloys Compounds, 701 (2017) 612–618. https://doi.org/10.1016/j.jallcom.2016.11.309
[7] M. Pita et al., Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor, J. Colloid Interface Sci., 321(2) (2008) 484–492. https://doi.org/10.1016/j.jcis.2008.02.010
[8] A. K. Nikumbh et al., Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method, J. Magn. Magn. Mater., 355 (2014) 201–209. https://doi.org/10.1016/j.jmmm.2013.11.052
[9] C. G. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audio frequencies, Phys. Rev., 83 (1951)121. https://doi.org/10.1103/PhysRev.83.121
[10] G. E. Pike, AC Conductivity of Scandium Oxide and a New Hopping Model for Conductivity, Phys. Rev. B, 6 (1972) 1572. https://doi.org/10.1103/PhysRevB.6.1572
[11] M. Pollak, On the frequency dependence of conductivity in amorphous solids, Phil. Mag., 23 (1971) 519. https://doi.org/10.1080/14786437108216402
[12] S. R. Elliot, A theory of a.c. conduction in chalcogenide glasses, Phil. Mag., 36 (1977) 1291. https://doi.org/10.1080/14786437708238517
[13] S. A. Mazen, M. H. Abdallah, M. A. El-Ghandoor, and H. A. Hashem, Dielectric behaviour of Cu1−xTixFe2O4 ferrites, phys. stat. sol., 144 (1994) 461. https://doi.org/10.1002/pssa.2211440227
[14] J. Volger, Dielectric properties of solids in relation to imperfections, Prog. Semicond., 4 (1960) 207
[15] F. Haberey and H. P. Wijn, Effect of temperature on the dielectric relaxation in polycrystalline ferrites, phys. stat. sol.(a), 26 (1968) 231. https://doi.org/10.1002/pssb.19680260124
[16] N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Material, Oxford Press, UK, (1979)
[17] N. F. Mott, Electrons in disordered structures, Adv. Phys., 16 (1967) 49. https://doi.org/10.1080/00018736700101265
[18] J. C. Dyre, The random free energy barrier model for ac conduction in disordered solids, J. Appl. Phys., 63 (1988) 2456. https://doi.org/10.1063/1.341681
[19] J. Friedel, On some electrical and magnetic properties of metallic solid solutions, Can. J. Phys., 34 (1956) 1190. https://doi.org/10.1139/p56-134
[20] S. A. Mazen, F. Metawe, and S. F. Mansour, IR absorption and dielectric properties of Li-Ti ferrite, J. Phys. D: Appl. Phys., 30 (1997) 1799. https://doi.org/10.1088/0022-3727/30/12/018
[21] N. Rezlescu and E. Rezlescu, Dielectric properties of copper containing ferrites, phys. stat. sol. (a), 23 (1974) 575. https://doi.org/10.1002/pssa.2210230229
[22] S. A. Mazen and H. M. Zaki, Ti4+ and Ge4+ ionic substitution in Cu-ferrite, electrical conductivity and thermoelectric power, J. Magn. Magn. Mater., 248 (2002) 200. https://doi.org/10.1016/S0304-8853(02)00281-0
[23] K. Iwavachi, IR absorption and dielectric properties of Li-Ti ferrite, J. Appl. Phys., 10 (1971) 1520
[24] N. Rezlescu and E. Cuciureanu, Cation distribution and curie temperature in the copper-manganese-zinc ferrites, J. Phys. Chem. Solids, 32 (1971) 1096. https://doi.org/10.1016/S0022-3697(71)80356-6
[25] N. Rezlescu and E. Cuciureanu, Cation distribution and curie temperature in some ferrites containing copper and manganese, phys. stat. sol. (a), 3 (1970) 573. https://doi.org/10.1002/pssa.19700030403
[26] B. Tareev, Physics of Dielectric Materials, Mir Pub., Moscow, (1975)
[27] H. Bottger, V.V. Bryksin, Hopping Conduction in Solids, Berlin, (1985)
[28] R.R. Heikes, and W.D. Johnson, Mechanism of Conduction in Li Substituted Transition Metal Oxides, J. Chem. Phys., 26 (1957) 582. https://doi.org/10.1063/1.1743350
[29] J.H. Jonker, Analysis of the semiconducting properties of cobalt ferrite, J. Phys. Chem. Solids, 9 (1959) 165. https://doi.org/10.1016/0022-3697(59)90206-9
[30] J.C. Maxwell, Electricity and Magnetism, Oxford Press, London, 1 (1973)
[31] N. Rezlescu and E. Rezlescu, Abnormal dielectric behaviour of copper containing ferrites, Solid State Commun., 14 (1974) 69. https://doi.org/10.1016/0038-1098(74)90234-8
[32] X.-X Tang, A. Manthiram and J.B. Goodenough, Copper ferrite revisited, J. Solid State Chem., 79 (1989) 250. https://doi.org/10.1016/0022-4596(89)90272-7
[33] B.L. Patil, S.R. Sawant and S.A. Patil, Temperature Dependence of Electrical Resistivity and Thermoelectric Power in Cu Ti Fe O Ferrites, Phys. Status Solidi (a), 133 (1992) 147. https://doi.org/10.1002/pssa.2211330115
[34] R.V. Mangalaraja, S. Ananthakumar, P. Manohar and F.D. Gnanam, Magnetic, electrical and dielectric behaviour of Ni0.8Zn0.2Fe2O4 prepared through flash combustion technique, J. Magn. Magn. Mater., 253 (2002) 56. https://doi.org/10.1016/S0304-8853(02)00413-4
[35] M.A. El Hiti, M.A. Ahmed, M.M. Mossad and S.M. Ahia, Dielectric behaviour of Cu-Cr ferrites, J. Magn. Magn. Mater., 150 (1995) 399. https://doi.org/10.1016/0304-8853(95)00281-2
[36] J. Smith, H.P. Wijn, Ferrites, Wiley, New York, (1959)
[37] K. Iwauchi, Dielectric properties of fine particles of Fe3O4 and some ferrites, J. Appl. Phys., 10 (1971) 520. https://doi.org/10.1143/JJAP.10.1520
[38] N. Nanba, Distribution of cation vacancies in copper ferrites with a stoichiometric excess of oxygen, J. Appl. Phys., 53 (1982) 695. https://doi.org/10.1063/1.329978
[39] M.B. Reddy, and P.V. Reddy, Low-frequency dielectric behaviour of mixed Li-Ti ferrites, Physica D, 24 (1991) 975. https://doi.org/10.1088/0022-3727/24/6/025
[40] K.P. Thummer, H.H. Joshi and R.G. Kulkarni, Electrical and dielectric properties of zinc substituted magnesium rich manganese ferrites, J. Mater. Sci. Lett., 18 (1999) 1529. https://doi.org/10.1023/A:1006654720054
[41] J.W. Chen, J.C.Wang and Y.F. Chen, Study of dielectric relaxation behavior in Nd2CuO4, Physica C, 289 (1997) 131. https://doi.org/10.1016/S0921-4534(97)01577-3
[42] J.B. Shi, Y. Hsu and C.L. Lin, Dielectric properties of Gd2CuO4, Physica C, 299 (1998) 272. https://doi.org/10.1016/S0921-4534(98)00038-0
[43] A.A. SaHar and S.A. Rahman, Dielectric properties of rare earth substituted Cu–Zn ferrites, Phys. Status Solidi (a), 200 (2003) 415. https://doi.org/10.1002/pssa.200306663
[44] Y. Yamamoto, A. Makino and T. Nikaidou, Low loss of fine grained Mn-Zn ferrite, J. Phys. IV, Collog (France), 7 (1997) c1-121. https://doi.org/10.1051/jp4:1997139
[45] A. Tawfik and O.M. Hemeda, Effect of vacancy jump rate on the permeability and dielectric properties of Ni0.65Zn0.35CuxFe2−XO4, Mater. Lett., 56 (2002) 665. https://doi.org/10.1016/S0167-577X(02)00573-6
[46] A. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectric Press, London, (1983)
[47] N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, second ed., Clarendon Press, Oxford, (1979)
[48] S.A. Mazen, Infrared absorption and dielectric properties of Li–Cu ferrite, Mater. Chem. Phys., 62 (2000) 139. https://doi.org/10.1016/S0254-0584(99)00158-3
[49] S.A. Mazen and H.M. Zaki, AC conductivity of Li-Ge ferrite, J. Phys. D, 28 (1995) 609. https://doi.org/10.1088/0022-3727/28/4/002
[50] S.A. Mazen and H.A. Dawoud, Temperature and composition dependence of dielectric properties in Li–Cu ferrite, Mater. Chem. Phys., 82 (2003) 557. https://doi.org/10.1016/S0254-0584(03)00200-1