The Dielectric Properties of Some Studied Ferrites


The Dielectric Properties of Some Studied Ferrites

Hesham Zaki

In present chapter, AC conductivity and dielectric studies of Lio.5+0.5xGexFe2.5-1.5x (x = 0.0, 0.2, 0.3 & 0.5), Cu1+xGexFe2–2xO4 (x = 0.0, 0.2, 0.3, 0.4), Cu1+xTixFe2–2xO4 (x = 0.0, 0.2, 0.3, 0.4), and CuxFe3−xO4+δ (0.0, 0.4, 0.6, 0.8 and 1.0) spinel ferrites have been covered. The relation of log conductivity and log activation energy for Lio.5+0.5xGexFe2.5-1.5x ferrites showed a straight line between l04 Hz to l06 Hz. The dielectric properties for Ge substituted and Ti substituted Copper ferrites were explained using the Maxwell–Wagner model.

Ge, Ti Substituted Ferrites, AC- Conductivity, Dielectric Properties, Activation Energy

Published online 9/20/2019, 36 pages

Citation: Hesham Zaki, The Dielectric Properties of Some Studied Ferrites, Materials Research Foundations, Vol. 57, pp 113-148, 2019


Part of the book on Engineering Magnetic, Dielectric and Microwave Properties of Ceramics and Alloys

[1] A.M.M. Farea, Shalendra Kumar, Ali Yousef , Chan Gyu Le and Alimuddin, Structure and electrical properties of Co0.5CdxFe2.5−xO4 ferrites, Journal of Alloys and Compounds, 464 ( 2008) 361.
[2] Y. Köseoğlu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya and N. Akdoğan, Magnetic and dielectric properties of Mn0.2Ni0.8Fe2O4 nanoparticles synthesized by PEG-assisted hydrothermal method, Journal of Nanoparticle Research, 13 ( 2011) 2235.
[3] Razia Nongjai, Shakeel Khan, K. Asokan, Hilal Ahmed, and Imran Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles, Journal of Applied Physics 112, (2012) 084321.
[4] S. Mahalakshmi, K. SrinivasaManja, and S. Nithiyanantham, Electrical Properties of Nanophase Ferrites Doped with Rare Earth Ions, Journal of Superconductivity and Novel Magnetism, 27 (2014) 2083.
[5] Baykal, Al., Kasapoglu, N., Koseoglu, Y.K., Toprak, M.S., and Bayrakdar, H., CTAB-assisted hydrothermal synthesis of NiFe 2 O 4 and its magnetic characterization. J. Alloys. Compd. 464 (1-2) (2008) 514–518 .
[6] S. U. Haque, K. K. Saikia, G. Murugesan, and S. Kalainathan, “A study on dielectric and magnetic properties of lanthanum substituted cobalt ferrite,” J. Alloys Compounds, 701 (2017) 612–618.
[7] M. Pita et al., Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor, J. Colloid Interface Sci., 321(2) (2008) 484–492.
[8] A. K. Nikumbh et al., Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method, J. Magn. Magn. Mater., 355 (2014) 201–209.
[9] C. G. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audio frequencies, Phys. Rev., 83 (1951)121.
[10] G. E. Pike, AC Conductivity of Scandium Oxide and a New Hopping Model for Conductivity, Phys. Rev. B, 6 (1972) 1572.
[11] M. Pollak, On the frequency dependence of conductivity in amorphous solids, Phil. Mag., 23 (1971) 519.
[12] S. R. Elliot, A theory of a.c. conduction in chalcogenide glasses, Phil. Mag., 36 (1977) 1291.
[13] S. A. Mazen, M. H. Abdallah, M. A. El-Ghandoor, and H. A. Hashem, Dielectric behaviour of Cu1−xTixFe2O4 ferrites, phys. stat. sol., 144 (1994) 461.
[14] J. Volger, Dielectric properties of solids in relation to imperfections, Prog. Semicond., 4 (1960) 207
[15] F. Haberey and H. P. Wijn, Effect of temperature on the dielectric relaxation in polycrystalline ferrites, phys. stat. sol.(a), 26 (1968) 231.
[16] N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Material, Oxford Press, UK, (1979)
[17] N. F. Mott, Electrons in disordered structures, Adv. Phys., 16 (1967) 49.
[18] J. C. Dyre, The random free energy barrier model for ac conduction in disordered solids, J. Appl. Phys., 63 (1988) 2456.
[19] J. Friedel, On some electrical and magnetic properties of metallic solid solutions, Can. J. Phys., 34 (1956) 1190.
[20] S. A. Mazen, F. Metawe, and S. F. Mansour, IR absorption and dielectric properties of Li-Ti ferrite, J. Phys. D: Appl. Phys., 30 (1997) 1799.
[21] N. Rezlescu and E. Rezlescu, Dielectric properties of copper containing ferrites, phys. stat. sol. (a), 23 (1974) 575.
[22] S. A. Mazen and H. M. Zaki, Ti4+ and Ge4+ ionic substitution in Cu-ferrite, electrical conductivity and thermoelectric power, J. Magn. Magn. Mater., 248 (2002) 200.
[23] K. Iwavachi, IR absorption and dielectric properties of Li-Ti ferrite, J. Appl. Phys., 10 (1971) 1520
[24] N. Rezlescu and E. Cuciureanu, Cation distribution and curie temperature in the copper-manganese-zinc ferrites, J. Phys. Chem. Solids, 32 (1971) 1096.
[25] N. Rezlescu and E. Cuciureanu, Cation distribution and curie temperature in some ferrites containing copper and manganese, phys. stat. sol. (a), 3 (1970) 573.
[26] B. Tareev, Physics of Dielectric Materials, Mir Pub., Moscow, (1975)
[27] H. Bottger, V.V. Bryksin, Hopping Conduction in Solids, Berlin, (1985)
[28] R.R. Heikes, and W.D. Johnson, Mechanism of Conduction in Li Substituted Transition Metal Oxides, J. Chem. Phys., 26 (1957) 582.
[29] J.H. Jonker, Analysis of the semiconducting properties of cobalt ferrite, J. Phys. Chem. Solids, 9 (1959) 165.
[30] J.C. Maxwell, Electricity and Magnetism, Oxford Press, London, 1 (1973)
[31] N. Rezlescu and E. Rezlescu, Abnormal dielectric behaviour of copper containing ferrites, Solid State Commun., 14 (1974) 69.
[32] X.-X Tang, A. Manthiram and J.B. Goodenough, Copper ferrite revisited, J. Solid State Chem., 79 (1989) 250.
[33] B.L. Patil, S.R. Sawant and S.A. Patil, Temperature Dependence of Electrical Resistivity and Thermoelectric Power in Cu Ti Fe O Ferrites, Phys. Status Solidi (a), 133 (1992) 147.
[34] R.V. Mangalaraja, S. Ananthakumar, P. Manohar and F.D. Gnanam, Magnetic, electrical and dielectric behaviour of Ni0.8Zn0.2Fe2O4 prepared through flash combustion technique, J. Magn. Magn. Mater., 253 (2002) 56.
[35] M.A. El Hiti, M.A. Ahmed, M.M. Mossad and S.M. Ahia, Dielectric behaviour of Cu-Cr ferrites, J. Magn. Magn. Mater., 150 (1995) 399.
[36] J. Smith, H.P. Wijn, Ferrites, Wiley, New York, (1959)
[37] K. Iwauchi, Dielectric properties of fine particles of Fe3O4 and some ferrites, J. Appl. Phys., 10 (1971) 520.
[38] N. Nanba, Distribution of cation vacancies in copper ferrites with a stoichiometric excess of oxygen, J. Appl. Phys., 53 (1982) 695.
[39] M.B. Reddy, and P.V. Reddy, Low-frequency dielectric behaviour of mixed Li-Ti ferrites, Physica D, 24 (1991) 975.
[40] K.P. Thummer, H.H. Joshi and R.G. Kulkarni, Electrical and dielectric properties of zinc substituted magnesium rich manganese ferrites, J. Mater. Sci. Lett., 18 (1999) 1529.
[41] J.W. Chen, J.C.Wang and Y.F. Chen, Study of dielectric relaxation behavior in Nd2CuO4, Physica C, 289 (1997) 131.
[42] J.B. Shi, Y. Hsu and C.L. Lin, Dielectric properties of Gd2CuO4, Physica C, 299 (1998) 272.
[43] A.A. SaHar and S.A. Rahman, Dielectric properties of rare earth substituted Cu–Zn ferrites, Phys. Status Solidi (a), 200 (2003) 415.
[44] Y. Yamamoto, A. Makino and T. Nikaidou, Low loss of fine grained Mn-Zn ferrite, J. Phys. IV, Collog (France), 7 (1997) c1-121.
[45] A. Tawfik and O.M. Hemeda, Effect of vacancy jump rate on the permeability and dielectric properties of Ni0.65Zn0.35CuxFe2−XO4, Mater. Lett., 56 (2002) 665.
[46] A. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectric Press, London, (1983)
[47] N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, second ed., Clarendon Press, Oxford, (1979)
[48] S.A. Mazen, Infrared absorption and dielectric properties of Li–Cu ferrite, Mater. Chem. Phys., 62 (2000) 139.
[49] S.A. Mazen and H.M. Zaki, AC conductivity of Li-Ge ferrite, J. Phys. D, 28 (1995) 609.
[50] S.A. Mazen and H.A. Dawoud, Temperature and composition dependence of dielectric properties in Li–Cu ferrite, Mater. Chem. Phys., 82 (2003) 557.