Multiferroics Materials, Future of Spintronics

$28.50

Multiferroics Materials, Future of Spintronics

I.A. Abdel-Latif

Multiferroic materials are a class of new materials where there is a combination between the ferro/antiferroelectricity, the ferro/antiferromagnetism, and the ferro/antiferroelasticity. The most important applications of these materials are their use in spintronics. Progress in developing new materials with new properties suitable for storage media and spin valve transistors is an important step in the field of magnetic materials and their applications. Magnetoresistive random access memory MRAM is one of the applications of the multiferroics materials. In the present chapter, highlights will be focused on the basic concepts of multiferroics science, technology and applications.

Keywords
Spintronics, Multiferroics, Spin Valve Transistor, Magneto-Resistive Random Access Memory, Rare Earth Manganites, Perovskites

Published online 9/20/2019, 24 pages

Citation: I.A. Abdel-Latif, Multiferroics Materials, Future of Spintronics, Materials Research Foundations, Vol. 57, pp 89-112, 2019

DOI: https://doi.org/10.21741/9781644900390-5

Part of the book on Engineering Magnetic, Dielectric and Microwave Properties of Ceramics and Alloys

References
[1] J. J. Sakurai, “Modern Quantum Mechanics Revised Edition” (Reading, MA: Anderson-Wesley, (1994).
[2] S. D. Bader, Colloquium: Opportunities in nanomagnetism, Rev. Mod. Phys., 78(1) (2006). https://doi.org/10.1103/RevModPhys.78.1
[3] A. Fert, Nobel Lecture: Origin, development, and future of spintronics, Rev. Mod. Phys., 80 (2008)1517. https://doi.org/10.1103/RevModPhys.80.1517
[4] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev. Lett., 61 (1988) 2472. https://doi.org/10.1103/PhysRevLett.61.2472
[5] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn,Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B, 39 (1989) 4828. https://doi.org/10.1103/PhysRevB.39.4828
[6] S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, and M. Samant, Magnetically engineered spintronic sensors and memory, Proc. IEEE, 91 (2003) 661. https://doi.org/10.1109/JPROC.2003.811807
[7] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett., 74 (1995) 3273. https://doi.org/10.1103/PhysRevLett.74.3273
[8] M. Tsoi, A. G. M. Jansen, J. Bass, W.–C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett., 80 (1998) 4281
[9] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, Current-induced realignment of magnetic domains in nanostructured Cu/Co multilayer pillars, Phys. Rev. Lett., 84 (2000) 3149. https://doi.org/10.1063/1.125752
[10] F. J. Jedema, A. T. Filip, and B. J. van Wees, Nature, 410 (2001) 345. https://doi.org/10.1038/35066533
[11] A. Pimenov, A. A. Mukhin, V. Yu. Ivanov, V. D. Travkin, A. M. Balbashov, A. Loidl,Possible evidence for electromagnons in multiferroic manganites, Nature Physics, 2 (2006) 97–100 . https://doi.org/10.1038/nphys212
[12] T. Toheiet al., Geometric ferroelectricity in rare-earth compounds RGaO3 and RInO3,Phys Rev. B, 79 (2009) 144125. https://doi.org/10.1103/PhysRevB.79.144125
[13] D. Khomskii, Trend: Classifying multiferroics: Mechanisms and effect, Physics, 2 (2009) 20. https://doi.org/10.1103/Physics.2.20
[14] Shiqing Deng, Shaobo Cheng, Ming Liu, Jing Zhu., Modulating Magnetic Properties by Tailoring In-Plane Domain Structures in Hexagonal YMnO Films , ACS Applied Materials & Interfaces, (2016). https://doi.org/10.1021/acsami.6b08024
[15] B. van Aken et al., The Origin of Ferroelectricity in Magnetoelectric YMnO3, Nature Mater., 3(2004) 164. https://doi.org/10.1038/nmat1080
[16] S Datta, and B. Das, Electronic analog of the electrooptic modulator, Applied Physics Letters, 56 (1990) 665–667. https://doi.org/10.1063/1.102730
[17] J. B. Goodenough and J. M. Longo, Magnetic and Other Properties of Oxides and Related Compounds, Landolt-Börnstein, Numerical data and Functional Relations in Science and Technology, (4) (1970)
[18] T. Mitsui et al., Ferroelectrics and Related Substances, Landolt-Börnstein, Numerical data and Functional Relations in Science and Technology, New Series, 16 (1) (1981)
[19] N. A. Hill, Why Are There so Few Magnetic Ferroelectrics, J. Phys. Chem. B, 104 (2000) 6694. https://doi.org/10.1021/jp000114x
[20] D. I. Khomskii, Bull. Am. Phys. Soc. C, 21.002 (2001)
[21] D.I..Khomskii, Multiferroics: Different ways to combine magnetism and ferroelectricity, J. Magn. Magn. Mater., 306 (2006)1. https://doi.org/10.1016/j.jmmm.2006.01.238
[22] T. Kimura et al., Magnetic control of ferroelectric polarization, Nature, 426 (2003) 55. https://doi.org/10.1038/nature02018
[23] N. Hur et al., Electric polarization reversal and memory in a multiferroic material induced by magnetic fields, Nature, 429 (2004) 392. https://doi.org/10.1038/nature02572
[24] D. V. Efremov, J. van den Brink, and D. I. Khomskii, Bond- versus site-centred ordering and possible ferroelectricity in manganites ,Nature Mater., 3 (2004)853. https://doi.org/10.1038/nmat1236
[25] S. W. Cheong and M. V. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity, Nature Mater., 6 (2007)13. https://doi.org/10.1038/nmat1804
[26] Special issue, J. Phys. Condens. Matter, 20 (2008), 434201–434220. https://doi.org/10.1088/0953-8984/20/43/434201
[27] N. Ikeda et al.,Dielectric Relaxation and Hopping of Electrons in ErFe2O4, J. Phys. Soc. Japan., 69 (2000)1526
[28] Memory with a spin, Spintronic devices that electrically store non-volatile information are promising candidates for high-performance, high-density memories, Nature Nanotechnology, 10 (2015) 185
[29] Sh.Sh. Bashkirov et al., Mössbauer Effect and Electrical Conductivity Studies of SmFexMn1-xO3 (x=0.7, 0.8 and 0.9), Journal of Alloys and Compounds, 387 (2005) 70–73. https://doi.org/10.1016/j.jallcom.2004.06.070
[30] I.A. Abdel-Latif et al., The influence of tilt angle on the CMR in Sm0.6Sr0.4MnO3, Journal of Alloys and Compounds, 452 (2008) 245–248. https://doi.org/10.1016/j.jallcom.2007.07.022
[31] Sh.Sh. Bashkirov et al., Crystal Structure, Electric and Magnetic Properties of Ferrimanganite NdFexMn1-xO3, IzvestiyaAkademiiNauk. Ser. Fizicheskaya, 67 (2003) 1052.
[32] I.A. Abdel-Latif, S.A. Saleh ,Effect of iron Doping on the Physical Properties of Europium Manganites, Journal of Alloys and Compounds, 530 (2012) 116– 120. https://doi.org/10.1016/j.jallcom.2012.03.079
[33] K. Bouziane et al., Electronic and Magnetic Properties of SmFe1-xMnxO3Orthoferrites (x = 0.1, 0.2 and 0.3), J. Appl. Phys., 97 (2005) 10504. https://doi.org/10.1063/1.1851406
[34] I.A.Abdel-Latif et al., Electrical and Magnetic Transport in Strontium doped Europium Ferrimanganites, Journal of Magnetism and Magnetic Materials, 420 (2016) 363–370. https://doi.org/10.1016/j.jmmm.2016.07.016
[35] I.A. Abdel-Latif et al. Synthesis of novel perovskite crystal structure phase of strontium Doped rare earth Manganites using sol gel method, Journal of Magnetism and Magnetic Materials, 393 (2015) 233–238. https://doi.org/10.1016/j.jmmm.2015.05.078
[36] M Kh Hamad et al., Effect of cobalt doping in Nd1-xSrxMn1-yCoyO3, Journal of Physics: Conf. Series, 869 (2017) 012032. https://doi.org/10.1088/1742-6596/869/1/012032
[37] I.A. Abdel-Latif, Study on The Effect of Particle Size of Strontium – Ytterbium Manganites on Some Physical Properties, AIP Conf. Proc., 1370 (2011) 108-115. https://doi.org/10.1063/1.3638090
[38] I.A. Abdel-Latif, Study on Structure, Electrical and Dielectric Properties of Eu0.65Sr0.35Fe0.3Mn0.7O3, Materials Science and Engineering, 146 (2016) 012003. https://doi.org/10.1088/1757-899X/146/1/012003
[39] A AYousif, et al., Structure, Electrical and Dielectric Properties of Strontium Europium Ferrimanganites, AIP Conf. Proc., 1370 (2011) 103-107
[40] Q. Sun, Wan-Jian Yin, J. Am. Chem. Soc., 139 (42) (2017) 14905–14908. https://doi.org/10.1021/jacs.7b09379
[41] M. Iqbal, J Mater Sci: Mater Electron, 28 (2017)15065–15073. https://doi.org/10.1007/s10854-017-7381-9
[42] I.A. Abdel-Latif et al., Impact of the Annealing Temperature on Perovskite Strontium Doped Neodymium Manganites Nanocomposites and Their Photocatalytic Performances,Journal of the Taiwan Institute of Chemical Engineers, 75 (2017) 174–182. https://doi.org/10.1016/j.jtice.2017.03.030
[43] M. B. Salamon and M. Jaime,The physics of manganites: Structure and transport, Reviews of Modern Physics, 73 (2001) 583. https://doi.org/10.1103/RevModPhys.73.583
[44] V. V. Parfenov, et al., Transport Phenomena of Ferrimanganite Structure Nd0.65Sr0.35FexMn1-xO3, Izv. VyzovPhysica, 10 (2003) 24
[45] I.A. Abdel-Latif et al., Magnetocaloric Effect, Electric, and Dielectric Properties of Nd0.6Sr0.4MnxCo1-xO3 Composites, Journal of Magnetism and Magnetic Materials, 457 (2018) 126–134. https://doi.org/10.1016/j.jmmm.2018.02.087
[46] A. Marzouki-Ajmi et al., Journal of Magnetism and Magnetic Materials, 433 (2017) 209–215. https://doi.org/10.1016/j.jmmm.2017.01.097
[47] I.A. Abdel-Latif et al., Neodymium Cobalt Oxide as a Chemical Sensor‏, Results in Physics, 8 (2018) 578–583. https://doi.org/10.1016/j.rinp.2017.12.079
[48] R.I. Zainullina et al., Journal of Alloys and Compounds, 394 (2005) 39–42. https://doi.org/10.1016/j.jallcom.2004.10.032
[49] K .Das, P. Dasgupta, A. Poddar, I. Das. Significant enhancement of magnetore- sistance with the reduction of particle size in nanometer scale. Sci. Rep., 6 (2016) 20351. https://doi.org/10.1038/srep20351
[50] I. A. Abdel-Latif, et al., Study on Microstructure and Electrical Properties of Europium Manganites, Arab. J. Nucl. Sc. Appl., 44 (2011) 4
[51] The Nano Particle Size Effect on Some Physical Properties of Neodymium Coblate-Manganites for Hydrogen Storage, I.A. Abdel-Latif, A. Al-Hajary, H. Hashem, M. H. Ghoza and Th. El-Sherbini, AIP Conf. Proc., 1370 (2011) 158-164.
[52] V. V. Parfenov, I. A. Abdel-Latif , Sh. Sh. Bashkirov On the structure and transport mechanism of Nd0,65Sr0,35Mn1-XFeXO3 solid solution (X=0, 0.2, 0.4, 0.8),, Arab. J. Nucl. Sc. Appl., 40 (2007) 167
[53] I. A. Abdel-Latif , A. S. Khramov, V. A. Trounov, A. P. Smirnov, Sh. Sh. Bashkirov, V. V. Parfenov, E. A. Tserkovnaya, G. G. Gumarov, Z. Ibragimov, Electrical and Magnetic Properties – Structure Correlation on Nd0.65Sr0.35FexMn1-xO3, Egypt. J. Solids, 29 (2006) 341
[54] Y. Kumagai, et al., Structural domain walls in polar hexagonal manganites. Nat. Commun, 4 (2013) 1540. https://doi.org/10.1038/ncomms2545
[55] M. Isobe , et al. Structure of YbMnO3 Acta Crystallogr. C., 47 (1991) 423. https://doi.org/10.1107/S0108270190007995
[56] H. Ben Khlifa, et al., Journal of Alloys and Compounds, 680 (2016)
[57] M. Lilienblum, et al., Nature Physics, 11 (2015) 1070–1073. https://doi.org/10.1038/nphys3468
[58] H Das, A. L. Wysocki1, Y. Geng , W. Wu , C. J. Fennie1, Bulk magnetoelectricity in the hexagonal manganites and ferrites. Nat. Commun., 5 (2014) 2998. https://doi.org/10.1038/ncomms3998